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Abstract

Idiopathic pulmonary fibrosis (IPF), a form of interstitial lung disease (ILD), is
characterized by progressive lung scarring with a poor prognosis. Endothelin signalling has
emerged as a key player in lung fibrogenesis under various pathological conditions.
However, its specific contribution to IPF pathogenesis remains poorly elucidated. We
propose that leveraging in silico modelling approaches can provide valuable insights into
the role of endothelin signalling in IPF, potentially paving the way for novel therapeutic
and diagnostic strategies. We employed datasets curated from the Gene Expression
Omnibus (GEO) database. Comprehensive data analyses from lung, bronchoalveolar
lavage cells, blood and human primary fibroblast samples from both control and IPF
patients were utilized to uncover the expression patterns and clinical correlations of
endothelin genes. Furthermore, single-cell RNA-sequencing (scRNA-seq) was leveraged to
explore the cellular heterogeneity and specific cell types harboring aberrant endothelin
expression in the IPF lung microenvironment. Our analysis revealed a significant changes
of endothelin genes expression pattern in IPF patient samples as compared to healthy
control. Notably, IPF patients with upregulation of endothelin-1, demonstrated a
statistically significant poorer survival. These findings implicate endothelin signalling as a
novel and potentially targetable pathway in IPF. Further investigations are warranted to
validate these findings and explore the therapeutic potential of modulating endothelin
signalling in this lung disease.
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INTRODUCTION
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Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with
unknown cause, characterized by inflammation, fibrosis, and destruction of lung
architecture, leading to respiratory failure and death (Barratt et al., 2018; Koudstaal
& Wijsenbeek, 2023; Lederer & Martinez, 2018; Wolters et al., 2018). It is the most
common idiopathic interstitial pneumonia and is associated with significant
morbidity and mortality. The prevalence of IPF fibrosis ranges from 4 to 725 cases
per 100,000 people, with an increasing trend due to aging populations worldwide
(Cottin et al., 2019; Ferrara et al., 2019; Harari et al., 2020; Kaul et al., 2022; Maher
et al., 2021a, 2021b; Skvortsov et al., 2022). The pathogenesis of IPF involves
altered wound healing in response to persistent lung injury (L. Zhang et al., 2018),
genetic susceptibility (Michalski & Schwartz, 2021), cellular senescence
(Yanagihara et al., 2019), profibrotic pathways (Yanagihara et al., 2019), microbial
dysbiosis (Invernizzi & Molyneaux, 2019), metabolic dysregulation (Bargagli et
al., 2020), and multiple signalling pathways such as inflammation, oxidative stress,
and fibrosis (Lv et al., 2019). The endothelin system, a family of regulatory
peptides, comprises three signalling molecules (endothelin-1, endothelin-2, and
endothelin-3). These bind to specific receptors on target cells, endothelin receptor
A and B, triggering downstream effects through G-proteins. Specialized enzymes,
endothelin converting enzyme 1 and 2, activate the system by processing precursor
molecules into mature endothelin peptides (Barton & Yanagisawa, 2019;
Davenport et al., 2016; Haryono et al., 2022).

Endothelin's pro-fibrotic actions involve triggering the transformation of
endothelial cells into scar-forming fibroblasts via endothelial-to-mesenchymal
transition (Chang et al., 2018), actively altering blood vessel structure through
vascular remodeling (Hartopo et al., 2018), inducing oxidative stress(Argentino et
al., 2022) and acting as a pro-inflammatory mediator (Liu et al., 2018). Endothelin-
1 also has been shown to induce lung fibroblast activation into myofibroblast via
activation of the RhoA/ROCK (Rho-associated protein kinase) signalling cascade
and Hippo/Yap pathway (Neubig, 2022; Sun et al., 2021; Tocci et al., 2021).
Furthermore, animal models suggest that the profibrotic effects of endothelin-1
might primarily be mediated through the ETB receptor. Knocking down this
receptor significantly attenuated fibroblast activation and collagen synthesis
(Akashi et al., 2016). These diverse mechanisms underpin its crucial role in the
development and progression of various fibrotic diseases.

