

THE ROLE OF PROBIOTICS AS ADJUVANT THERAPY IN INFLAMMATORY CARDIOVASCULAR DISEASES

Valensa Yosephi^{*1}, Noer Halimatus Syakdiyah¹, Peter Yustian Atmaja², Gatot Soegiarto^{3,4}

¹Master of Immunology Study Program, Postgraduate School, Universitas Airlangga, Surabava, Indonesia

²Department of Neurosurgery, dr. Moewardi General Hospital, Surakarta, Indonesia ³Department of Immunology, Postgraduate School, Universitas Airlangga, Surabaya,

Indonesia

⁴Department of Internal Medicine, Faculty of Medicine, Universitas Airlangga – dr. Soetomo General Academic Hospital, Surabaya, Indonesia

*E-mail : valensa.yosephi-2022@pasca.unair.ac.id

Abstrak

Penyakit kardiovaskular adalah penyebab utama kematian di seluruh dunia. Probiotik adalah mikroorganisme hidup yang dapat memberikan manfaat kesehatan bagi inang bila diberikan dalam jumlah yang memadai. Efek anti-inflamasi dari probiotik pada awalnya dipelajari pada penyakit Crohn (CD) dan kolitis ulserativa (UC). Penelitian ini bertujuan untuk memberikan bukti dan penjelasan ilmiah mengenai efek pemberian probiotik sebagai terapi adjuvan untuk penyakit inflamasi pada sistem kardiovaskular. Penelitian ini menggunakan pendekatan deskriptif dengan menggunakan metode tinjauan literatur sistematis pada PubMed, Scopus, SAGE, dan Web of Science. Sebanyak 13 artikel diinklusikan dalam penelitian ini. Probiotik yang digunakan termasuk Bifidobacterium dalam satu uji klinis, Lactobacillus dalam delapan uji klinis, Enterococcus dalam satu uji klinis, kombinasi Bifidobacterium dan Lactobacillus dalam satu uji klinis, dan kombinasi Lactobacillus dan Propionibacterium dalam satu uji klinis.

Kata Kunci: Inflamasi, penyakit kardiovaskular, probiotik, terapi adjuvan.

Abstract

Cardiovascular diseases are the leading cause of death worldwide. Probiotics are live microorganisms that can provide health benefits to the host when administered in adequate amounts. The anti-inflammatory effects of probiotics were initially studied in Crohn's disease (CD) and ulcerative colitis (UC). This research aim to provide scientific evidence and explanation on the effects of probiotic administration as adjuvant therapy for inflammatory diseases in cardiovascular health. The study employed a descriptive approach using the systematic literature review method on PubMed, Scopus, SAGE, and Web of Science. A total of 13 articles were included in this study. The probiotics used included Bifidobacterium in one clinical trial, Lactobacillus in eight clinical trials, Enterococcus in one clinical trial, a combination of Bifidobacterium and Lactobacillus in one clinical trial, and a combination of Lactobacillus and Propionibacterium in one clinical trial.

Keywords: Adjuvant therapy, cardiovascular diseases, inflammation, probiotics.

1. INTRODUCTION

2021. the World Health In Organization (WHO) stated that there were over 17.9 million deaths annually due to cardiovascular diseases, with one-third occurring in developing countries. This makes cardiovascular diseases the leading cause of death worldwide (WHO, 2021).

Acute myocardial infarction (AMI) is a form of coronary heart disease that occurs abruptly when the heart experiences ischemia for more than 30-45 minutes, causing irreversible cell damage leading to necrosis or death of the myocardium or heart muscle (Waly, & Listiyanto, 2014). The pathophysiology of acute myocardial 153

© (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

infarction involves chronic inflammation in the endothelium and disturbances in platelets resulting in thrombosis and hypertension, leading to inappropriate angiogenesis (Blann et al., 2022).

Probiotics are live microorganisms when administered in that. adequate amounts, can provide health benefits to the host (Hill et al., 2014). Probiotics commonly found in fermented products such as bread, kefir, cheese, various dairy products, and others generally fall under the category of generally recognized as safe (GRAS), indicating they are considered safe for consumption (Brandelli, 2021; Rigobelo, 2012). Probiotics can be formulated into products. including various foods. medicines. and dietary supplements (Rigobelo, 2012). Some known usage of probiotics include anti-pathogenic, antidiabetic, anti-obesity, anti-inflammatory, anti-cancer, anti-allergy, and angiogenic activities (George Kerry et al., 2018). The anti-inflammatory effects of probiotics were initially studied in Crohn's disease (CD) and ulcerative colitis (UC) (George Kerry et al., 2018). Research indicates that an imbalance (dysbiosis) in gut microbiota plays a significant pathophysiological role in the positive regulation of inflammatory bowel Supplementation disease (IBD). of probiotics, prebiotics, and synbiotics can alter these disruptions (Cammarota et al., 2016).

