RESEARCH STUDY **English Version**

Assessing the Predictive Accuracy of the Body Roundness Index for **Prediabetes in Indonesian Adults**

Analisis Prediksi Body Roundness Index untuk Prediabetes pada Orang Dewasa di Indonesia

Adriyan Pramono1*, Elia Nawang Nursari1, Fillah Fithra Dieny1, Dewi Marfu'ah Kurniawati1, Ayu Rahadiyanti1

¹Department of Nutrition Science, Faculty of Medicine, Universitas Diponegoro, Semarang, Indonesia

ARTICLE INFO

Received: 21-06-2023 Accepted: 13-11-2025 Published online: 21-11-2025

*Correspondent: Adriyan Pramono adriyanpramono@fk.undip.ac.i

10.20473/amnt.v9i4.2025.689-

Available online at: https://ejournal.unair.ac.id/AMNT

Keywords:

Anthropometric, Prediabetes, Predictor

ABSTRACT

Background: Anthropometric measurements for identifying body fat could be used to screen individuals with prediabetic risk.

Objectives: To evaluate and compare the diagnostic accuracy of body roundness index (BRI), conicity index (C-index), body mass index (BMI), waist circumference, and waistto-height ratio (WHtR) as predictors of prediabetes in the adult population of Indonesia. Methods: This study employs a cross-sectional design and uses secondary data from the Baseline Health Research (Ind: Riskesdas) 2018. As many as 12.327 samples were subjected to descriptive analysis, and the area under the curve (AUC) was utilised to assess the diagnostic potential of anthropometric measures in predicting prediabetes. Results: The five anthropometric parameters have a very weak ability as a prediabetic predictor. The WHtR and BRI (AUC_{men}=0.571; AUC_{women}=0.573) were significantly better than the other anthropometric parameters. In contrast, the C-index values for women (AUC_{women}=0.548) were considerably lower than other anthropometric parameters. However, there was no significant difference between the C-index for men (AUC_{men}=0.560) and the waist circumference (AUC=0.564) and BMI (AUC=0.559) values. Conclusions: The body roundness index has the same ability to predict prediabetes with WHtR, while the C-index in women is weaker than waist circumference and BMI.

INTRODUCTION

Indonesia is a nation that holds the fifth position in terms of the highest prevalence of diabetes worldwide, with a staggering population of 19.5 million individuals affected by the condition, while 14.3 million of them have undiagnosed diabetes in 20211. That implies an urgent need to increase prediabetes screening in Indonesia. Prediabetes refers to a condition in which an individual exhibits Impaired Fasting Glucose Levels (IFG) and possibly impaired glucose tolerance (IGT), characterized by blood sugar examination values that do not meet the standards for diabetes but are elevated above the range deemed normal^{1,2}. Early detection is essential as a prediabetic condition indicates the potential of acquiring diabetes later in life, since the longer it is left undiagnosed, the more it will increase the risk of complications leading to the increasing use of health services and medical expenses, decreasing productivity, even causing disability and premature death³.

Overweight, especially abdominal obesity, is highly correlated with insulin resistance, the primary

precursor of diabetes4. Anthropometric parameters for estimating excess body fat may be considered a noninvasive, effortless approach to assessing body fat. Body Mass Index (BMI) and Waist Circumference (WC) are simple anthropometric parameters commonly used to predict cardiometabolic risk. BMI doesn't differentiate among body fat, muscle mass, or bone mass; it also doesn't offer any insight into how body fat is distributed among individuals. Simultaneously, waist circumference shows central fat deposition without accounting for differences in height among ethnicities as a factor^{5,6}. Another simple anthropometric parameter commonly used is the waist-to-height ratio (WHtR), which has been shown to be superior to both BMI and WC in terms of its effectiveness, as it accounts for central fat deposition and height differences among individuals^{6,7}.

Anthropometric parameters derived from basic anthropometry (waist circumference, weight, and height) have been developed to detect obesity and body fat distribution, such as BRI and conicity index (C-index). Research has shown that BRI has the optimal ability to

p-ISSN: 2580-9776 (Print)
Pramono et al. | Amerta Nutrition Vol. 9 Issue 4 (December 2025). 689-697

identify insulin resistance8. Similarly, the C-index is positively associated with insulin resistance, hypertension, and dyslipidemia9. Aside from being used to estimate visceral adipose tissue and body fat percentage, BRI can compare an individual's body type visualisation with a healthy body roundness reference range¹⁰.