Increased endothelin-1 serum levels were found in patients with IPF and might be
associated with ILD severity (Pulito-Cueto et al., 2023). Studies have shown that
blocking endothelin signalling with endothelin receptor antagonist can attenuate
lung fibrosis in animal models (Bellaye et al., 2018; Hartopo et al., 2018). However,
a meta-analysis found that endothelin receptor antagonists did not significantly
improve lung function in idiopathic pulmonary fibrosis patients compared to
placebo (Li et al., 2022). As such, while the endothelin system is implicated in IPF,
its precise involvement and underlying mechanisms remain unclear, demanding
further exploration. In this study, we propose that by leveraging in silico modelling
approaches can provide valuable insights into the role of endothelin signalling in
IPF.

RESEARCH METHOD
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1. Dataset data extraction

According to the GEO database (http://www.ncbi.nlm.nih.gov/geo/), 4 datasets
were selected: from lung tissue samples [GSE47460 (Agilent) (Anathy et al.,
2018)], from bronchoalveolar lavage fluids (BAL) samples [GSE70866 (Agilent)
(Prasse et al., 2019)]; from blood samples [GSE93606 (Affymetrix) (Molyneaux et
al., 2017)], and from human primary fibroblast [GSE40839 (Affymetrix)(Lindahl
et al., 2013)]. Gene expression data for EDN1 (endothelin-1), EDN2 (endothelin-
2), ENDRA (endothelin receptor A), and EDNRB (endothelin receptor B) were
extracted from all four database by using GEO2R platform. Survival data was
extracted from GSE93606 dataset (blood). Approval of the Ethics Committee was
not required because the information of patients was obtained from the GEO
database.

2. Analysis of scRNA-seq Data

Lung scRNA-seq data from both healthy control and IPF patients was extracted
from a publicly available HLCA (Human Lung Cells Atlas) database (Sikkema et
al., 2023) (https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-
935¢-db10d30de293). The raw and normalized counts, integrated embedding, cell
type annotations and clinical and technical metadata were extracted for analysis.
The computational analysis of scRNA-seq dataset (lung) was performed using CZ
CELLxGENE Discover platform (Program et al., 2023). UMAP (uniform manifold
approximation and projection) for dimension reduction was calculated dan cell
types were identified based on markers of each cluster using CZ CELLxGENE
Discover.

3. Survival analysis

The optimal cut-off value of genes was determined by using the median among
each gene expressions. IPF patients were grouped according to low and high gene
expression of EDN1, EDN2, EDNRA, and EDNRB. Kaplan—Meier analysis with
statistical test was performed to compare survival among low and high gene
expression groups.

4. Statistical analysis

A series of statistical analyses were performed using Graphpad Prism software
version 10 (Graphpad Software, Inc). Differences between two groups were
analyzed using student t-test. Numerical data were summarized as median and
interquartile range. Survival data were summarized using the Kaplan-Meier method
and differences between groups were analyzed using Gehan-Breslow-Wilcoxon
test. P < 0.05 was considered statistically significant.

RESULT AND DISCUSSION
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1. Endothelin genes expression in patients with Idiopathic Pulmonary Fibrosis
(IPF)
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Figure 1. Expression of endothelin and its receptor in lung tissue, BAL cells, blood and human
primary lung fibroblast in patients with IPF.

(A - D) Expression of EDN1, EDN2, EDNRA and EDNRB of lung tissue in IPF patients (n=75 for control
and n=84 for IPF).

(E - H) Expression of EDN1, EDN2, EDNRA and EDNRB of BAL cells in IPF patients (n=20 for control
and n=62 for IPF).

(1 - L) Expression of EDN1, EDN2, EDNRA and EDNRB of blood cells in IPF patients (n=20 for control
and n=57 for IPF).

(M - P) Expression of EDN1, EDN2, EDNRA and EDNRB of human primary lung fibroblasts in IPF
patients (n=10 for control and n=11 for IPF).

