Artificial Neural Network dalam Menentukan Grading Histopatologi Kanker Payudara
Downloads
Abstrak
Kanker payudara adalah jenis tumor ganas utama yang diamati pada wanita dan pengobatan yang efektif tergantung pada diagnosis awalnya. Standar emas pemeriksaan kanker payudara adalah pemeriksaan histopatologis sel kanker. Penentuan kadar pada kanker payudara ditentukan oleh tiga faktor: pleomorfik, pembentukan tubular dan mitosis sel. Dalam tulisan ini mengacu pada formasi pleumorfic dan tubular oleh gambar histopatologi sel payudara. Sistem yang diusulkan terdiri dari empat langkah utama: preprocessing, segmentation, ekstrasi fitur dan identifikasi. Pada proses segmentasi menggunakan metode K-Means Clustering yaitu mengelompokkan data menurut kesamaan warna dan bentuk. Hasil dari K-Means tersebut berupa matrik. Ekstraksi fitur menggunakan Gray level Cooccurence Matrix (GLCM) yaitu tingkat keabuan masing-masing citra yang dilihat dari 4 fiturnya adalah kontras, energi, entropi dan homogenitas. Langkah terakhir adalah identifikasi menggunakan Backpropagation. Beberapa parameter penting akan divariasikan dalam proses ini seperti learning rate dan jumlah node pada hidden layer. Hasil penelitian menunjukkan bahwa fitur ekstraksi dalam 4 fitur adalah akurasi terbaik berdasarkan kelas 81,1% dan khususnya ketepatannya adalah 80%.
Kata kunci”Histopatologic breast cancer, kmeans, GLCM, Backpropagation
DAFTAR PUSTAKA
Ellis IO, et all. Invasive breast carcinoma. In: Tavasolli FA, Devilee P. Pathology and Genetic of Tumours of the Breast and Female Genital Organs, WHO Classification of Tumours, IARC Press; 2003: 18-19, 23-43.
Rosai J. The Breast, Rosai and Ackermans's Surgical Pathology, Volume two, Mosby; 2004(9): 9-10, 1797, 1802-18.
Patten BM. Human Embryology, Mc Graw-Hill; Philadelphia; 2004(2): 240-41.
Schnitt SJ, Mills RR, Hanby AM, Oberman HA. The Breast. In: Mills SE, et all, 2004, Stenberg's Diagnostic Surgical Pathology, Volume IA, Lippincott Williams & Wilkins; 2004(4): 330 -67.
Lester SC. The Breast. In: Kumar V, Abbas AK, Fausto N. Robbins and Cotran Pathologic Basis of Disease. Elsevier Saunders; Philadelphia; 2005(7): 1120, 1142-49.
Thor AD, Osunkoya AO. The Breast. In: Rubin E, Strayer DS. Farber. Editors. rubin's Pathology: Clinicopathologyc Fondation of Medicine. JB Lippincott Williams & Wilkins; Philadelphia; 2008(5): 842-53.
Montag A, Kumar V. The Female Genital System and Breast. In: Kumar V, Abbas AK, Fausto N, Mitchell RN. Robbins Basic Pathology. Saunders Elsevier; Philadelphia; 2007(8): 743-49.
Chandrasoma P, Taylor CR. The Breast, Concise Pathology, McGraw-Hill International Edition; 2001(3): 815-29.
Rosen PP. Invasive Mammary Carcinoma, Breast Pathology, Volume I, Lippincott; Philadelphia; 2001(2): 236 - 56.
Breast Cancer Genes and Inheritance, 2009 [cited on 2010, July 29]. Available from: http://www.familycancer.org/FamHist.5tm.
Kissane J M. The Breast, Anderson's Pathology, Volume II, Mosby, 1990(9): 1726 - 48.
Sloane JP. The Breast, Biopsy Pathology of The Breast, Biopsy Pathology series 24, Arnold, 2001(24): 62 - 9.
Pettinato, Guido, Carlos J. Manivel, Invasif Micropapillary Carcinoma of the Breast, Am J Clin Pathol ; 2004, 121 : 6 : 854 - 66.
Slide Apocrine Carcinoma of Breast, 2010 [cited on 2010, July 27]. Available from: http://www.webpathology.com/.
Adenoid cystic carcinoma, 2010 [cited on 2010, July 27]. Available from: http://www.wikipedia.com/.
Automated grading of breast cancer histopathology using cascaded ensemble with combination of multi-level image features, Tao Wana, Jiajia Caob, Jianhui Chenc, Zengchang Qinb,2016
Grading and Prognosis of Invasive Ductal Mammary Carcinoma by Nuclear Image Analysis in Tissue Sections, K. D. Kunze, G. Haroske, V. Dimmer, W. Meyer and F. Theissig, Institute ofPathological Anatomy, Medical Academy "Carl Gustav Carus'; Dresden, GDR,1989
Grading in histopathology, Simon S Cross, Ksenija Benes, Timothy J Stephenson Robert F Harrison,2011
Histology image analysis for carcinoma detection and grading, Lei He, L. Rodney Long, Sameer Antani, George R. Thoma,2011
Histological Grading And Prognosis In Breast Cancer A Study Of 1409 Cases Of Which 359 Have Been Followed For 15 Years,H. J. G. Bloom And W. W. Richardson, From The Meyerstein Institute Of Radiotherapy And The Bland-Sutton Institute Of Pathology Of The Middlesex Hospital, London, W,1957
Nasser, S., Alkhadi, R. A Modifed Fuzzy K-means Clustering using Expectation maximization. University of Nevada Reno, Reno RV 89557, USA, hal 471,2008.
Paulus, E., Nataliani, N. Cepat mahir GUI Matlab. Penerbit Andi, Yogyakarta.2007.
Putra, D. Pengolahan Citra Digital. Penerbit Andi, Yogyakarta. 2010.
Anonim, 2008, Deteksi Kanker Leher Rahim Dan Kanker Payudara, http:// www.depkes.go.id/index.php option=news&task=viewarticle&sid=2965,15 September 2009
Optimasi Kinerja Algoritma Klasterisasi K-Means untuk Kuantisasi Warna Citra
Irwanto, Yudhi Purwananto dan Rully Soelaiman,2012
Authors who publish with this journal agree to the following terms:
- The copyright of this journal belongs to the Editorial Board and Journal Manager with the author's knowledge, while the moral right of the publication belong to the author.
- The formal legal aspect of journal publication accessibility refers to the Creative Commons Attribution-Share Alike (CC BY-SA).
- Every publication (print/electronic) is open access for educational, research, and library purposes. In addition to the objectives mentioned above, the editorial board is not responsible for copyright infringement