BRI has shown superior predictive power compared to other derived anthropometric measures, including the Abdominal Volume Index, Body Adiposity Index, and Body Shape Index. It is also comparable to WHtR in predicting diabetes^{11–13}. On the other hand, studies related to the C-index have not yielded consistent results. For example, studies in Asian populations have shown that the C-index is not superior to the BRI or the WHtR. Still, research in the US shows that the C-index is a better predictor of diabetes than the WHtR^{11,14,15}.

Studies in South Korea and Peru showed that an anthropometric parameter could have different predictive power and appropriate cut-off values 16,17. Based on those studies, it seems that the same approach could be implemented across different ethnicities. Studies on derived anthropometric parameters in Indonesia are insufficient; specifically, none have examined their ability to predict prediabetes. The study aims to achieve its objectives by 1) finding the diagnostic ability of derived anthropometric parameters (BRI and Cindex), which their calculation is more complicated; 2) finding if the diagnostic ability of derived anthropometric parameters is better than the basic anthropometric parameters (WC, WHtR, and BMI); and 3) determining the appropriate cut-off as a prediabetic predictor in Indonesian adults.

METHODS Study Design

This cross-sectional study was conducted in June and September 2022, utilising available data from the Baseline Health Research (Riskesdas) in 2018. The Ethical Commission of Health Research has authorised this study, National Institute of Health Research and Development, Ministry of Health of the Republic of Indonesia, with the registration LB.02.01/2/KE.024/2018. The Health Development Policy Agency has approved the use of data for this study under registration number 2980/UN7.5.4.2/DL/2022, dated April 6, 2022.

Subjects and Sampling

The subjects of this study were subsamples representing the national level from the Riskesdas 2018. The minimum number of subjects required was 3,621, according to the sample calculation formula for AUC comparison analysis (see Appendix 1). The inclusion criteria of this study were: (1) individuals ≥19 years old, (2) non-hypoglycemic nor diabetic (diabetes mellitus) individuals (FPG level 70-125 mg/dL and PPG level 70-199 mg/dL), (3) having data on age and sex, and (4) having realistic anthropometric data. The flow chart of sample selection is shown in Figure 1, in which 12,327 samples that fulfilled the inclusion criteria were then analysed.

Data Collection

The independent variables in this current investigation were the anthropometric parameters (WHtR, BRI, WC, BMI, and C-index). The BMI measures overall body adiposity, derived by dividing an individual's body weight in kilograms (kg) by the square of their height in meters (m²). Meanwhile, WC and WHtR serve as reliable measures for assessing central adiposity^{5,6}. The BRI serves as a predictive measure of both body fat percentage and visceral adipose tissue, and examines the relationship between body circumference and height by modelling the human body as an ellipse or oval. The Cindex is a metric used to assess obesity and body fat distribution. It assumes that individuals with significant fat accumulation in the abdominal region exhibit a double-cone shape, whereas those with minimal fat storage in this area exhibit a cylindrical shape 10,18. The formulas used to determine the body roundness index and C-index are as follows:

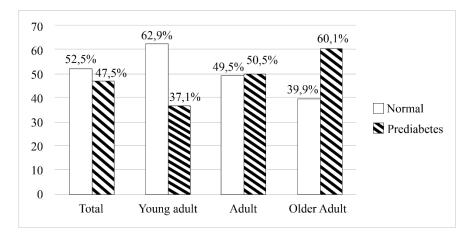
BRI¹⁰ = 364.2 - 365 x
$$\sqrt{1-\frac{(WC/2\pi)^2}{(0.5 \text{ x height})^2}}$$

$$C - index^{18} = \frac{\text{WC (m)}}{0.109 \sqrt{\frac{\text{weight (kg)}}{\text{height (m)}}}}$$

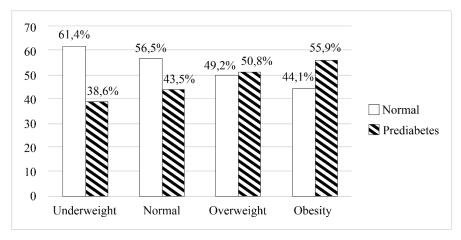
The dependent variable in this study was plasma glucose levels. The criteria of the American Diabetes Association were used to determine the diagnosis of IFG and IGT, in which samples with Fasting Plasma Glucose (FPG) level of 100-125 mg/dL and/or 2-hour Postprandial Plasma Glucose (PPG) level of 140-199 mg/dL were categorised as prediabetes¹⁹. All the data used in this study were secondary data collected previously by the Riskesdas team through interviews (age, sex, and smoking habits), blood glucose tests, and anthropometric measurements. The blood glucose test was conducted using the Accucheck Performa device, while the anthropometric parameters were measured using a digital body weight (accuracy of 0.1 kg), stadiometer (accuracy of 1 mm) to measure height, and non-elastic tape (accuracy of 1 mm) to measure waist circumference²⁰.

