In Silico Insight of Endothelin Signaling in Idiopathic Pulmonary Fibrosis (IPF)

Wiwin Is Effendi^{1,2*}, Andreas Haryono³, Gusti Rizky Teguh Ryanto⁴, Ratih Paramita Suprapto⁵, Tatsuya Nagano⁶

Abstract

Idiopathic pulmonary fibrosis (IPF), a form of interstitial lung disease (ILD), is characterized by progressive lung scarring with a poor prognosis. Endothelin signalling has emerged as a key player in lung fibrogenesis under various pathological conditions. However, its specific contribution to IPF pathogenesis remains poorly elucidated. We propose that leveraging in silico modelling approaches can provide valuable insights into the role of *endothelin* signalling in IPF, potentially paving the way for novel therapeutic and diagnostic strategies. We employed datasets curated from the Gene Expression Omnibus (GEO) database. Comprehensive data analyses from lung, bronchoalveolar lavage cells, blood and human primary fibroblast samples from both control and IPF patients were utilized to uncover the expression patterns and clinical correlations of endothelin genes. Furthermore, single-cell RNA-sequencing (scRNA-seq) was leveraged to explore the cellular heterogeneity and specific cell types harboring aberrant endothelin expression in the IPF lung microenvironment. Our analysis revealed a significant changes of endothelin genes expression pattern in IPF patient samples as compared to healthy control. Notably, IPF patients with upregulation of endothelin-1, demonstrated a statistically significant poorer survival. These findings implicate *endothelin* signalling as a novel and potentially targetable pathway in IPF. Further investigations are warranted to validate these findings and explore the therapeutic potential of modulating endothelin signalling in this lung disease.

Keywords: Endothelin; Idiopathic Lung Fibrosis; In Silico Insight

INTRODUCTION

51

¹Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia, wiwin-i-e@fk.unair.ac.id

²Department of Pulmonology and Respiratory Medicine, Universitas Airlangga Hospital, Universitas Airlangga, Surabaya, Indonesia,

³Department of Pulmonology and Respiratory Medicine, Faculty of Medicine, Universitas Airlangga – Dr. Soetomo General Hospital, Surabaya, Indonesia

⁴Laboratory of Clinical Pharmaceutical Sciences, Kobe Pharmaceutical University, Kobe, Japan

⁵Department of Physiology, Faculty of Medicine, Brawijaya University, Malang, Indonesia

⁵Division of Respiratory Medicine, Department Internal Medicine, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan

^{*}Corresponding author: Wiwin Is Effendi, wiwin-i-e@fk.unair.ac.id

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease with unknown cause, characterized by inflammation, fibrosis, and destruction of lung architecture, leading to respiratory failure and death (Barratt et al., 2018; Koudstaal & Wijsenbeek, 2023; Lederer & Martinez, 2018; Wolters et al., 2018). It is the most common idiopathic interstitial pneumonia and is associated with significant morbidity and mortality. The prevalence of IPF fibrosis ranges from 4 to 725 cases per 100,000 people, with an increasing trend due to aging populations worldwide (Cottin et al., 2019; Ferrara et al., 2019; Harari et al., 2020; Kaul et al., 2022; Maher et al., 2021a, 2021b; Skvortsov et al., 2022). The pathogenesis of IPF involves altered wound healing in response to persistent lung injury (L. Zhang et al., 2018), genetic susceptibility (Michalski & Schwartz, 2021), cellular senescence (Yanagihara et al., 2019), profibrotic pathways (Yanagihara et al., 2019), microbial dysbiosis (Invernizzi & Molyneaux, 2019), metabolic dysregulation (Bargagli et al., 2020), and multiple signalling pathways such as inflammation, oxidative stress, and fibrosis (Lv et al., 2019). The endothelin system, a family of regulatory peptides, comprises three signalling molecules (endothelin-1, endothelin-2, and endothelin-3). These bind to specific receptors on target cells, endothelin receptor A and B, triggering downstream effects through G-proteins. Specialized enzymes, endothelin converting enzyme 1 and 2, activate the system by processing precursor molecules into mature endothelin peptides (Barton & Yanagisawa, 2019; Davenport et al., 2016; Haryono et al., 2022).

Endothelin's pro-fibrotic actions involve triggering the transformation of endothelial cells into scar-forming fibroblasts via endothelial-to-mesenchymal transition (Chang et al., 2018), actively altering blood vessel structure through vascular remodeling (Hartopo et al., 2018), inducing oxidative stress(Argentino et al., 2022) and acting as a pro-inflammatory mediator (Liu et al., 2018). Endothelin-1 also has been shown to induce lung fibroblast activation into myofibroblast via activation of the RhoA/ROCK (Rho-associated protein kinase) signalling cascade and Hippo/Yap pathway (Neubig, 2022; Sun et al., 2021; Tocci et al., 2021). Furthermore, animal models suggest that the profibrotic effects of endothelin-1 might primarily be mediated through the ETB receptor. Knocking down this receptor significantly attenuated fibroblast activation and collagen synthesis (Akashi et al., 2016). These diverse mechanisms underpin its crucial role in the development and progression of various fibrotic diseases.

Increased *endothelin-1* serum levels were found in patients with IPF and might be associated with ILD severity (Pulito-Cueto et al., 2023). Studies have shown that blocking *endothelin* signalling with endothelin receptor antagonist can attenuate lung fibrosis in animal models (Bellaye et al., 2018; Hartopo et al., 2018). However, a meta-analysis found that *endothelin* receptor antagonists did not significantly improve lung function in *idiopathic pulmonary fibrosis* patients compared to placebo (Li et al., 2022). As such, while the *endothelin* system is implicated in IPF, its precise involvement and underlying mechanisms remain unclear, demanding further exploration. In this study, we propose that by leveraging in *silico* modelling approaches can provide valuable insights into the role of *endothelin* signalling in IPF.

RESEARCH METHOD

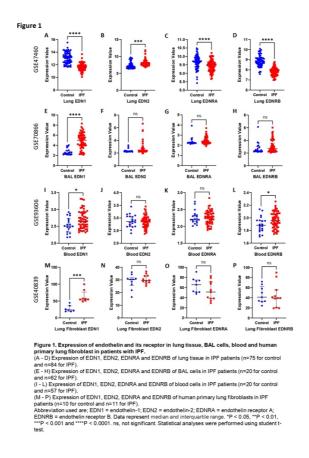
1. Dataset data extraction

According to the GEO database (http://www.ncbi.nlm.nih.gov/geo/), 4 datasets were selected: from lung tissue samples [GSE47460 (Agilent) (Anathy et al., 2018)], from bronchoalveolar lavage fluids (BAL) samples [GSE70866 (Agilent) (Prasse et al., 2019)]; from blood samples [GSE93606 (Affymetrix) (Molyneaux et al., 2017)], and from human primary fibroblast [GSE40839 (Affymetrix)(Lindahl et al., 2013)]. Gene expression data for EDN1 (endothelin-1), EDN2 (endothelin-2), ENDRA (endothelin receptor A), and EDNRB (endothelin receptor B) were extracted from all four database by using GEO2R platform. Survival data was extracted from GSE93606 dataset (blood). Approval of the Ethics Committee was not required because the information of patients was obtained from the GEO database.

2. Analysis of scRNA-seq Data

Lung scRNA-seq data from both healthy control and IPF patients was extracted from a publicly available HLCA (Human Lung Cells Atlas) database (Sikkema et al., 2023) (https://cellxgene.cziscience.com/collections/6f6d381a-7701-4781-935c-db10d30de293). The raw and normalized counts, integrated embedding, cell type annotations and clinical and technical metadata were extracted for analysis. The computational analysis of *scRNA-seq* dataset (lung) was performed using CZ CELLxGENE Discover platform (Program et al., 2023). UMAP (uniform manifold approximation and projection) for dimension reduction was calculated dan cell types were identified based on markers of each cluster using CZ CELLxGENE Discover.

3. Survival analysis


The optimal cut-off value of genes was determined by using the median among each gene expressions. IPF patients were grouped according to low and high gene expression of EDN1, EDN2, EDNRA, and EDNRB. Kaplan–Meier analysis with statistical test was performed to compare survival among low and high gene expression groups.

4. Statistical analysis

A series of statistical analyses were performed using Graphpad Prism software version 10 (Graphpad Software, Inc). Differences between two groups were analyzed using student t-test. Numerical data were summarized as median and interquartile range. Survival data were summarized using the Kaplan-Meier method and differences between groups were analyzed using Gehan-Breslow-Wilcoxon test. P < 0.05 was considered statistically significant.

RESULT AND DISCUSSION

1. Endothelin genes expression in patients with Idiopathic Pulmonary Fibrosis (IPF)

Figure 1. Expression of *endothelin* and its receptor in lung tissue, BAL cells, blood and human primary lung fibroblast in patients with IPF, Data Processing, 2022 (edited)

In order to explore the *endothelin* genes (EDN1, EDN2, ENDRA, and EDRB) expressions, 4 datasets were extracted from the GEO database. In lung tissue, we observed significant downregulation of EDN1, EDNRA, and EDNRB, suggesting decreased pro-contractile signalling (Fig. 1A-D). Notably, EDN2 expression was significantly upregulated (Fig. 1C). In contrast, both BAL cells and human primary lung fibroblasts exhibited significant upregulation of EDN1 only (Fig. 1E-H, 1M-P), suggesting its specific role in these cell types. Interestingly, blood cells showed upregulation of both EDN1 and EDRB (Fig. 1I-L).

2. The scRNA-seq Analysis Revealed Elevated Expression of EDNI Mainly in Endothelial cells of IPF Lung

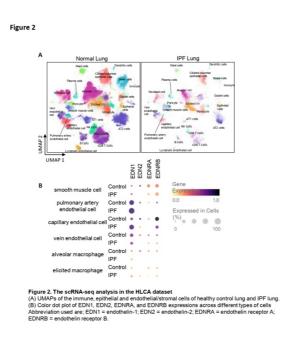
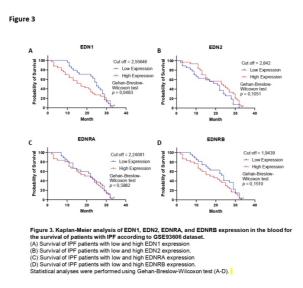



Figure 2. The scRNA-seq analysis in the HLCA Dataset, Data Processing, 2022 (edited)

Single-cell RNA sequencing (scRNA-seq) of lung tissue from healthy controls and IPF patients, retrieved from the HLCA database (Sikkema et al., 2023), revealed comparable cell types in both groups (Fig. 2A). However, IPF lungs exhibited a global decline in cell number. While EDN1 displayed widespread expression across cell types, particularly in pulmonary artery endothelial cells, capillary endothelial cells, and vein endothelial cells, with limited expression in smooth muscle cells and macrophages, its expression was upregulated in IPF lungs within these aforementioned cell types and elicited macrophages. Conversely, EDN2 expression was comparatively lower across cell types and primarily downregulated in IPF lungs, affecting smooth muscle cells, endothelial cells (pulmonary artery, capillary, and vein), and alveolar macrophages. Notably, both EDNRA and EDNRB expression was downregulated in all cell types within IPF lungs (Fig. 2B).

3. Elevated Blood *EDN1* Expression were Associated with Worse Survival in IPF Patients

Figure 3. Kaplan-Meier Analysis of *EDN1*, *EDN2*, *EDNRA*, and *EDNRB* Expression in the Blood for the Survival of Patients with IPF According to GSE93606 Dataset, Data Processing, 2022 (edited)

Analyzing data from the GSE93606 dataset, we employed survival analysis to assess the impact of *endothelin* gene expression on IPF patient outcomes. Patients with IPF were divided into two groups based on the optimal cut-off value of genes as described in the methods section. IPF patients with high EDN1 expression exhibited significantly shorter survival times compared to those with low expression (Fig. 3A). Although statistically non-significant, a similar trend towards lower survival was observed in patients with high EDNRB expression (Fig. 3B). Interestingly, neither EDN2 nor EDNRA expression in blood cells significantly impacted IPF patient survival (Fig. 3C-D).

4. Endothelin-1 as a Central Mediator and Prognostic Marker in IPF

IPF, a progressive scarring lung disease, remains shrouded in uncertainty. While inflammation and fibrosis are hallmarks, understanding the underlying mechanisms is crucial for therapeutic development. The *endothelin* system, known for its profibrotic effects (Akashi et al., 2016; Argentino et al., 2022; Bellaye et al., 2018; Chang et al., 2018; Rodríguez-Pascual et al., 2014; Sun et al., 2021; Wermuth et

al., 2016; Wu et al., 2019), emerges as a potential player in this complex puzzle. Elevated *endothelin-1* levels in IPF patients suggest its involvement (Mishra et al., 2021; Pulito-Cueto et al., 2023; Remuzgo-Martínez et al., 2022). However, studies on *endothelin-1* and *endothelin* receptor blockage in IPF have yielded mixed results (Akashi et al., 2016; Bellaye et al., 2018; Hartopo et al., 2018; Li et al., 2022; Liu et al., 2018). This highlights the intricate interplay within the *endothelin* system, encompassing not only *endothelin-1* but also other endothelin peptides, receptors, and processing enzymes.

