Artificial Neural Network dalam Menentukan Grading Histopatologi Kanker Payudara

Authors

Vol. 19 No. 2 (2017): JURNAL BIOSAINS PASCASARJANA
JURNAL BIOSAINS PASCASARJANA UNAIR
August 31, 2017

Downloads

Abstrak

 

Kanker payudara adalah jenis tumor ganas utama yang diamati pada wanita dan pengobatan yang efektif tergantung pada diagnosis awalnya. Standar emas pemeriksaan kanker payudara adalah pemeriksaan histopatologis sel kanker. Penentuan kadar pada kanker payudara ditentukan oleh tiga faktor: pleomorfik, pembentukan tubular dan mitosis sel. Dalam tulisan ini mengacu pada formasi pleumorfic dan tubular oleh gambar histopatologi sel payudara. Sistem yang diusulkan terdiri dari empat langkah utama: preprocessing, segmentation, ekstrasi fitur dan identifikasi. Pada proses segmentasi  menggunakan metode K-Means Clustering yaitu mengelompokkan data menurut kesamaan warna dan bentuk. Hasil dari K-Means tersebut berupa matrik.  Ekstraksi fitur menggunakan Gray level Cooccurence Matrix (GLCM) yaitu  tingkat keabuan masing-masing citra yang dilihat dari  4 fiturnya adalah kontras, energi, entropi dan homogenitas. Langkah terakhir adalah identifikasi menggunakan Backpropagation. Beberapa parameter penting akan divariasikan dalam proses ini seperti learning rate dan jumlah node pada hidden layer. Hasil penelitian menunjukkan bahwa fitur ekstraksi dalam 4 fitur adalah akurasi terbaik berdasarkan kelas 81,1% dan khususnya ketepatannya adalah 80%.

Kata kunci”Histopatologic breast cancer, kmeans, GLCM, Backpropagation