Data Analysis

The data were presented as medians and interquartile ranges for numerical variables, and as sums and percentages for categorical variables. The men and women samples were evaluated regarding their characteristics using statistical tests appropriate for the analysed variable. The Mann-Whitney U-test was employed for numerical variables, while the chi-square test was utilised for categorical variables. The diagnostic tests carried out in this study were 'receiver operating characteristic' curve analysis to find the AUC and the cutoff values, and 2×2 table analysis to find predictive values and likelihood ratios²¹. The diagnostic ability of anthropometric measures as predictors of prediabetes was evaluated using the area under the curve (AUC), in which the AUC values were classified into very weak (0.5-0.6), weak (0.6-0.7), moderate (0.7-0.8), good (0.8-0.9),


and very good (0.9-1)²¹ In addition to descriptive analysis, a comparative analysis of AUC between anthropometric parameters was also conducted in this study. Data analysis in this study was carried out using SPSS Statistics version 25 (IBM Corp., Armonk, NY, USA) and STATA (Version 16; StataCorp LLC, College Station, TX), and p-values less than 0.05 were deemed significant. The optimal cut-off value was determined based on the Youden index (J) using the equation:

 $(Jmax. = sensitivity + specificity - 1)^{21}$


RESULTS AND DISCUSSIONS

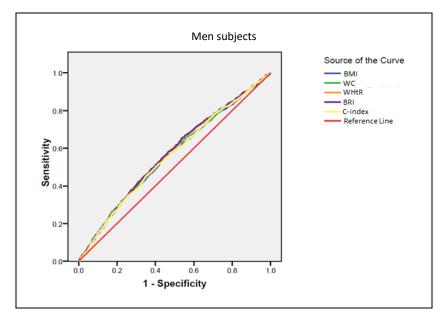
This investigation included 12.327 samples (4,296 men and 8,031 women) aged 19-50. The prevalence of prediabetes in this study was 47.5%, and its prevalence

increased with increasing age (Figure 1). Moreover, the occurrence of prediabetes also demonstrated an upward trend in correspondence with escalating levels of body adiposity, in which the obese group mostly experienced prediabetes compared to other nutritional status groups (Figure 2). The sample characteristics by sex are provided in Table 1, showing that men were significantly older and had higher FPG levels. Meanwhile, women had a higher 2-hour PPG level and anthropometric values (BMI, WC, WHtR, BRI, and C-index) than men. Significant sex-based differences were observed in all anthropometric indices, such as body weight, body height, BMI, waist circumference, waist-to-hip ratio, body roundness index, and the C index, with men generally weighing more and taller, while women had a higher BMI, larger waist circumference, waist-to-hip ratio, BRI, and C-index.

Figure 1. The prevalence of prediabetes stratified by age group. Notes: young adult=19-29 years old, adult=30-49 years old, older adult=50-64 years old

Figure 2. The prevalence of prediabetes. Notes: BMI categorisation according to the Ministry of Health of the Republic of Indonesia²²

Table 1. Characteristics of study samples based on sex


Characteristics	Median (Min-Max)	Men	Women	p-value 0.001s	
Age (years)	37 (19-50)	38 (19-50)	37 (19-50)		
Plasma Glucose					
FPG (mg/dL)	93 (49-125)	94 (63-125)	92 (49-125)	<0.001s	
2H PPG (mg/dL)	128 (41-199)	122 (43-199)	131 (41-199)		
Anthropometric Parameters					
Body Weight (kg)	57.7 (29-124.4)	59 (29.6-124.4)	56.9 (29-112.2)	<0.001	
Body Height (cm)	154.7 (114.5-189.5)	163 (115-185.2)	151.3 (114.5-189.5)		

Characteristics	Median (Min-Max)	Men	Women	p-value	
BMI (kg/m²)	23.91 (12.06-46.43)	22.18 (12.06-40.21)	24.86 (13.04-46.43)		
Waist Circumference (cm)	79.2 (50-124.5)	77 (50-124.5)	80.2 (50-123)		
Waist-to-Hip Ratio	0.51 (0.30-0.82)	0.47 (0.30-0.73)	0.53 (0.32-0.82)		
BRI	4.09 (0.91-11.75)	3.38 (0.91-9.13)	4.46 (1.10-11.75)		
C-Index $(m^{3/2}/kg^{1/2})$	1.19 (0.77-1.60)	1.18 (0.78-1.54)	1.20 (0.77-1.60)		
Smoking Habits*					
Yes	3566 (28.9%)	3266 (76%)	300 (3.7%)	<0.001s	
No	8761 (71.1%)	1030 (24%)	7731 (96.3%)		

FPG=Fasting Plasma Glucose, 2H PPG=2 Hours Postprandial Plasma Glucose, BMI=Body Mass Index, BRI=Body Roundness Indeks, *) Data is presented as a sum (percentage); the superscripted 'S' showed a significant difference

Figure 3 and Table 2 show WHtR, WC, BRI, BMI, and C-index diagnostic test results as prediabetic predictors. In general, the five anthropometric parameters had a very weak ability to predict prediabetes (AUC=0.5-0.6). The WHtR and BRI (AUC_{men}=0.571; AUC_{women}=0.573) were significantly better than other

anthropometric parameters (p-value<0.0001). Meanwhile, the C-index (AUC_{men}=0.560; AUC_{women}=0.548) was considerably weaker than other anthropometric parameters in women, but it was not significantly different from the WC (AUC=0.564) and BMI (AUC=0.559) in men (p-value=0.111).

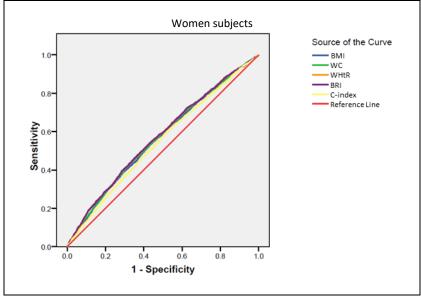


Figure 3. ROC Curves of Anthropometric Indices for Predicting Prediabetes Stratified by Sex

Table 2. The area under the curve, optimal cut-off, sensitivity, specificity, positive predictive value, negative predictive value, positive likelihood ratio, and negative likelihood ratio of anthropometric parameters as prediabetic predictors

Anthropometric Parameters	AUC	95% Confidence Interval	p- value*	Cut-off Point	Se	Sp	PPV	NPV	LR+	LR-
Men BMI WC WHtR BRI C-index	0.559 ^a 0.564 ^a 0.571 ^b 0.571 ^b 0.560 ^a	0.542- 0.576 0.547- 0.582 0.554- 0.589 0.554- 0.589 0.543- 0.578	<0.001	22.34 kg/m ² 79.1 cm 0.46 3.12 1.19 m ^{3/2} /kg ^{1/2}	0.54 0.49 0.65 0.65 0.51	0.56 0.61 0.46 0.46 0.60	0.48 0.49 0.48 0.48	0.61 0.63 0.63 0.61	1.23 1.26 1.20 1.20 1.28	0.82 0.84 0.76 0.76 0.82
Women BMI WC WHtR BRI C-index	0.564 ^b 0.566 ^b 0.573 ^c 0.573 ^c 0.548 ^a	0.552- 0.577 0.554- 0.579 0.560- 0.585 0.560- 0.585 0.535- 0.560	<0.001	25.06 kg/m² 84 cm 0.55 4.76 1.19 m ^{3/} 2/kg ^{1/} 2	0.53 0.44 0.48 0.48 0.60	0.57 0.67 0.63 0.63 0.48	0.55 0.56 0.56 0.56 0.53	0.55 0.54 0.55 0.55 0.54	1.23 1.33 1.30 1.30 1.15	0.82 0.84 0.83 0.83

BMI=Body Mass Index, WC=Waist Circumference, WHtR=Waist-to-Height Ratio, BRI=Body Roundness Index, Se=Sensitivity, Sp=Specificity, PPV=Positive Predictive Value, NPV=Negative Predictive Value, LR+=Positive Likelihood Ratio, LR-=Negative Likelihood Ratio. Different superscript letters show significant differences in AUC among anthropometric parameters. *) The AUC difference of anthropometric parameters with reference line.