Our investigation of *endothelin* genes in IPF revealed a complex and intriguing picture. Notably, *endothelin-1* emerged as a central player, exhibiting distinct expression patterns across various tissues and cell types. In lung tissue, there were downregulation of EDN1, EDNRA, and EDNRB suggesting a weakened procontractile signalling pathway (Fig. 1A-D). This may contribute to the impaired vascular function observed in IPF. However, an upregulation of EDN1 was observed in BAL cells, human primary lung fibroblasts, and even blood cells (Fig. 1E-H, 1M-P, 1I-L). This suggests a cell-specific activation of EDN1 signalling in these compartments, potentially driving inflammation and fibrosis.

Single-cell RNA sequencing analysis further refined our understanding of EDN1 localization. While diverse cell types express EDN1 in healthy lungs, its upregulation in IPF specifically localizes to *endothelial* cells, including pulmonary artery, capillary, and vein *endothelial* cells, as well as elicited macrophages (Fig. 2B). This endothelial-specific upregulation of EDN1 suggests a critical role in the aberrant angiogenesis and vascular dysfunction associated with IPF. Indeed, previous studies has highlighted the upregulation of endothelin-1 in endothelial cells (Hartopo et al., 2018) that induced endothelial to mesenchymal transition (Wermuth et al., 2016), induction of fibroblasts to myofibroblast activation (Argentino et al., 2022; Shi-Wen et al., 2004) and *endothelin-1* related macrophages polarization and secretion of cytokines (Elisa et al., 2015; J. Zhang et al., 2021) that might contribute to lung inflammation and fibrosis.

Growing evidence underscores the intricate link between endothelin-1 and IPF severity. Previous study showed elevation of serum endothelin-1 levels in IPF patients compared to healthy controls, suggesting its potential role as a disease marker (Remuzgo-Martínez et al., 2022). Another study by Pulito-Cueto et al. (2023) demonstrated a positive correlation between circulating endothelin-1 and worsened lung function in both IPF and rheumatoid arthritis-associated interstitial lung disease (RA-ILD) patients (Pulito-Cueto et al., 2023). In our study, high levels of EDN1 expression in blood cells were associated with significantly shorter survival times in IPF patients (Fig. 3A). This suggests that circulating endothelin-1 may serve as a potential biomarker for disease progression and prognosis. While the trend towards poorer survival with high EDNRB expression requires further investigation, the lack of significance for EDN2 and EDNRA highlights the specific role of EDN1 in this context. By database data analysis, our study contributes for understanding endothelin-1's role in IPF. Additional research utilizing in vitro and in vivo models will be vital to refine our understanding and translate these findings into clinical applications.

CONCLUSION

Our findings pave the way for further exploration of EDN1's multifaceted role in IPF. Understanding the mechanisms underlying cell-specific EDN1 regulation and its contribution to various IPF pathologies could lead to novel therapeutic strategies. Targeting this key player in both the lung and peripheral circulation holds promise for improving outcomes in IPF patients.

REFERENCES

- Akashi, K., Saegusa, J., Sendo, S., Nishimura, K., Okano, T., Yagi, K., Yanagisawa, M., Emoto, N., & Morinobu, A. (2016). Knockout of endothelin type B receptor signaling attenuates bleomycin-induced skin sclerosis in mice. *Arthritis Research & Therapy*, 18(1), 113. https://doi.org/10.1186/s13075-016-1011-4
- Anathy, V., Lahue, K. G., Chapman, D. G., Chia, S. B., Casey, D. T., Aboushousha, R., van der Velden, J. L. J., Elko, E., Hoffman, S. M., McMillan, D. H., Jones, J. T., Nolin, J. D., Abdalla, S., Schneider, R., Seward, D. J., Roberson, E. C., Liptak, M. D., Cousins, M. E., Butnor, K. J., ... Janssen-Heininger, Y. M. W. (2018). Reducing protein oxidation reverses lung fibrosis. *Nature Medicine*, 24(8), 1128–1135. https://doi.org/10.1038/s41591-018-0090-y
- Argentino, G., Barbieri, A., Beri, R., Bason, C., Ruzzenente, A., Olivieri, O., Tinazzi, E., Puccetti, A., Vitali, C., Del Papa, N., Friso, S., & Lunardi, C. (2022). Profibrotic Effects of Endothelin-1 on Fibroblasts Are Mediated by Aldosterone In Vitro: Relevance to the Pathogenesis and Therapy of Systemic Sclerosis and Pulmonary Arterial Hypertension. *Biomedicines*, 10(11), 2765. https://doi.org/10.3390/biomedicines10112765
- Bargagli, E., Refini, R. M., d'Alessandro, M., Bergantini, L., Cameli, P., Vantaggiato, L., Bini, L., & Landi, C. (2020). Metabolic Dysregulation in Idiopathic Pulmonary Fibrosis. *International Journal of Molecular Sciences*, 21(16), 5663. https://doi.org/10.3390/ijms21165663
- Barratt, S., Creamer, A., Hayton, C., & Chaudhuri, N. (2018). Idiopathic Pulmonary Fibrosis (IPF): An Overview. *Journal of Clinical Medicine*, 7(8), 201. https://doi.org/10.3390/jcm7080201
- Barton, M., & Yanagisawa, M. (2019). Endothelin: 30 Years From Discovery to Therapy. *Hypertension*, 74(6), 1232–1265. https://doi.org/10.1161/HYPERTENSIONAHA.119.12105
- Bellaye, P.-S., Yanagihara, T., Granton, E., Sato, S., Shimbori, C., Upagupta, C., Imani, J., Hambly, N., Ask, K., Gauldie, J., Iglarz, M., & Kolb, M. (2018). Macitentan reduces progression of TGF-β1-induced pulmonary fibrosis and pulmonary hypertension. *European Respiratory Journal*, *52*(2), 1701857. https://doi.org/10.1183/13993003.01857-2017
- Chang, W., Lajko, M., & Fawzi, A. A. (2018). Endothelin-1 is associated with fibrosis in proliferative diabetic retinopathy membranes. *PLOS ONE*, *13*(1), e0191285. https://doi.org/10.1371/journal.pone.0191285
- Cottin, V., Annesi-Maesano, I., Günther, A., Galvin, L., Kreuter, M., Powell, P., Prasse, A., Reynolds, G., Richeldi, L., Spagnolo, P., Valenzuela, C., Wijsenbeek, M., Wuyts, W. A., & Crestani, B. (2019). The Ariane-IPF ERS

- Clinical Research Collaboration: seeking collaboration through launch of a federation of European registries on idiopathic pulmonary fibrosis. *European Respiratory Journal*, 53(5), 1900539. https://doi.org/10.1183/13993003.00539-2019
- Davenport, A. P., Hyndman, K. A., Dhaun, N., Southan, C., Kohan, D. E., Pollock, J. S., Pollock, D. M., Webb, D. J., & Maguire, J. J. (2016). Endothelin. *Pharmacological Reviews*, 68(2), 357–418. https://doi.org/10.1124/pr.115.011833
- Elisa, T., Antonio, P., Giuseppe, P., Alessandro, B., Giuseppe, A., Federico, C., Marzia, D., Ruggero, B., Giacomo, M., Andrea, O., Daniela, R., Mariaelisa, R., & Claudio, L. (2015). Endothelin Receptors Expressed by Immune Cells Are Involved in Modulation of Inflammation and in Fibrosis: Relevance to the Pathogenesis of Systemic Sclerosis. *Journal of Immunology Research*, 2015, 1–11. https://doi.org/10.1155/2015/147616
- Ferrara, G., Arnheim-Dahlström, L., Bartley, K., Janson, C., Kirchgässler, K.-U., Levine, A., & Sköld, C. M. (2019). Epidemiology of Pulmonary Fibrosis: A Cohort Study Using Healthcare Data in Sweden. *Pulmonary Therapy*, *5*(1), 55–68. https://doi.org/10.1007/s41030-019-0087-9
- Harari, S., Davì, M., Biffi, A., Caminati, A., Ghirardini, A., Lovato, V., Cricelli, C., & Lapi, F. (2020). Epidemiology of idiopathic pulmonary fibrosis: a population-based study in primary care. *Internal and Emergency Medicine*, 15(3), 437–445. https://doi.org/10.1007/s11739-019-02195-0
- Hartopo, A. B., Arfian, N., Nakayama, K., Suzuki, Y., Yagi, K., & Emoto, N. (2018). Endothelial-Derived Endothelin-1 Promotes Pulmonary Vascular Remodeling in Bleomycin-Induced Pulmonary Fibrosis. *Physiological Research*, S185–S197. https://doi.org/10.33549/physiolres.933812
- Haryono, A., Ramadhiani, R., Ryanto, G. R. T., & Emoto, N. (2022). Endothelin and the Cardiovascular System: The Long Journey and Where We Are Going. *Biology*, 11(5), 759. https://doi.org/10.3390/biology11050759
- Invernizzi, R., & Molyneaux, P. L. (2019). The contribution of infection and the respiratory microbiome in acute exacerbations of idiopathic pulmonary fibrosis. *European Respiratory Review*, 28(152), 190045. https://doi.org/10.1183/16000617.0045-2019
- Kaul, B., Lee, J. S., Zhang, N., Vittinghoff, E., Sarmiento, K., Collard, H. R., & Whooley, M. A. (2022). Epidemiology of Idiopathic Pulmonary Fibrosis among U.S. Veterans, 2010–2019. *Annals of the American Thoracic Society*, 19(2), 196–203. https://doi.org/10.1513/AnnalsATS.202103-295OC
- Koudstaal, T., & Wijsenbeek, M. S. (2023). Idiopathic pulmonary fibrosis. *La Presse Médicale*, 52(3), 104166. https://doi.org/10.1016/j.lpm.2023.104166
- Lederer, D. J., & Martinez, F. J. (2018). Idiopathic Pulmonary Fibrosis. *New England Journal of Medicine*, 378(19), 1811–1823. https://doi.org/10.1056/NEJMra1705751
- Li, S., Pan, Y., Xin, W., & Yan, C. (2022). The potential benefit of endothelin receptor antagonists' therapy in idiopathic pulmonary fibrosis: A meta-analysis of results from randomized controlled trials. *Medicine*, 101(40), e29981. https://doi.org/10.1097/MD.0000000000029981