There is no detailed explanation yet regarding the mechanism of action of probiotics in reducing inflammation. However, some speculated mechanisms include increased production of short-chain fatty acids with anti-inflammatory properties butyrate), enhancement (such as of antimicrobial peptide synthesis affecting inflammatory resolution pathways in the mucosa, and improvements in the intestinal luminal environment, intestinal mucosal barrier, and regulation of the mucosal immune system. Probiotics can influence various cells involved in innate and acquired immunity, such as DC, monocytes, Natural (NK) macrophages, Killer cells. lymphocytes, and epithelial cells (Cristofori et al., 2021). To date, there have been no studies on adjuvant probiotic therapy for inflammatory heart disease, prompting researchers to conduct studies on this topic. The results of this research are expected to provide scientific evidence and serve as a reference for further studies on the effects of probiotic administration as adjunctive therapy for inflammatory diseases in cardiovascular health.

2. RESEARCH METHOD

The study employed a descriptive approach using the systematic literature review method or structured article review. This paper was written using the systematic literature review method to identify, assess, and summarize research findings in a structured and systematic manner.

2.1 Article Selection Method

The selection criteria, comprising inclusion and exclusion criteria for the search of literature on the benefits of adjuvant probiotic therapy on the kidneys and heart, are presented in Table 1.

<u> </u>	cardiovascular health		
Criteria Population	Inclusion Adults (≥ 18 years old) with acute or chronic kidney disease	 Exclusion Children (<18 tahun) Patients with comorbidities 	
Interventio n	Probiotic	 Prebiotic Synbiotic Sterile preparations	
Outcome	 Pro- inflammation cytokine Anti- inflammation cytokine Serum lipid profile 		
Study Design	 RCT Placebo- controlled trials In-human studies Full-text article 	 Meta- analysis Systematic review Pooled data analyses Observat ive study Animal or <i>in</i> <i>vitro</i> studies Non-fulltext or abstract articles 	
Publication Time Limit	-	-	
Language Limitations	English	Non-English	

Table 1. Selection criteria for searching literature on the benefits of adjuvant probiotic therapy in

2.2 Article Search Methods

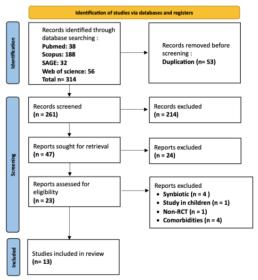
This study employed a literature search strategy utilizing online platforms, including searches on PubMed, Scopus, SAGE, and Web of Science. The list of database sites and keyword combinations for searching literature on the benefits of adjuvant probiotic therapy in the cardiovascular system is outlined in Table 2.

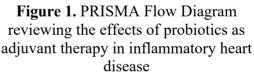
© (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

	adjuvant probiotic therapy in cardiovascular health		
Database	Keyword Combination		
Pubmed	I (Ischemic Heart Disease OR Myocardial Ischemias OR Coronary Artery Diseases OR		
	Coronary Atherosclerosis OR Hypercholesterolemia OR High Cholesterol Levels OR		
	Elevated Cholesterol) AND (Probiotic OR Probiotic*) AND (Randomized controlled		
	trial OR Clinical Trial)		
Web of	(Ischemic Heart Disease OR Myocardial Ischemias OR Coronary Artery Diseases OR		
Science,	Coronary Atherosclerosis OR Hypercholesterolemia) AND (Probiotic) AND (controlled		
SAGE,	trial)		
Scopus			

Table 2. Database sites and keyword combinations for searching literature on the benefits of adjuvant probiotic therapy in cardiovascular health

2.3 Analysis Studies


The collected research data will be extracted and summarized narratively based on groups of research outcomes. The author will summarize and compile a descriptive record of the research in a tabular format. The research description table will outline a summary of all studies, including the researchers, publication year, and a summary of research findings. The summarized results in table form will be thoroughly reviewed for research methodology, process, and findings obtained from the full-text articles. Following a detailed and comprehensive review, the author will proceed with analysis and drawing conclusions. The synthesis of research findings and discussion will be utilized to derive conclusions.


