Hambatan Mesenchymal Stem Cell Terhadap Proliferasi Limfosit T
Downloads
Abstract
Mesenchymal stem cells (MSCs) are a kind of stem cells that can differentiate into several kinds of mesodermal cell decent. MSCs can be cultured in vitro therefore it can serve many purposes. However, MSCs also have immunosuppresion effects, one of the way is by suppresing T cell proliferation. MSCs need cell-to-cell contact with activated T cells in certain rasio to release it's surppresion properties. Primery help from inflamatory cytokines is also needed. MSCs's suppresion effect can be mediated by several molecules such as indoleamine 2,3-dioxygenase (IDO), inducible nitric-oxide synthase (iNOS), prostaglandin E2 (PGE2), transform growth factor-β (TGF-β), hepatocyte growth factor (HGF), and HLA-G5 soluble. MSCs's characteristic and culture conditions can affect clinical applications.
Keywords: Mesenchymal stem cells, T cell proliferation, immunosuppresion
Abstrak
Mesenchymal stem cells (MSC) adalah salah satu jenis stem cell yang dapat berdiferensiasi menjadi beberapa macam turunan sel mesodermal. MSC dapat dikembangkan secara in-vitro sehingga memiliki banyak kegunaan. Namun, MSC juga dapat memberikan beberapa efek imunosupresi, salah satunya dengan cara menekan proliferasi sel T. Untuk melakukan supresi, MSC memerlukan kontak cell-to-cell dengan sel T teraktivasi dengan rasio tertentu. MSC juga membutuhkan bantuan awal dari sitokin inflamasi. Efek supresi MSC dapat diperantarai oleh beberapa molekul seperti indoleamine 2,3-dioxygenase (IDO), inducible nitric- oxide synthase (iNOS), prostaglandin E2 (PGE2), transform growth factor-β (TGF-β), hepatocyte growth factor (HGF), dan HLA-G5 terlarut. Sifat dan kondisi biakan MSC dapat mempengaruhi aplikasi klinis.
Kata kunci: Mesenchymal stem cells, proliferasi sel T, imunosupresi
Daftar Pustaka
Aggarwal, S. & Pittenger, M.F., 2005. Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105, hal.1815-1822
Augello, A. et al., 2005. Bone marrow mesen- chymal progenitor cells inhibit lymphocyte proliferation by activation of the programmed death 1 pathway. Eur J Immunol, 35, hal.1482-1490
Asari, S. et al., 2009. Mesenchymal stem cells suppress B-cell terminal differentiation. Exp Hematol, 37, hal.604–15
Bassi, E.J., Aita, C.A.M.A. & Cí¢mara, N.O.S., 2011. Immunoregulation and mesenchymal stem cells. World J Stem Cells, 3(1), hal.1-8
Bianco, P. & Robey, P.G., 2003. Marrow stromal stem cells. J Clin Invest, 105(12), hal.1663- 1668
Birchmeier, C. et al., 2003. Met, metastasis, motility and more. Nat Rev Mol Cell Biol, 4, hal.915–925
Bottaro, D.P. et al., 1991. Identification of the hepatocyte growth factor receptor as the c- met proto-oncogene product. Science, 251, hal.802– 804
Chabannes, D. et al., 2007. A role for heme oxygenase-1 in the immunosuppressive
effect of adult rat and human mesenchymal stem cells. Blood, 110(10), hal.3691-3694
Chen, L., 2004. Co-inhibitory molecules of the B7-CD28 family in the control of T-cell immunity. Nat Rev Immunol, 4, hal.336-347
Chen, K. et al., 2010. Human umbilical cord mesenchymal stem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism. Clin Im- munol, 135, hal.448-458
Corcione, A. et al., 2006. Human mesenchymal stem cells modulate B-cell functions.
Blood, 107, hal.367-372
da Silva, M.L., Chagastelles, P.C. & Nardi, N.B., 2006. Mesenchymal stem cells reside in virtually all post-natal organs and tissues. J Cell Sci. 119, hal.2204-2213
Deans, R.J. & Moseley, A.B., 2000. Mesenchymal stem cells: biology and potential clinical uses. Exp Hematol, 28(8), hal.875-884
Devadas, S. et al., 2006. Granzyme B is critical for T cell receptor-induced cell death of type 2 helper T cells. Immunity, 25(2), hal.237-247
di Nicola, M. et al., 2002. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 99, hal.3838-3843
Djouad, F. et al., 2003. Immunosuppressive eff ect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood, 102, hal.3837-3844
Dominici, M. et al., 2006. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, hal.315-317
Fouillard, L. et al., 2003. Engraftment of allogeneic mesenchymal stem cells in the bone marrow of a patient with severe idiopathic aplastic anemia improves stroma. Leukemia, 17(2), hal.474-476
Galderisi, U. Jori, F.P. & Giordano, A., 2003. Cell cycle regulation and neural differentiation. Oncogene, 22(33), hal.5208–19
Gieseke, F., 2007. Human multipotent mesenchymal stromal cells inhibit proliferation of PBMCs independently of IFNγR1 signaling and IDO expression. Blood, 110, hal.2197-2200
Glennie, S., 2005. Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood, 105, hal.2821- 2827
Han, Z.P. et al., 2012. The role of immunosuppression of mesenchymal stem cells in tissue repair and tumor growth. Cell & Bioscience, 2, hal.8
Jones, B.J. et al., 2007. Immunosuppression by placental indoleamine 2, 3-dioxygenase: a role for mesenchymal stem cells. Placenta, 28(11-12), hal.1174-1181
Kang, J.W. et al., 2008. Soluble factors-mediated immunomodulatory effects of canine adipose tissue-derived mesenchymal stem cells. Stem Cells Dev, 17, hal.681-693