- Lindahl, G. E., Stock, C. J., Shi-Wen, X., Leoni, P., Sestini, P., Howat, S. L., Bou-Gharios, G., Nicholson, A. G., Denton, C. P., Grutters, J. C., Maher, T. M., Wells, A. U., Abraham, D. J., & Renzoni, E. A. (2013). Microarray profiling reveals suppressed interferon stimulated gene program in fibroblasts from scleroderma-associated interstitial lung disease. *Respiratory Research*, *14*(1), 80. https://doi.org/10.1186/1465-9921-14-80
- Liu, X., Khadtare, N., Patel, H., Stephani, R., & Cantor, J. (2018). Transient Blockade of Endothelin-1 Mitigates Amiodarone-Induced Pulmonary Fibrosis. *Lung*, 196(3), 321–327. https://doi.org/10.1007/s00408-018-0103-0
- Lv, M., Liu, Y., Ma, S., & Yu, Z. (2019). Current advances in idiopathic pulmonary fibrosis: the pathogenesis, therapeutic strategies and candidate molecules. *Future Medicinal Chemistry*, *11*(19), 2595–2620. https://doi.org/10.4155/fmc-2019-0111
- Maher, T. M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J. M., Patel, H., & Kreuter, M. (2021a). Global incidence and prevalence of idiopathic pulmonary fibrosis. *Respiratory Research*, 22(1), 197. https://doi.org/10.1186/s12931-021-01791-z
- Maher, T. M., Bendstrup, E., Dron, L., Langley, J., Smith, G., Khalid, J. M., Patel, H., & Kreuter, M. (2021b). Global incidence and prevalence of idiopathic pulmonary fibrosis. *Respiratory Research*, 22(1), 197. https://doi.org/10.1186/s12931-021-01791-z
- Michalski, J. E., & Schwartz, D. A. (2021). Genetic Risk Factors for Idiopathic Pulmonary Fibrosis: Insights into Immunopathogenesis. *Journal of Inflammation Research*, *Volume 13*, 1305–1318. https://doi.org/10.2147/JIR.S280958
- Mishra, S., Shah, M. I., Udhaya Kumar, S., Thirumal Kumar, D., Gopalakrishnan, C., Al-Subaie, A. M., Magesh, R., George Priya Doss, C., & Kamaraj, B. (2021). Network analysis of transcriptomics data for the prediction and prioritization of membrane-associated biomarkers for idiopathic pulmonary fibrosis (IPF) by bioinformatics approach (pp. 241–273). https://doi.org/10.1016/bs.apcsb.2020.10.003
- Molyneaux, P. L., Willis-Owen, S. A. G., Cox, M. J., James, P., Cowman, S., Loebinger, M., Blanchard, A., Edwards, L. M., Stock, C., Daccord, C., Renzoni, E. A., Wells, A. U., Moffatt, M. F., Cookson, W. O. C., & Maher, T. M. (2017). Host–Microbial Interactions in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 195(12), 1640–1650. https://doi.org/10.1164/rccm.201607-1408OC
- Neubig, R. R. (2022). A Glowing Opportunity to Target YAP in Lung Fibrosis. *American Journal of Respiratory Cell and Molecular Biology*, 67(1), 1–2. https://doi.org/10.1165/rcmb.2022-0082ED
- Prasse, A., Binder, H., Schupp, J. C., Kayser, G., Bargagli, E., Jaeger, B., Hess, M., Rittinghausen, S., Vuga, L., Lynn, H., Violette, S., Jung, B., Quast, K., Vanaudenaerde, B., Xu, Y., Hohlfeld, J. M., Krug, N., Herazo-Maya, J. D., Rottoli, P., ... Kaminski, N. (2019). BAL Cell Gene Expression Is Indicative of Outcome and Airway Basal Cell Involvement in Idiopathic Pulmonary

- Fibrosis. American Journal of Respiratory and Critical Care Medicine, 199(5), 622–630. https://doi.org/10.1164/rccm.201712-2551OC
- Program, C. Z. I. S.-C. B., Abdulla, S., Aevermann, B., Assis, P., Badajoz, S., Bell, S. M., Bezzi, E., Cakir, B., Chaffer, J., Chambers, S., Cherry, J. M., Chi, T., Chien, J., Dorman, L., Garcia-Nieto, P., Gloria, N., Hastie, M., Hegeman, D., Hilton, J., ... Carr, A. (2023). CZ CELL×GENE Discover: A single-cell data platform for scalable exploration, analysis and modeling of aggregated data. *BioRxiv*, 2023.10.30.563174. https://doi.org/10.1101/2023.10.30.563174
- Pulito-Cueto, V., Genre, F., López-Mejías, R., Mora-Cuesta, V. M., Iturbe-Fernández, D., Portilla, V., Sebastián Mora-Gil, M., Ocejo-Vinyals, J. G., Gualillo, O., Blanco, R., Corrales, A., Ferraz-Amaro, I., Castañeda, S., Cifrián Martínez, J. M., Atienza-Mateo, B., Remuzgo-Martínez, S., & González-Gay, M. Á. (2023). Endothelin-1 as a Biomarker of Idiopathic Pulmonary Fibrosis and Interstitial Lung Disease Associated with Autoimmune Diseases. *International Journal of Molecular Sciences*, 24(2), 1275. https://doi.org/10.3390/ijms24021275
- Remuzgo-Martínez, S., Atienza-Mateo, B., Pulito-Cueto, V., Genre, F., Mora-Cuesta, V. M., Iturbe-Fernández, D., Portilla, V., Gualillo, O., Corrales, A., Castañeda, S., López-Mejías, R., Cifrián, J. M., & González-Gay, M. Á. (2022). Endothelin-1 for the differential diagnosis between interstitial lung disease associated with autoimmune diseases and idiopathic pulmonary fibrosis. 03.01 Molecular Pathology and Functional Genomics, 2310. https://doi.org/10.1183/13993003.congress-2022.2310
- Rodríguez-Pascual, F., Busnadiego, O., & González-Santamaría, J. (2014). The profibrotic role of endothelin-1: Is the door still open for the treatment of fibrotic diseases? *Life Sciences*, 118(2), 156–164. https://doi.org/10.1016/j.lfs.2013.12.024
- Shi-Wen, X., Chen, Y., Denton, C. P., Eastwood, M., Renzoni, E. A., Bou-Gharios, G., Pearson, J. D., Dashwood, M., du Bois, R. M., Black, C. M., Leask, A., & Abraham, D. J. (2004). Endothelin-1 Promotes Myofibroblast Induction through the ETA Receptor via a rac/Phosphoinositide 3-Kinase/Akt-dependent Pathway and Is Essential for the Enhanced Contractile Phenotype of Fibrotic Fibroblasts. *Molecular Biology of the Cell*, *15*(6), 2707–2719. https://doi.org/10.1091/mbc.e03-12-0902
- Sikkema, L., Ramírez-Suástegui, C., Strobl, D. C., Gillett, T. E., Zappia, L., Madissoon, E., Markov, N. S., Zaragosi, L.-E., Ji, Y., Ansari, M., Arguel, M.-J., Apperloo, L., Banchero, M., Bécavin, C., Berg, M., Chichelnitskiy, E., Chung, M., Collin, A., Gay, A. C. A., ... Theis, F. J. (2023). An integrated cell atlas of the lung in health and disease. *Nature Medicine*, *29*(6), 1563–1577. https://doi.org/10.1038/s41591-023-02327-2
- Skvortsov, V. V., Zadumina, D. N., Skvortsova, E. M., & Tinaeva, E. M. (2022). Idiopathic pulmonary fibrosis in the practice of a family doctor. *Spravočnik Vrača Obŝej Praktiki (Journal of Family Medicine)*, 1, 34–43. https://doi.org/10.33920/med-10-2201-05
- Sun, M., Sun, Y., Feng, Z., Kang, X., Yang, W., Wang, Y., & Luo, Y. (2021). New insights into the Hippo/YAP pathway in idiopathic pulmonary fibrosis.

- *Pharmacological Research*, 169, 105635. https://doi.org/10.1016/j.phrs.2021.105635
- Tocci, P., Blandino, G., & Bagnato, A. (2021). YAP and endothelin-1 signaling: an emerging alliance in cancer. *Journal of Experimental & Clinical Cancer Research*, 40(1), 27. https://doi.org/10.1186/s13046-021-01827-8
- Wermuth, P. J., Li, Z., Mendoza, F. A., & Jimenez, S. A. (2016). Stimulation of Transforming Growth Factor-β1-Induced Endothelial-To-Mesenchymal Transition and Tissue Fibrosis by Endothelin-1 (ET-1): A Novel Profibrotic Effect of ET-1. *PLOS ONE*, 11(9), e0161988. https://doi.org/10.1371/journal.pone.0161988
- Wolters, P. J., Blackwell, T. S., Eickelberg, O., Loyd, J. E., Kaminski, N., Jenkins, G., Maher, T. M., Molina-Molina, M., Noble, P. W., Raghu, G., Richeldi, L., Schwarz, M. I., Selman, M., Wuyts, W. A., & Schwartz, D. A. (2018). Time for a change: is idiopathic pulmonary fibrosis still idiopathic and only fibrotic? *The Lancet Respiratory Medicine*, 6(2), 154–160. https://doi.org/10.1016/S2213-2600(18)30007-9
- Wu, Z.-H., Tsai, J.-H., Hsieh, C.-Y., Chen, W.-L., & Chung, C.-L. (2019). Endothelin-1 Induces Mesothelial Mesenchymal Transition and Correlates with Pleural Fibrosis in Tuberculous Pleural Effusions. *Journal of Clinical Medicine*, 8(4), 426. https://doi.org/10.3390/jcm8040426
- Yanagihara, T., Sato, S., Upagupta, C., & Kolb, M. (2019). What have we learned from basic science studies on idiopathic pulmonary fibrosis? *European Respiratory Review*, 28(153), 190029. https://doi.org/10.1183/16000617.0029-2019
- Zhang, J., Zhao, W., Xu, L., Wang, X., Li, X., & Yang, X. (2021). Endothelium-specific endothelin-1 expression promotes pro-inflammatory macrophage activation by regulating miR-33/NR4A axis. *Experimental Cell Research*, 399(1), 112443. https://doi.org/10.1016/j.yexcr.2020.112443
- Zhang, L., Wang, Y., Wu, G., Xiong, W., Gu, W., & Wang, C.-Y. (2018). Macrophages: friend or foe in idiopathic pulmonary fibrosis? *Respiratory Research*, 19(1), 170. https://doi.org/10.1186/s12931-018-0864-2

CONSENT FOR PUBLICATION

All authors affirm that any individual data (including images, videos, and other personal details) included in this manuscript are published with the explicit consent of the individual(s) involved. Written informed consent for publication was obtained from all participants, and copies of the consent forms are available for review by the journal's editorial office upon request.

FUNDING

None

COMPETING INTEREST

The authors state that there is no potential conflict of interest in the publication of this article.

PUBLISHING ETHICAL STATEMENT

All authors declared that this work is original and has never been published in any form and in any media, nor is it under consideration for publication in any journal, and all sources cited in this work refer to the basic standards of scientific citation.

ACKNOWLEDGMENT (Optional)

Thanks to all the contributors who involve to this research