DOI: http://dx.doi.org/10.20473/jbk.v5i2.2016.177-189

Aplikasi Autoregressive Integrated Moving Average (ARIMA) untuk Meramalkan Jumlah Demam Berdarah Dengue (DBD) di Puskesmas Mulyorejo

Luluk Nor Kasanah

Abstract


ARIMA was one of a forecasting method of time series if independent variable be ignored, it would use the past and
present value as a dependent variable. The accuracy of ARIMA forecasting method was good to produce short-term
forecasting. The advantages of ARIMA method than other method was this method didn’t require the data pattern
so it could be used for all kinds of data pattern, so it could be applied in cases of dengue hemorrhagic fever (DHF)
in Mulyorejo Public Health Center. This study was to determine the best forecasting model as well as to predict
and analyze the results of forecasting number of dengue hemorrhagic fever in Mulyorejo Public Health Center. The
data was monthly number of dengue hemorrhagic fever patients in Mulyorejo Public Health Center from January
2010 to February 2016 (a total of 74 plots data). The results were the number of dengue hemorrhagic fever cases
in Mulyorejo Public Health Center could be predicted with ARIMA model (1,0,0), thought based on diagnostics test
the ARIMA model met all tests but the forecasting number of dengue hemorrhagic fever cases in years 2016–2017
showed a downward trend, and in 2017 was fl at, while MAPE and MAE amounted to 63.026% and 1.89%, the
value of the error was large enough which indicated that less accurate forecasting. DHF data had a lot of missing
data caused big value of MAPE and MAE so must be transformed by series mean method. DHF data was trend and
seasonal so winters exponential smoothing with ordinary least square was better than ARIMA to get small error.

Keywords


ARIMA, Time series, Dengue Hemorrhagic Fever (DHF)

Full Text:

PDF

References


Aritonang, L. 2009. Peramalan Bisnis. Jakarta:

Ghalia Indonesia.

Baroroh. 2013. Analisis Multivariat dan Time

Series dengan SPSS 2. Jakarta: Elex Media

Komputindo.

BPS Kota Surabaya. 2016. Banyaknya Hari

Hujan dan Curah Hujan di Perak 1. Diakses

dari http://surabayakota.bps.go.id/webbeta/frontend/linkTabelStatis/view/id/200 (sitasi

tanggal 6 Maret 2016).

Dinas Kesehatan Jawa Timur. 2013. Profil

Kesehatan Jawa Timur Tahun 2013. Surabaya:

Dinkes Jatim.

Direktorat Jenderal P2PL DepKes RI. 2011.

Modul Pengendalian Demam Berdarah

Dengue. Jakarta: Kemenkes RI.

Direktorat Jenderal P2PL DepKes RI. 2014.

Informasi Pengendalian Penyakit dan

Penyehatan Lingkungan. Jakarta: Kemenkes

RI.

Hermawan, 2011. Perbandingan Metode Box-

Jenkins dan Holt-Winters dalam Prediksi

Anomali Olr Pentad di Kawasan Barat

Indonesia. Jurnal Sains Dirgantara, 9:1:

–34. LAPAN.

Makridakis., Victor. 1999. Metode dan Aplikasi

Peramalan. Jakarta: Erlangga.

Sungkar S. 2007. Pemberantasan Demam

Berdarah Dengue: Sebuah Tantangan yang

Harus Dijawab. Jakarta: Majalah Kedokteran

Indonesia.

Thomas Suroso, dkk, ed. 2011 Pencegahan dan

Penanggulangan Penyakit Demam Dengue

dan Demam Berdarah Dengue, Terjemahan,

WHO danDepkes RI, Jakarta.

Wei. 2006. Time Series Univariate and Multivariate

Methods. 2nd ed. United States of America:

Pearson Education.

Wirayoga, M.A.. 2013. Hubungan Kejadian

Demam Berdarah Dengue dengan Iklim di

Kota Semarang Tahun 2006–2011. Semarang:

Universitas Negeri Semarang.

World Health Organization. 2013.Dengue

Haemorrhagic Fever. Diagnosis, treatment,

prevention and control. Geneva: 2nd edition


Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Biometrika dan Kependudukan

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats

Creative Commons License
JBK by Unair is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Fakultas Kesehatan Masyarakat Universitas Airlangga

Kampus C Universitas Airlangga

Jl. Mulyorejo Kampus C Unair, Surabaya 60115, Indonesia.

E-mail: j.biokep@gmail.com / jbk@fkm.unair.ac.id

Phone: +62 856-4037-0265