Krampera, M. et al., 2003. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen- specific T cells to their cognate peptide. Blood, 101, hal.3722-3729
Krampera, M. et al., 2006. Role for interferon- gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 24, hal.386-398
Le Blanc, K. et al., 2004. Mesenchymal stem cells inhibit the expression of CD25 (interleukin-2 receptor) and CD38 on phytohaemagglutinin-activated lymphocytes. Scand J Immunol, 60, hal.307-315
Lee, O.K. et al., 2004. Isolation of multipotent mesenchymal stem cells from um-bilical cord blood. Blood, 103, hal.1669-1675
Meisel, R. et al., 2004. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase- mediated tryptophan degradation. Blood, 103, hal.4619-4621
Najar, M. et al., 2009. Mesenchymal stromal cells promote or suppress the proliferation of T lymphocytes from cord blood and peripheral blood: the importance of low cell ratio and role of interleukin-6. Cytotherapy, 11(5), hal.570-83
Naldini, L. et al., 1991. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J, 10, hal.2867–2878
Nasef, A. et al., 2008. Leukemia inhibitory factor: role in human mesenchymal stem cells mediated immunosuppression. Cell Immunol, 253, hal.16-22
Nasef, A. et al., 2009. Selected Stro-1-enriched bone marrow stromal cells display a major suppressive eff ect on lymphocyte proliferation. Int J Lab Hematol, 31, hal.9- 19
Nemeth, K. et al., 2009. Bone marrow stromal cells attenuate sepsis via prostaglandin E2- dependent reprogramming of host macrophages to increase their interleukin- 10 production. Nat Med, 15, hal.42-49
Neuss, S. et al., 2004. Functional expression of HGF and HGF receptor/c-met in adult human mesenchymal stem cells suggests a role in cell mobilization, tissue repair and wound healing. Stem Cells, 22, hal.405– 414
Noel, D. Djouad, F. & Jorgense, C., 2002. Regenerative medicine through mesenchymal stem cells for bone and cartilage repair. Curr Opin Investig Drugs, 3(7), hal.1000-1004
Opitz, C.A. et al., 2009. Toll-like receptor engagement enhances the immunosuppressive properties of human bone marrow-derived mesenchymal stem cells by inducing indoleamine- 2,3- dioxygenase-1 via interferon-beta and protein kinase R. Stem Cells, 27, hal.909- 919
Pittenger, M.F. et al., 1999. Multilineage potential of adult human mesenchymal stem cells. Science, 284, hal.143-147
Potian, J.A. et al., 2003. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol, 171(7), hal.3426-3434
Prockop, D.J., 1997. Marrow stromal cells as stem cells for nonhe¬matopoietic tissues. Science, 276, hal.71-74
Radvanyi, L.G. et al., 1996. Cell cycle progression out of G1 sensitizes primary- cultured nontransformed T cells to TCR- mediated apoptosis. Cell Immunol, 170(2), hal.260-273
Ramasamy, R. et al., 2008. The immunosuppressive effects of human bone marrow-derived mesenchymal stem cells target T cell proliferation but not its effector function. Cell Immunol, 251, hal.131–6
Ren, G. et al., 2008. Mesenchymal stem cell- mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2, hal.141-150
Ren, G. et al., 2009. Species variation in the mechanisms of mesenchymal stem cell- mediated immunosuppression. Stem Cells, 27, hal.1954-1962
Ryan, J.M. et al., 2007. Interferon-gamma does not break, but promotes the immunosuppressive capacity of adult human mesenchymal stem cells. Clin Exp Immunol, 149, hal.353-363
Sato, K. et al., 2007. Nitric oxide plays a critical role in suppression of T-cell proliferation by mesenchymal stem cells. Blood, 109, hal.228–34
Selmani, Z. et al., 2008. Human leukocyte antigen-G5 secretion by human mes- enchymal stem cells is required to suppress T lymphocyte and natural killer function and to induce CD4+CD25highFOXP3+ regulatory T cells. Stem Cells, 26, hal.212- 222
Spaggiari, G.M. et al., 2009. MSCs inhibit monocytederived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2. Blood, 113, hal.6576-6583
Trusolino, L. & Comoglio, P.M., 2002. Scatter- factor and semaphorin receptors: cell signalling for invasive growth. Nat Rev Cancer, 2, hal.289 –300
Tse, W.T. et al., 2003. Suppression of allogeneic T-cell proliferation by human marrow stromal cells: implications in transplantation. Transplantation, 75, hal.389-397
Woodbury, D. et al., 2000. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Re, 61, hal.364-370
Yanez, R. et al., 2010. Prostaglandin E2 plays a key role in the immunosuppressive properties of adipose and bone marrow tissue-derived mesenchymal stromal cells. Exp Cell Res, 316, hal.3109–23
Zhang, W. et al., 2004. Effects of mesenchymal stem cells on differentiation, maturation, and function of human monocyte-derived dendritic cells. Stem Cells Dev, 13, hal.263- 271
Authors who publish with this journal agree to the following terms:
- The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
- The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Share Alike (CC BY-SA).
- Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement