Artificial Neural Network dalam Menentukan Grading Histopatologi Kanker Payudara

Agoes Santika Hyperastuty

= http://dx.doi.org/10.20473/jbp.v19i2.2017.176-188
Abstract views = 1191 times | downloads = 1276 times

Abstract


Abstrak

 

Kanker payudara adalah jenis tumor ganas utama yang diamati pada wanita dan pengobatan yang efektif tergantung pada diagnosis awalnya. Standar emas pemeriksaan kanker payudara adalah pemeriksaan histopatologis sel kanker. Penentuan kadar pada kanker payudara ditentukan oleh tiga faktor: pleomorfik, pembentukan tubular dan mitosis sel. Dalam tulisan ini mengacu pada formasi pleumorfic dan tubular oleh gambar histopatologi sel payudara. Sistem yang diusulkan terdiri dari empat langkah utama: preprocessing, segmentation, ekstrasi fitur dan identifikasi. Pada proses segmentasi  menggunakan metode K-Means Clustering yaitu mengelompokkan data menurut kesamaan warna dan bentuk. Hasil dari K-Means tersebut berupa matrik.  Ekstraksi fitur menggunakan Gray level Cooccurence Matrix (GLCM) yaitu  tingkat keabuan masing-masing citra yang dilihat dari  4 fiturnya adalah kontras, energi, entropi dan homogenitas. Langkah terakhir adalah identifikasi menggunakan Backpropagation. Beberapa parameter penting akan divariasikan dalam proses ini seperti learning rate dan jumlah node pada hidden layer. Hasil penelitian menunjukkan bahwa fitur ekstraksi dalam 4 fitur adalah akurasi terbaik berdasarkan kelas 81,1% dan khususnya ketepatannya adalah 80%.

Kata kunci—Histopatologic breast cancer, kmeans, GLCM, Backpropagation


Full Text:

PDF

References


DAFTAR PUSTAKA

Ellis IO, et all. Invasive breast carcinoma. In: Tavasolli FA, Devilee P. Pathology and Genetic of Tumours of the Breast and Female Genital Organs, WHO Classification of Tumours, IARC Press; 2003: 18-19, 23-43.

Rosai J. The Breast, Rosai and Ackermans’s Surgical Pathology, Volume two, Mosby; 2004(9): 9-10, 1797, 1802-18.

Patten BM. Human Embryology, Mc Graw-Hill; Philadelphia; 2004(2): 240-41.

Schnitt SJ, Mills RR, Hanby AM, Oberman HA. The Breast. In: Mills SE, et all, 2004, Stenberg’s Diagnostic Surgical Pathology, Volume IA, Lippincott Williams & Wilkins; 2004(4): 330 -67.

Lester SC. The Breast. In: Kumar V, Abbas AK, Fausto N. Robbins and Cotran Pathologic Basis of Disease. Elsevier Saunders; Philadelphia; 2005(7): 1120, 1142-49.

Thor AD, Osunkoya AO. The Breast. In: Rubin E, Strayer DS. Farber. Editors. rubin’s Pathology: Clinicopathologyc Fondation of Medicine. JB Lippincott Williams & Wilkins; Philadelphia; 2008(5): 842-53.

Montag A, Kumar V. The Female Genital System and Breast. In: Kumar V, Abbas AK, Fausto N, Mitchell RN. Robbins Basic Pathology. Saunders Elsevier; Philadelphia; 2007(8): 743-49.

Chandrasoma P, Taylor CR. The Breast, Concise Pathology, McGraw-Hill International Edition; 2001(3): 815-29.

Rosen PP. Invasive Mammary Carcinoma, Breast Pathology, Volume I, Lippincott; Philadelphia; 2001(2): 236 - 56.

Breast Cancer Genes and Inheritance, 2009 [cited on 2010, July 29]. Available from: http://www.familycancer.org/FamHist.5tm.

Kissane J M. The Breast, Anderson’s Pathology, Volume II, Mosby, 1990(9): 1726 - 48.

Sloane JP. The Breast, Biopsy Pathology of The Breast, Biopsy Pathology series 24, Arnold, 2001(24): 62 - 9.

Pettinato, Guido, Carlos J. Manivel, Invasif Micropapillary Carcinoma of the Breast, Am J Clin Pathol ; 2004, 121 : 6 : 854 - 66.

Slide Apocrine Carcinoma of Breast, 2010 [cited on 2010, July 27]. Available from: http://www.webpathology.com/.

Adenoid cystic carcinoma, 2010 [cited on 2010, July 27]. Available from: http://www.wikipedia.com/.

Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features, Tao Wana, Jiajia Caob, Jianhui Chenc, Zengchang Qinb,2016

Grading and Prognosis of Invasive Ductal Mammary Carcinoma by Nuclear Image Analysis in Tissue Sections, K. D. Kunze, G. Haroske, V. Dimmer, W. Meyer and F. Theissig, Institute ofPathological Anatomy, Medical Academy "Carl Gustav Carus'; Dresden, GDR,1989

Grading in histopathology, Simon S Cross, Ksenija Benes, Timothy J Stephenson Robert F Harrison,2011

Histology image analysis for carcinoma detection and grading, Lei He, L. Rodney Long, Sameer Antani, George R. Thoma,2011

Histological Grading And Prognosis In Breast Cancer A Study Of 1409 Cases Of Which 359 Have Been Followed For 15 Years,H. J. G. Bloom And W. W. Richardson, From The Meyerstein Institute Of Radiotherapy And The Bland-Sutton Institute Of Pathology Of The Middlesex Hospital, London, W,1957

Nasser, S., Alkhadi, R. A Modifed Fuzzy K-means Clustering using Expectation maximization. University of Nevada Reno, Reno RV 89557, USA, hal 471,2008.

Paulus, E., Nataliani, N. Cepat mahir GUI Matlab. Penerbit Andi, Yogyakarta.2007.

Putra, D. Pengolahan Citra Digital. Penerbit Andi, Yogyakarta. 2010.

Anonim, 2008, Deteksi Kanker Leher Rahim Dan Kanker Payudara, http:// www.depkes.go.id/index.php option=news&task=viewarticle&sid=2965,15 September 2009

Optimasi Kinerja Algoritma Klasterisasi K-Means untuk Kuantisasi Warna Citra

Irwanto, Yudhi Purwananto dan Rully Soelaiman,2012


Refbacks

  • There are currently no refbacks.


View My Stats

             

 

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.