3. RESULTS AND DISCUSSION

Out of the 38 clinical trials identified. 23 full-text articles were considered after implementing exclusion criteria. A total of 13 articles were included in this study. The PRISMA diagram can be seen in Figure 1. Based on the systematic review, various studies utilized single-strain probiotics, while others employed multi-strain probiotics. Detailed data regarding the studies included in the research can be found in Table 3. The probiotics used included Bifidobacterium in one clinical trial. Lactobacillus in eight clinical trials. one clinical trial, Enterococcus in а

combination of *Bifidobacterium* and *Lactobacillus* in one clinical trial, and a combination of *Lactobacillus* and *Propionibacterium* in one clinical trial.

 $\mathbf{0}$

In a clinical trial involving healthy subjects who received probiotic supplements for 12 weeks, 33 patients were tested with Bifidobacterium longum BB536 and red yeast rice (RYR). There was a decrease in LDL-c levels observed. Furthermore, the plasma lathosterol circulation, which is a marker for cholesterol synthesis, significantly reduced (p = 0.0206). The study found that B. longum BB536 and red yeast rice influenced lathosterol biosynthesis (Ruscica et al., 2019).

© (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

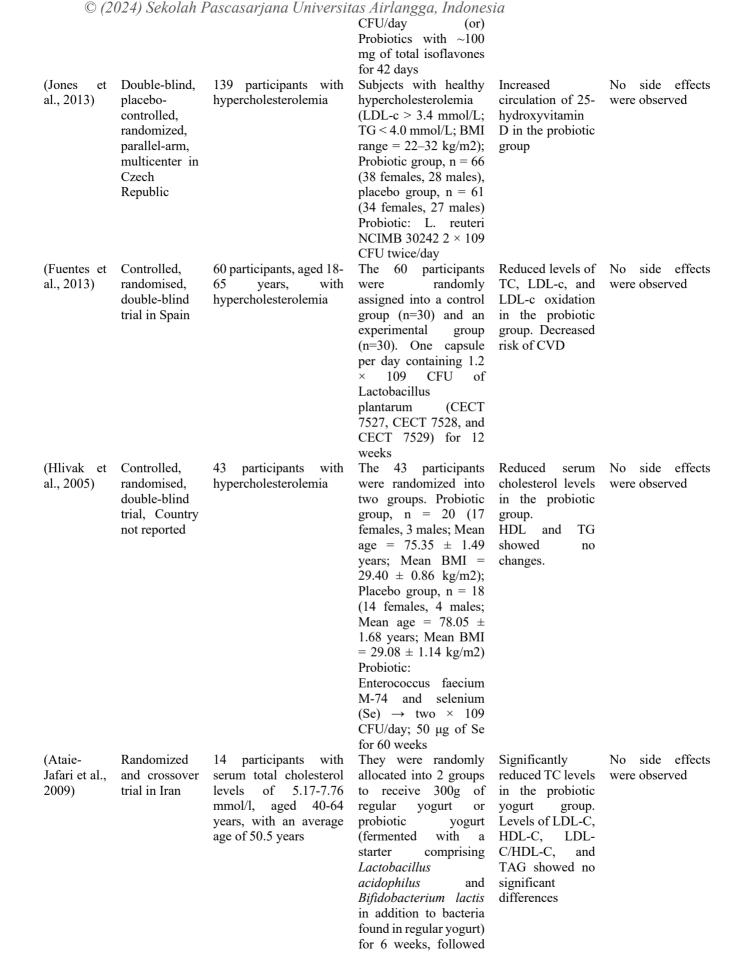
Ten clinical trials were conducted on participants with hypercholesterolemia, showing quite varied results. Significant reductions in total cholesterol were observed in the clinical trials by (Guerrero-bonmatty et al., 2021), (Costabile et al., 2017), (Fuentes et al., 2013), (Hlivak et al., 2005), (Ataie-Jafari et al., 2009), and (Chiu et al., 2021). A significant decrease in LDL was reported in the clinical trials by (Guerrerobonmatty et al., 2021), (Costabile et al., 2017), (Fuentes et al., 2013), and (Chiu et al., 2021). Two different results were found by (St-Onge et al., 2002) and (Hatakka et al., 2008), where no changes were observed in total cholesterol, HDL cholesterol, LDL triglycerides cholesterol. or after supplementation. However, both clinical trials had a shorter supplementation duration compared to other studies, which was 4 weeks.

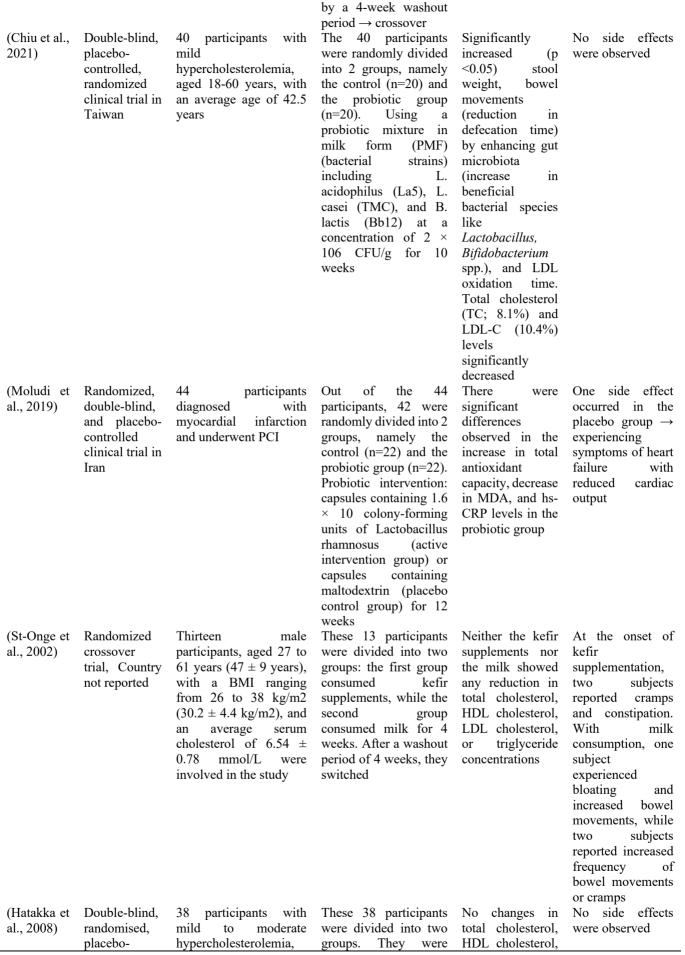
The study conducted by (Costabile et al., 2017) aimed to assess the effect of probiotics on proinflammatory cytokine levels. However, no significant changes were observed in IL-6, TNF- α , CRP, and IL-10 after 12 weeks of Lactobacillus plantarum supplementation. The clinical trial by Cavallini et al. found no changes in CRP levels. A study conducted on patients with a history of myocardial infarction by Moludi et al. showed a significant decrease in LPS and TNF- α levels between the probiotic group and the placebo group after administering *L*. *rhamnosus GG* (LGG) supplementation at

 1.6×10^9 CFU/day for 12 weeks. The intake of *Lactobacillus rhamnosus GG* (LGG) showed beneficial effects in reducing metabolic endotoxemia and inflammation. Another study with 44 participants diagnosed with myocardial infarction and undergoing PCI found an increase in total antioxidant capacity, a decrease in MDA, and hs-CRP in the probiotic group (Moludi et al., 2022).

cardiovascular In diseases. the intestines are a primary part of the body experiencing ischemia, where microvilli and colon villi become vulnerable to cellular hypoxia and anaerobic metabolism. All these factors eventually lead to an unstable gut microbiota composition (dysbiosis), mostly characterized by a decrease in Bifidobacteria and Bacteroides (Gram-positive bacteria) and an increase in Proteobacteria and Firmicutes (Gram-negative bacteria) (Alhajri et al., 2021).

Current research acknowledges the relationship between gut microbiota and the pathophysiology of heart and blood vessel diseases. Numerous studies have established that microbial metabolite, as well as components present in bacterial structures, can move from the gut to the general circulation. thus interacting and metabolically altering related tissue functions. Gut microbiota produce TMAO, SCFAs, and bile acids that have several metabolic effects in humans (Alhajri et al., 2021).


Table 3. Descriptive table of the effects of probiotics on inflammatory diseases in cardiovascular health


Author	Study design	Population	Control & Intervention	Outcomes	Adverse Effects
			Arms		
(Ruscica et	Randomized,	33 participants, aged 18-	33 participants were	Significant	No side effects
al., 2019)	double-blind,	70 years, healthy	randomly divided into a	differences were	were observed
	placebo-	subjects, low risk of	control group (n=17)	observed (p	
	controlled,	cardiovascular disease	and an experimental	<0.005) → TC	
	parallel-group		group (n=16).	decreased, LDL-	
	trial (RCT) in		Probiotics were	C decreased, non-	
	Italy		administered in the	HDL-C	
			form of Lactoflorene	decreased, and	

Jurnal Biosains Pascasarjana Vol. 26 (2024) © (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

© (2	1024) Sekolah I	Pascasarjana Universi			
			Colesterolo supplements (Bifidobacterium longum BB536, with RYR extract, niacin, and coenzyme Q10) at a dosage of 1 sachet per	apoB decreased. However, TG, HDL-C, apoAI, Lp(a), PCSK9 did not change.	
(Moludi et al., 2022)	Double-blind, four-arm parallel randomized controlled trial in Iran	96 participants, aged 18- 85 years, with an average age of 51.25 years, diagnosed with coronary artery disease (CAD)	day for 12 weeks The 96 participants were randomly divided into 4 groups: control (n=24), probiotic group (n=24), inulin group (n=24), and probiotic- inulin group (n=24). Probiotic L. rhamnosus GG (LGG) at a dosage of 1.6×109 CFU/d was administered for 12 weeks	Significant differences observed between the probiotic group and the placebo \rightarrow LPS decreased, TNF- α decreased	No side effects were observed
(Guerrero- bonmatty et al., 2021)	Randomized, double-blind, placebo- controlled, parallel-group trial (RCT) in Spain	39 participants, aged 18- 79 years, with total cholesterol levels >=200 mg/dL, not consuming statins	39 participants were randomly divided into a control group $(n=18)$ and an experimental group $(n=21)$. Probiotics: 109 CFU of L. plantarum strains CECT7527 (KABP011 TM), CECT7528 (KABP012 TM), and CECT7529 (KABP013 TM) in a 1:1:1 ratio with RYR extract. Analysis at baseline, 6 weeks, and 12 weeks	Significant differences observed → TC decreased (p=0.023), LDL decreased (p=0.011)	No side effects were observed
(Costabile et al., 2017)	parallel, double blind, placebo controlled, randomized design in UK	46 participants with normal to mild hypercholesterolemia; Aged = 30–65 years; Average BMI = 26.43 kg/m2	46 participants were randomly divided into a control group (n=23) and an experimental group (n=23). Probiotics: Lactobacillus plantarum ECGC 13110402 4 \times 109 CFU/day for 12 weeks	Significant decrease in TC, LDL-C, TAG. However, there were no significant changes in IL-6, TNF- α , CRP, and IL-10 after 12 weeks	No side effects were observed
(Cavallini et al., 2016)	Randomized placebo- controlled double-blind trial	49 male participants with mild hypercholesterolemia; Aged = 45–48 years	49 participants were randomly divided into 3 groups: control (n=15), fermented soy- probiotic group (n=17), fermented soy- probiotic+isoflavone group (n=17). Probiotics: Isoflavone- supplemented soy product fermented with Enterococcus faecium CRL 183 and Lactobacillus helveticus 416 11 × 109	In the fermented soy-probiotic group, HDL levels were maintained. There were no changes in CRP levels	No side effects were observed

JBP Vol.24, No.2, December 2024 – Yosephi et al..

Jurnal Biosains Pascasarjana Vol. 26 (2024)

© (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

Θ

© (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

controlled, two-period study with 4- week treatment periods inaged 24 to 55 years, with an average age of 42 years, were involved in the studygiven treatment and a placebo for 4 weeks, after which the groups were switched. The treatment probiotics: Lactobacillus treatment propionibacterium freudenreichii stapsulesLDL cholesterol, or triglyceride levels were observed during the consumption of probiotics compared to the placebocontrolled, two-period study with 4- week treatment periods in Finlandaged 24 to 55 years, with an average age of 42 placebo for 4 weeks, after which the groups probiotics: Lactobacillus treatment probiotics compared to the placeboFinlandC705 shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or two placebo capsules	- (-		<i>viv</i> 1		<i>as 110 0005500, 10000005</i>	101
crossoveryears, were involved in study with 4- weekafter which the groups were switched. The involved probiotics:levelswere observed observed during the consumption of probiotics compared to the placeboreatment periodsinLactobacillus rhamnosus LC705compared to the placeboFinlandPropionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or		controlled,		aged 24 to 55 years, with	given treatment and a	LDL cholesterol,
study with 4-the studywere switched. The observed during treatment involved the consumption probiotics:periodsinprobiotics:ofFinlandLactobacilluscompared to the placeboLC705andPropionibacterium freudenreichiisspshermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or		two-period		an average age of 42	placebo for 4 weeks,	or triglyceride
week treatment involved the consumption treatment probiotics: of probiotics periods in Lactobacillus compared to the Finland Propionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or		crossover		years, were involved in	after which the groups	levels were
week treatment involved the consumption treatment probiotics: of probiotics periods in Lactobacillus compared to the Finland Propionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or		study with	4-	the study	were switched. The	observed during
periods in Lactobacillus compared to the Finland rhamnosus strain placebo LC705 and Propionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or				2	treatment involved	the consumption
periods in Lactobacillus compared to the Finland rhamnosus strain placebo LC705 and Propionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or		treatment			probiotics:	of probiotics
Finland rhamnosus strain placebo LC705 and Propionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or		periods	in		Lactobacillus	1
LC705 and Propionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or		1				1
Propionibacterium freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or						1
freudenreichii ssp shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or						
shermanii strain JS in capsules (2 x 1010 colony forming units of each strain daily), or					1	
capsules (2 x 1010 colony forming units of each strain daily), or					1	
colony forming units of each strain daily), or						
each strain daily), or					1	
two placebo capsules					• / ·	
					two placebo capsules	

TMAO is a bacterial metabolite considered responsible for heart disease. TMAO can accumulate in the kidneys and contributing to several biotic heart. mechanisms, such as stimulating platelet accumulation, increasing cell foam synthesis, and activating inflammatory responses. Animal products like milk, red meat, and eggs, containing high levels of trimethylamine (TMA) groups, such as Lcarnitine and choline, are digested to produce TMAO (Guo et al., 2020). Studies have shown that increased TMAO can inhibit cholesterol transport and increase cholesterol accumulation in macrophages, thereby atherogenesis. accelerating Therefore, TMAO is pro-atherogenic, pro-thrombotic, and contributes to ischemic heart disease, being associated with a poor prognosis in heart failure patients (Alhajri et al., 2021).

Fermented dietary fiber produces short-chain fatty acids (SCFAs). The most common SCFAs include propionate (C3), acetate (C2), butyrate and (C4), encompassing 95% of the total SCFAs in the body. The concentration of these SCFAs in the gut ranges from 10 mM to 100 mM and functions within the digestive tract to activate ileum movement, mucus synthesis, and epithelial protection. Although most SCFAs are metabolized in the large intestine, a small portion is absorbed into the general

circulation. Several experiments have revealed that SCFAs reaching the general circulation modulate cardiovascular functions (Chen et al., 2020).

 \odot

Probiotics, such as Lactobacillus, Lactococcus, Bifidobacterium, and Streptococcus, can stimulate the growth and activity of specific gut microbiota, regulating responses and immune limiting inflammation levels, thus benefiting the host (Alhajri et al., 2021). Probiotics work by directly or differently indirectly regulating the host. Firstly, they enhance the barrier function of the digestive tract through proteins gap-junction from intestinal epithelium and mucus secreted by goblet cells. Secondly, some probiotics can produce 'bacteriocins', SCFAs. and other antimicrobial factors that inhibit pathogen growth. Thirdly, probiotics regulate the phenotype and activity of T cells, natural killer cells, and macrophages, reducing the release of proinflammatory factors by regulating the NF-kB pathway (Wang et al., 2020).

4. CONCLUSIONS

Microbial dysbiosis plays a significant role in the pathogenesis of various diseases. The gut microbiome and its metabolic products contribute to the pathophysiology and development of © (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

inflammatory diseases in the cardiovascular system. From the literature review findings, probiotics have the potential to serve as an adjuvant therapy in inflammatory cardiovascular diseases by repairing gastrointestinal cells, promoting SCFA formation, and modulating the body's immune system.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to the reviewers for their time and expertise, Department of Immunology, Postgraduate School Universitas Airlangga, Lembaga Pengelola Dana Pendidikan (LPDP), The Ministry of Finance of the Republic of Indonesia for the support of the study.

BIBLIOGRAPHY

Alhajri, N., Khursheed, R., Ali, M. T., Abu Izneid, T., Al-Kabbani, O., Al-Haidar, M. B., Al-Hemeiri, F., Alhashmi, M., & Pottoo, F. H. (2021). Cardiovascular Health and The Intestinal Microbial Ecosystem: The Impact of Cardiovascular Therapies on The Gut Microbiota. *Microorganisms*, 9(10), 2013.

https://doi.org/10.3390/microorganism s9102013

- Ataie-Jafari, A., Larijani, B., Alavi Majd, H., & Tahbaz, F. (2009). Cholesterol-Lowering Effect of Probiotic Yogurt in Comparison with Ordinary Yogurt in Mildly to Moderately Hypercholesterolemic Subjects. *Annals* of Nutrition and Metabolism, 54(1), 22– 27. https://doi.org/10.1159/000203284
- Blann, A. D., Brown, J. E., & Heitmar, R. (2022). Angiogenesis, Metabolism, Endothelial and Platelet Markers in Diabetes and Cardiovascular Disease. British Journal of Biomedical Science, 79.

https://doi.org/10.3389/BJBS.2022.103 13

Cammarota, G., Pecere, S., Ianiro, G., Masucci, L., & Currò, D. (2016). Principles of DNA-Based Gut Microbiota Assessment and Therapeutic Efficacy of Fecal Microbiota Transplantation in Gastrointestinal Diseases. Digestive 279-285. Diseases, 34(3), https://doi.org/10.1159/000443362

Cavallini, D. C. U., Manzoni, M. S. J., Bedani, R., Roselino, M. N., Celiberto, L. S., Vendramini, R. C., de Valdez, G. F., Abdalla, D. S. P., Pinto, R. A., Rosetto, D., Valentini, S. R., & Rossi, E. A. (2016). Probiotic soy product supplemented with isoflavones improves the lipid profile of moderately hypercholesterolemic men: A randomized controlled trial. *Nutrients*, $\delta(1)$.

https://doi.org/10.3390/nu8010052

- Chen, X. F., Chen, X., & Tang, X. (2020). Short-chain fatty acid, acylation and cardiovascular diseases. *Clinical Science (London, England : 1979)*, *134*(6), 657–676. https://doi.org/10.1042/CS20200128
- Chiu, H. F., Fang, C. Y., Shen, Y. C., Venkatakrishnan, K., & Wang, C. K. (2021). Efficacy of Probiotic Milk Formula on Blood Lipid and Intestinal Function in Mild Hypercholesterolemic Volunteers: A Placebo-control, Randomized Clinical Trial. *Probiotics* and Antimicrobial Proteins, 13(3), 624–632. https://doi.org/10.1007/s12602-020-

09728-6

- Costabile, A., Buttarazzi, I., Kolida, S., Quercia, S., Baldini, J., Swann, J. R., Brigidi, P., & Gibson, G. R. (2017). An in vivo assessment of the cholesterollowering efficacy of Lactobacillus plantarum ECGC 13110402 in normal to mildly hypercholesterolaemic adults. *PLOS ONE*, 12(12), e0187964. https://doi.org/10.1371/journal.pone.01 87964
- Cristofori, F., Dargenio, V. N., Dargenio, C., Miniello, V. L., Barone, M., & Francavilla, R. (2021). Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body.

© (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia

- *Frontiers in Immunology, 12.* https://doi.org/10.3389/fimmu.2021.57 8386
- Fuentes, M. C., Lajo, T., Carrión, J. M., & Cuñé, J. (2013). Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. *British Journal of Nutrition*, 109(10), 1866– 1872.

https://doi.org/10.1017/S00071145120 0373X

- George Kerry, R., Patra, J. K., Gouda, S., Park, Y., Shin, H. S., & Das, G. (2018). Benefaction of probiotics for human health: A review. *Journal of Food and Drug Analysis*, 26(3), 927–939. https://doi.org/10.1016/J.JFDA.2018.0 1.002
- Guerrero-bonmatty, R., Gil-Fernández, G., Rodríguez-Velasco, F. J., & Espadalermazo, J. (2021). A combination of lactoplantibacillus plantarum strains cect7527, cect7528 and cect7529 plus monacolin k reduces blood cholesterol: Results from a randomized, doubleblind, placebo-controlled study. *Nutrients*, *13*(4). https://doi.org/10.3390/nu13041206
- Guo, F., Zhou, J., Li, Z., Yu, Z., & Ouyang, D. (2020). The Association between Trimethylamine N-Oxide and Its Predecessors Choline, L-Carnitine, and Betaine with Coronary Artery Disease and Artery Stenosis. Cardiology Research and Practice. 2020. https://doi.org/10.1155/2020/5854919
- Hatakka, K., Mutanen, M., Holma, R., Saxelin, M., & Korpela, R. (2008). Lactobacillus rhamnosus LC705 Together with Propionibacterium freudenreichii shermanii ssp JS Administered in Capsules Is Ineffective in Lowering Serum Lipids. Journal of the American College of Nutrition, 441-447. 27(4).https://doi.org/10.1080/07315724.2008 .10719723
- Hlivak, P., Odraska, J., Ferencik, M., Ebringer, L., Jahnova, E., & Mikes, Z. (2005). One-year application of

probiotic strain Enterococcus faecium M-74 decreases serum cholesterol levels. *Bratislavské Lekárske Listy*, 106(2), 67–72.

- Jin, M., Qian, Z., Yin, J., Xu, W., & Zhou, X. (2019). The role of intestinal microbiota in cardiovascular disease. *Journal of Cellular and Molecular Medicine*, 23(4), 2343. https://doi.org/10.1111/JCMM.14195
- Jones, M. L., Martoni, C. J., & Prakash, S. (2013). Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25hydroxyvitamin D: A post hoc analysis of a randomized controlled trial. *Journal of Clinical Endocrinology and Metabolism*, 98(7), 2944–2951. https://doi.org/10.1210/jc.2012-4262
- Moludi, J., Alizadeh, M., Mohammadzad, M. H. S., & Davari, M. (2019). The Effect of Probiotic Supplementation on Depressive Symptoms and Quality of Life in Patients after Myocardial Infarction: Results of a Preliminary Double-Blind Clinical Trial. *Psychosomatic Medicine*, 81(9), 770– 777.

https://doi.org/10.1097/PSY.00000000 00000749

Moludi, J., Khedmatgozar, H., Nachvak, S. M., Abdollahzad, H., Moradinazar, M., & Sadeghpour tabaei, A. (2022). The effects of co-administration of probiotics and prebiotics on chronic inflammation, and depression symptoms in patients with coronary artery diseases: a randomized clinical trial. Nutritional Neuroscience, 25(8), 1659-1668. https://doi.org/10.1080/1028415X.202

https://doi.org/10.1080/1028415X.202 1.1889451

Ruscica, M., Pavanello, C., Gandini, S., Macchi, C., Botta, M., Dall'Orto, D., Del Puppo, M., Bertolotti, M., Bosisio, R., Mombelli, G., Sirtori, C. R., Calabresi, L., & Magni, P. (2019). Nutraceutical approach for the management of cardiovascular risk - A combination containing the probiotic Bifidobacterium longum BB536 and

- © (2024) Sekolah Pascasarjana Universitas Airlangga, Indonesia
- red yeast rice extract: Results from a randomized, double-blind, placebocontrolled study. *Nutrition Journal*, *18*(1). https://doi.org/10.1186/s12937-019-0438-2
- St-Onge, M. P., Farnworth, E. R., Savard, T., Chabot, D., Mafu, A., & Jones, P. J. H. (2002). Kefir consumption does not alter plasma lipid levels or cholesterol fractional synthesis rates relative to milk in hyperlipidemic men: A randomized controlled trial. BMC Complementary and Alternative Medicine, 2. https://doi.org/10.1186/1472-6882-2-1
- Waly, T. ., & Listiyanto, J. . (2014). Prevalensi Pasien Infark Miokard Akut Yang Menjadi Cardiac Arrest Di Icu/Hcu Rsup Dr. Kariadi Semarang. Jurnal Kedokteran Diponegoro, 3(1), 107458.
- Wang, Y., Liu, X., Shi, H., Yu, Y., Yu, Y., Li, M., & Chen, R. (2020). NLRP3 inflammasome, an immuneinflammatory target in pathogenesis and treatment of cardiovascular diseases. *Clinical and Translational Medicine*, 10(1), 91–106. https://doi.org/10.1002/ctm2.13
- WHO. (2021). Cardiovascular diseases. WHO Fact Sheet.