Abbreviation used are; EDN1 = 1,EDN2 = ; EDNRA = receptor A;
EDNRB = endothelin receptor B. Data represent median and interquartile range. *P < 0.05, **P < 0.01,

***P <0.001 and ****P < 0.0001. ns, not significant. Statistical analyses were performed using student t-
test.

Figure 1. Expression of endothelin and its receptor in lung tissue, BAL cells, blood and
human primary lung fibroblast in patients with IPF, Data Processing, 2022 (edited)

In order to explore the endothelin genes (EDN1, EDN2, ENDRA, and EDRB)
expressions, 4 datasets were extracted from the GEO database. In lung tissue, we
observed significant downregulation of EDN1, EDNRA, and EDNRB, suggesting
decreased pro-contractile signalling (Fig. 1A-D). Notably, EDN2 expression was
significantly upregulated (Fig. 1C). In contrast, both BAL cells and human primary
lung fibroblasts exhibited significant upregulation of EDN1 only (Fig. 1E-H, 1M-
P), suggesting its specific role in these cell types. Interestingly, blood cells showed
upregulation of both EDN1 and EDRB (Fig. 1I-L).

2. The scRNA-seq Analysis Revealed Elevated Expression of EDNI Mainly in
Endothelial cells of IPF Lung
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Figure 2
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Figure 2. The scRNA-seq analysis in the HLCA dataset

(A) UMAPs of the immune, epithelial and endothelial/stromal cells of healthy control lung and IPF lung
(B) Color dot plot of EDN1, EDN2, EDNRA, and EDNRB expressions across different types of cells
Abbreviation used are; EDN1 = 1,EDN2 = 2, EDNRA = receptor A;
EDNRB = endothelin receptor B.

Figure 2. The scRNA-seq analysis in the HLCA Dataset, Data Processing, 2022 (edited)

Single-cell RNA sequencing (scRNA-seq) of lung tissue from healthy controls and
IPF patients, retrieved from the HLCA database (Sikkema et al., 2023), revealed
comparable cell types in both groups (Fig. 2A). However, IPF lungs exhibited a
global decline in cell number. While EDN1 displayed widespread expression across
cell types, particularly in pulmonary artery endothelial cells, capillary endothelial
cells, and vein endothelial cells, with limited expression in smooth muscle cells and
macrophages, its expression was upregulated in IPF lungs within these
aforementioned cell types and elicited macrophages. Conversely, EDN2 expression
was comparatively lower across cell types and primarily downregulated in IPF
lungs, affecting smooth muscle cells, endothelial cells (pulmonary artery, capillary,
and vein), and alveolar macrophages. Notably, both EDNRA and EDNRB
expression was downregulated in all cell types within IPF lungs (Fig. 2B).

3. Elevated Blood EDNI Expression were Associated with Worse Survival in
IPF Patients
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Figure 3
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Figure 3. Kaplan-Meier analysis of EDN1, EDN2, EDNRA, and EDNRB expression in the blood for
the survival of patients with IPF according to GSE93606 dataset.

(A) Survival of IPF patients with low and high EDN1 expression

(B) Survival of IPF patients with low and high EDN2 expression.

(C) Survival of IPF patients with low and high EDNRA expression

(D) Survival of IPF patients with low and high EDNRB expression.

Statistical analyses were performed using Gehan-Breslow-Wilcoxon test (A-D).

Figure 3. Kaplan-Meier Analysis of EDNI, EDN2, EDNRA, and EDNRB Expression in
the Blood for the Survival of Patients with IPF According to GSE93606 Dataset, Data
Processing, 2022 (edited)

Analyzing data from the GSE93606 dataset, we employed survival analysis to
assess the impact of endothelin gene expression on IPF patient outcomes. Patients
with IPF were divided into two groups based on the optimal cut-off value of genes
as described in the methods section. IPF patients with high EDN1 expression
exhibited significantly shorter survival times compared to those with low
expression (Fig. 3A). Although statistically non-significant, a similar trend towards
lower survival was observed in patients with high EDNRB expression (Fig. 3B).
Interestingly, neither EDN2 nor EDNRA expression in blood cells significantly
impacted IPF patient survival (Fig. 3C-D).

4. Endothelin-1 as a Central Mediator and Prognostic Marker in IPF

IPF, a progressive scarring lung disease, remains shrouded in uncertainty. While
inflammation and fibrosis are hallmarks, understanding the underlying mechanisms
is crucial for therapeutic development. The endothelin system, known for its pro-
fibrotic effects (Akashi et al., 2016; Argentino et al., 2022; Bellaye et al., 2018;
Chang et al., 2018; Rodriguez-Pascual et al., 2014; Sun et al., 2021; Wermuth et
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al., 2016; Wu et al., 2019), emerges as a potential player in this complex puzzle.
Elevated endothelin-1 levels in IPF patients suggest its involvement (Mishra et al.,
2021; Pulito-Cueto et al., 2023; Remuzgo-Martinez et al., 2022). However, studies
on endothelin-1 and endothelin receptor blockage in IPF have yielded mixed results
(Akashi et al., 2016; Bellaye et al., 2018; Hartopo et al., 2018; Li et al., 2022; Liu
et al., 2018). This highlights the intricate interplay within the endothelin system,
encompassing not only endothelin-1 but also other endothelin peptides, receptors,
and processing enzymes.

Our investigation of endothelin genes in IPF revealed a complex and intriguing
picture. Notably, endothelin-1 emerged as a central player, exhibiting distinct
expression patterns across various tissues and cell types. In lung tissue, there were
downregulation of EDN1, EDNRA, and EDNRB suggesting a weakened pro-
contractile signalling pathway (Fig. 1A-D). This may contribute to the impaired
vascular function observed in IPF. However, an upregulation of EDNI was
observed in BAL cells, human primary lung fibroblasts, and even blood cells (Fig.
1E-H, 1M-P, 1I-L). This suggests a cell-specific activation of EDNI1 signalling in
these compartments, potentially driving inflammation and fibrosis.

Single-cell RNA sequencing analysis further refined our understanding of EDN1
localization. While diverse cell types express EDNI1 in healthy lungs, its
upregulation in IPF specifically localizes to endothelial cells, including pulmonary
artery, capillary, and vein endothelial cells, as well as elicited macrophages (Fig.
2B). This endothelial-specific upregulation of EDN1 suggests a critical role in the
aberrant angiogenesis and vascular dysfunction associated with IPF. Indeed,
previous studies has highlighted the upregulation of endothelin-1 in endothelial
cells (Hartopo et al., 2018) that induced endothelial to mesenchymal transition
(Wermuth et al., 2016), induction of fibroblasts to myofibroblast activation
(Argentino et al., 2022; Shi-Wen et al., 2004) and endothelin-I related macrophages
polarization and secretion of cytokines (Elisa et al., 2015; J. Zhang et al., 2021) that
might contribute to lung inflammation and fibrosis.

Growing evidence underscores the intricate link between endothelin-1 and IPF
severity. Previous study showed elevation of serum endothelin-1 levels in IPF
patients compared to healthy controls, suggesting its potential role as a disease
marker (Remuzgo-Martinez et al., 2022). Another study by Pulito-Cueto et al.
(2023) demonstrated a positive correlation between circulating endothelin-1 and
worsened lung function in both IPF and rheumatoid arthritis-associated interstitial
lung disease (RA-ILD) patients (Pulito-Cueto et al., 2023). In our study, high levels
of EDNI1 expression in blood cells were associated with significantly shorter
survival times in IPF patients (Fig. 3A). This suggests that circulating endothelin- 1
may serve as a potential biomarker for disease progression and prognosis. While
the trend towards poorer survival with high EDNRB expression requires further
investigation, the lack of significance for EDN2 and EDNRA highlights the specific
role of EDNI in this context. By database data analysis, our study contributes for
understanding endothelin-1's role in IPF. Additional research utilizing in vitro and
in vivo models will be vital to refine our understanding and translate these findings
into clinical applications.
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CONCLUSION

Our findings pave the way for further exploration of EDN1's multifaceted role in
IPF. Understanding the mechanisms underlying cell-specific EDN1 regulation and
its contribution to various IPF pathologies could lead to novel therapeutic strategies.
Targeting this key player in both the lung and peripheral circulation holds promise
for improving outcomes in IPF patients.
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