Using the Riskesdas 2018, this study compared diagnostic accuracy and determined appropriate cut-off values for BMI, WC, WHtR, BRI, and C-Index as predictors of prediabetes in Indonesian adults. The prevalence of prediabetes was 47.5% and increased with age. Consistent with this finding, previous studies have demonstrated a significant relationship between type 2 diabetes mellitus and age, showing that individuals aged ≥40 years are more likely to develop diabetes than younger age groups²². Several factors may partly explain, with increasing age, physical activity declines, leading to a decrease in lean body mass and an increase in adiposity (especially visceral adiposity), which is closely associated with insulin resistance. Moreover, physiological changes, comorbidities, and functional disorders that often occur in older adults exacerbate this condition²³.

The prevalence of prediabetes in Indonesian young adults in this study was 37.1%. This data is even higher than the incidence of prediabetes among young people in the US (24%)²⁴. It indicates a very worrying threat, since, in this case, the demographic bonus, which is supposed to be an opportunity to become a developed country, can conversely be a disaster for Indonesia in the future due to the enormous economic burden of both immediate and unforeseen medical expenses caused by diabetes²⁵. Therefore, it is necessary to implement both primary preventive measures, which involve health promotion, and secondary preventive measures, which entail early diagnosis and appropriate treatment, to halt the increase in prevalence and prevent further development of prediabetes in this age group.

The prevalence of prediabetes also increased with increasing body adiposity, where the obese group mainly experienced prediabetes compared to other nutritional status groups. The results presented here align with a study conducted in Iran that showed a correlation between obesity and the prevalence of prediabetes (25.17%), which was higher than the prevalence in people with nutritional status of overweight (17.95%) and normal (9.59%) 26 . This is due to excessive fat accumulation in obesity, which increases the release of free fatty acids and pro-inflammatory adipokines such as TNF- α , IL-6, leptin, resistin, MCP-1, MIF, and RBP4, thus contributing to the development of insulin resistance 27 .

This study found that the predictive ability of the five investigated anthropometric parameters for prediabetes was very weak. In line with these results, previous studies on the diagnostic accuracy of BMI, waist circumference, and WHtR as prediabetic predictors in Indonesia also reported very weak results, with AUC values ranging from 0.5 to 0.628. The predictive ability of BRI for prediabetes is equal to that of WHtR. However, it is better than WC, BMI, or even C-index. Consistent with this result, a study in a village population in Northeastern China also showed that BRI and WHtR had equal predictive ability for diabetes and were superior to WC, BMI, or body shape index (ABSI)²⁹. The BRI is a geometric indicator that serves as an estimator of both visceral adipose tissue and the percentage of body fat. It is calculated using the individual's waist circumference and height as key variables, along with WHtR10. Moreover,

the correlation test conducted in this study showed a close relationship between BRI and WHtR (r = 1; pvalue<0.001), as did the study by Chang Y et al. (appendix 2)²⁹. That may explain why the BRI and WHtR in this study have the same predictive ability for prediabetes.

Conversely, in women, the C-index was not better than WC and was even weaker than BMI. This result is consistent with an investigation of the Chinese population, which showed that the C-index's predictive capacity for diabetes was lower than that of WHtR, BRI, WC, and BMI¹². On the contrary, a study in the United States of America demonstrated that the C-index performed better than WHtR, WC, BMI, and ABSI15 as a predictor of diabetes. The result was probably caused by variations in body composition and fat distribution among ethnic groups.

Although BMI has been widely used to categorize nutritional status, the anthropometric characteristics associated with central obesity have been identified as more effective screening tools for the detection of prediabetes in a multi-ethnic Asian population³⁰. The findings of this research suggest that central obesity may contribute to the development of prediabetes using visceral fat, which exhibits greater metabolic activity compared to subcutaneous fat. Specifically, visceral fat is implicated in the secretion of non-esterified free fatty acids and pro-inflammatory adipokines, including Tumor Necrosis Factor (TNF)- α and Interleukin (IL)-6. These substances can potentially induce insulin resistance and harm pancreatic beta cells. This mechanism results in glucose intolerance and, ultimately, diabetes^{27,31}.

In this study, women demonstrated higher ideal cut-off values for anthropometric indicators of central obesity than men. This result aligns with sex-specific variations in adipose tissue distribution, wherein women predominantly accumulate fat in subcutaneous areas, especially the gluteofemoral region, which can sustain substantial fat deposits over time³². Studies showed that visceral fat is more highly correlated with cardiometabolic risks in women than in men³³. That suggests that although overall women have less visceral fat than men, visceral fat accumulation in women poses a higher risk of cardiometabolic disorder development³³. However, this study showed that women had higher optimal cut-off values for anthropometric parameters of the central obesity marker than men. This may be partly explained by the fact that most of the men in this study were active smokers. Nicotine (the main bioactive component of cigarette smoke) can activate the sympathetic nervous system, increasing lipolysis in white adipose tissue and thereby increasing free fatty acid release, contributing to insulin resistance and weight loss^{34,35}.

The optimal cut-off values for anthropometric parameters as prediabetic predictors were WHtR ≥0.46 in men and \geq 0.55 in women, and BRI \geq 3.12 in men and \geq 4.76 in women. This study is the first to define the cut-off for BRI in the Indonesian population. At the same time, previous research by Djap HS et al. determined the appropriate cut-off value for WHtR as ≥0.46 in men and ≥0.51 in women²⁸. Although both the present and previous studies were conducted in the same population, the difference in the WHtR cut-off in women might be

due to age differences in the samples used, with the prior study encompassing individuals aged 15-65. Indeed, this can affect the optimal cut-off value of anthropometric parameters obtained according to the Regulation of the Minister of Health of the Republic of Indonesia Number 2 of 2020, nutritional status assessment for people aged 5-18 years old still uses the z-score index of BMI according to age (BMI/Age)36.

Based on the predictive value, men and women with WHtR and BRI values exceeding the defined cut-off have a 48% and 56% chance, respectively, of being diabetic. Conversely, the samples of men and women with WHtR and BRI below the defined cut-off value have a 63% and 55% chance, respectively, of not having prediabetes (normal glucose). A diagnostic test is considered good if its sensitivity and specificity are at least 1.537. Therefore, the defined cut-off values of WHtR and BRI in this study were less beneficial when applied, as the combination of sensitivity and specificity was only 1.11. Likewise, based on the likelihood ratio, in which the WHtR and BRI exceeded the defined cut-off value only minimally increased the likelihood of prediabetes, and vice versa (the positive likelihood ratio ranged from 1 to 2, while the negative likelihood ratio ranged from 0.5 to

One strength of this study was its use of a large, community-based dataset (Riskesdas), providing a robust representation of the Indonesian population. Data collection by trained personnel also minimized measurement bias. However, the study had limitations, including the absence of data on medication use, which could influence body weight and glucose metabolism. Additionally, its cross-sectional design precludes causal inference and mechanistic insights. Post-diagnosis, behavioural changes among prediabetic individuals may also have influenced anthropometric values, potentially narrowing differences between groups.

CONCLUSIONS

The derived anthropometric parameters are not better than the basic anthropometric, in which BRI (with the best cut-off of ≥3.12 in men and ≥4.76 in women) has the same ability as a prediabetic/prediabetes predictor as WHtR (with the best cut-off of ≥0.46 in men and ≥0.55 in women). At the same time, C-index (with the best cut-off of ≥1.19 in both men and women) is weaker than waist circumference (with the best cut-off of ≥79.1 cm in men and ≥84 cm in women) and is even considered weaker compared to BMI (see Indonesian version) in women. The use of WHtR is preferred over BRI, even though both have the same ability to predict prediabetes. This may be due to that the BRI calculation is more complex, which can affect clinical applications. A prospective study must identify the longitudinal relationship between anthropometric parameters and prediabetes risk.

ACKNOWLEDGEMENT

We thank the Health Development Policy Agency of the Ministry of Health of the Republic of Indonesia for granting permission to utilise data from the 2018 Baseline Health Research (Riskesdas) for this study.

CONFLICT OF INTEREST AND FUNDING DISCLOSURE

The authors and contributors of this article declare that there are no conflicts of interest. This research was funded by the author's funds and received no specific grant from public, commercial, or non-profit funding agencies.

AUTHOR CONTRIBUTIONS

AP: conceptualization, methodology, supervision, project administration, writing—original draft, review and editing; ENN: conceptualization, methodology, resources, software, validation, writing—original draft; FFD: data curation, visualization, formal analysis, writing—review and editing; DMK: software, resources, validation, writing-review and editing; AR: data curation, formal analysis, investigation, software, writing-review and editing.

REFERENCES

- International Diabetes Federation. *IDF Diabetes* Atlas. (Brussels, Belgium, 2021).
 doi:10.1016/j.diabres.2013.10.013.
- Dall, T. M. et al. The Economic Burden of Elevated Blood Glucose Levels in 2012: Diagnosed and Undiagnosed Diabetes, Gestational Diabetes Mellitus, and Prediabetes. Diabetes Care 37, 3173 (2014). https://doi.org/10.2337/dc14-1036.
- Dall, T. M. et al. The Economic Burden of Elevated Blood Glucose Levels in 2017: Diagnosed and Undiagnosed Diabetes, Gestational Diabetes Mellitus, and Prediabetes. Diabetes Care 42, 1661–1668 (2019). https://doi.org/10.2337/dc18-1226.
- Y. Parmar, M. Obesity and Type 2 diabetes mellitus. *Integative. Obesity and Diabetes* 4, (2018). https://doi.org/10.15761/IOD.1000217.
- Buss, J. Limitations of Body Mass Index to Assess Body Fat. Workplace Health & Safety 62, 264 (2014). https://doi.org/10.3928/21650799-20140514-04.
- Ashwell, M., Gunn, P. & Gibson, S. Waist-to-Height Ratio is a Better Screening Tool than Waist
 Circumference and BMI for Adult
 Cardiometabolic Risk Factors: Systematic Review
 and Meta-Analysis. *Obesity Reviews* 13, 275–286
 (2012). https://doi.org/10.1111/j.1467-789X.2011.00952.x.
- Yoo Eun-Gyong. Waist-to-Height Ratio as a Screening Tool for Obesity and Cardiometabolic

- Risk. *Korean Journal of Pediatrics* **59**, 426 (2016). https://doi.org/10.3345/kjp.2016.59.11.425.
- Li, G. et al. The Feasibility of Two Anthropometric Indices to Identify Metabolic Syndrome, Insulin Resistance and Inflammatory Factors in Obese and Overweight Adults. Nutrition 57, 194–201 (2019).
 - https://doi.org/10.1016/j.nut.2018.05.004.
- Nkwana, M. R., Monyeki, K. D. & Lebelo, S. L. Body Roundness Index, A Body Shape Index, Conicity Index, and Their Association with Nutritional Status and Cardiovascular Risk Factors in South African Rural Young Adults. *International Journal* of Environmental Research and Public Health 18, 281 (2021). https://doi.org/10.3390/ijerph18010281.
- Thomas, D. M. et al. Relationships between Body Roundness with Body Fat and Visceral Adipose Tissue Emerging from a New Geometrical Model.
 Obesity 21, 2264–2271 (2013). https://doi.org/10.1002/oby.20408.
- Liu, Y. et al. Body Roundness Index is a Superior Obesity Index in Predicting Diabetes Risk Among Hypertensive Patients: A Prospective Cohort Study in China. Frontiers in Cardiovascular Medicine 8, 736073 (2021). https://doi.org/10.3389/fcvm.2021.736073.
- 12. Zhang, J., Zhu, W., Qiu, L., Huang, L. & Fang, L. Sexand Age-Specific Optimal Anthropometric Indices as Screening Tools for Metabolic Syndrome in Chinese Adults. *International Journal of Endocrinology* 2018, 1067603 (2018). https://doi.org/10.1155/2018/1067603.
- 13. Wang, Z., He, S. & Chen, X. Capacity of Different Anthropometric Measures to Predict Diabetes in a Chinese Population in Southwest China: a 15-Year Prospective Study. *Diabetic Medicine* 36, 1261–67 (2019). https://doi.org/10.1111/dme.14055.
- 14. Dang, A. K. et al. Anthropometric Cut-Off Values for Detecting the Presence of Metabolic Syndrome and Its Multiple Components among

- Adults in Vietnam: The Role of Novel Indices.

 Nutrients 14, 4024 (2022).

 https://doi.org/10.3390/nu14194024.
- Liu, X., Liu, Y., Guan, H., Feng, Y. & Kuang, J. Comparison of Six Anthropometric Measures in Discriminating Diabetes: A Cross-Sectional Study from the National Health and Nutrition Examination Survey. *Journal of Diabetes* 14, 465–475 (2022). https://doi.org/10.1111/1753-0407.13295.
- 16. Cho, S. et al. Optimal Cutoff Values for Anthropometric Indices of Obesity as Discriminators of Metabolic Abnormalities in Korea: Results from a Health Examinees Study. BMC Public Health 21, 459 (2021). https://doi.org/10.1186/s12889-021-10490-9.
- Hernández-Vásquez, A. et al. Cut-off points of anthropometric markers associated with hypertension and diabetes in Peru: Demographic and Health Survey 2018. Public Health Nutrition 24, 611–621 (2021). https://doi.org/10.1017/S1368980020004036.
- Valdez, R. A Simple Model-Based Index of Abdominal Adiposity. *Journal of Clinical Epidemiology* 44, 955–956 (1991). https://doi.org/10.1016/0895-4356(91)90059-I.
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes - 2022. *Diabetes Care* 45, S22–S23 (2022). https://doi.org/10.2337/dc22-Sint.
- Badan Penelitian dan Pengembangan Kesehatan.
 Laporan Nasional Riskesdas 2018. at (2019).
- Dahlan, M. S. Penelitian Diagnostik, Validitas & Reliabilitas. (Epidemiologi Indonesia, Jakarta, 2018).
- 22. PGN. Peraturan Menteri Kesehatan Republik Indonesia Nomor 41 Tahun 2014 Tentang Pedoman Gizi Seimbang. (Kementeriann Kesehatan Republik Indonesia, Jakarta, 2014).
- Al Mansour, M. A. The Prevalence and Risk Factors of Type 2 Diabetes Mellitus (DMT2) in a Semi-Urban Saudi Population. *International*

- Journal of Environmental Research and Public Health 17, 7 (2020). https://doi.org/10.3390/ijerph17010007.
- 24. Lee, P. G. & Halter, J. B. The Pathophysiology of Hyperglycemia in Older Adults: Clinical Considerations. *Diabetes Care* 40, 445–447 (2017). https://doi.org/10.2337/dc16-1732.
- 25. Andes, L. J., Cheng, Y. J., Rolka, D. B., Gregg, E. W. & Imperatore, G. Prevalence of Prediabetes Among Adolescents and Young Adults in the United States, 2005-2016. *JAMA Pediatrics* 174, e194498 (2020). https://doi.org/10.1001/jamapediatrics.2019.44 98.
- World Health Organization. Global Report on Diabetes. (WHO Press, Geneva, Switzerland, 2016).
- Moradpour, F. et al. Prevalence of Prediabetes, Diabetes, Diabetes Awareness, Treatment, and its Socioeconomic Inequality in West of Iran. Scientific Reports 12, 17892 (2022). https://doi.org/10.1038/s41598-022-22779-9.
- 28. Siddiqui, S. Obesity and Diabetes: Interrelationship. Advances in Obesity, Weight Management & Control 8, 155–158 (2018). https://doi.org/10.15406/aowmc.2018.08.00233
- 29. Djap, H. S. et al. Waist to Height Ratio (0.5) as a Predictor for Prediabetes and Type 2 Diabetes in Indonesia. IOP Conference Series: Materials Science and Engineering 434, 012311 (2018). https://doi.org/10.1088/1757-899X/434/1/012311.
- 30. Chang, Y. et al. Body Shape Index and Body Roundness Index: Two New Body Indices to Identify Diabetes Mellitus among Rural Populations in Northeast China. BMC Public Health 15, 794 (2015). https://doi.org/10.1186/s12889-015-2150-2.
- Alperet, D. J., Lim, W.-Y., Mok-Kwee Heng, D., Ma,
 S. & van Dam, R. M. Optimal Anthropometric
 Measures and Thresholds to Identify
 Undiagnosed Type 2 Diabetes in Three Major

- Asian Ethnic Groups. *Obesity* **24**, 2185–2193 (2016). https://doi.org/10.1002/oby.21609.
- 32. Lee, J. J. et al. Visceral and Intrahepatic Fat are Associated with Cardiometabolic Risk Factors above Other Ectopic Fat Depots: The Framingham Heart Study. *The American Journal of Medicine*131, 684–692 (2018). https://doi.org/10.1016/j.amjmed.2018.02.002.
- 33. Tramunt, B. et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 63, 453–461 (2020). https://doi.org/10.1007/s00125-019-05040-3.
- 34. Schorr, M. et al. Sex Differences in Body Composition and Association with Cardiometabolic Risk. Biology of Sex Differences

- **9**, 28 (2018). https://doi.org/10.1186/s13293-018-0189-3.
- 35. Yu, X.-Y., Song, P. & Zou, M.-H. Obesity Paradox and Smoking Gun: A Mystery of Statistical Confounding? *Circulation Research* **122**, 1642–1644 (2018). https://doi.org/10.1161/CIRCRESAHA.118.31289
- Peraturan Menteri Kesehatan Republik Indonesia
 Nomor 2 Tahun 2020 Tentang Standar
 Antropometri Anak. (Indonesia, 2020).
- Power, M., Fell, G. & Wright, M. Principles for High-Quality, High-Value Testing. BMJ Evidence-Based Medicine 18, 5–10 (2013). https://doi.org/10.1136/eb-2012-100645.