The effect addition of epigallocatechin-3-gallate (EGCG) in nano hydroxyapatite on surface porosity as a candidate pulp capping materia
Downloads
Background: Deep caries, cavity preparation and use of burs or other dental instruments often result in pulpal perforation. In the case of an exposed pulp, regenerative pulp tissue treatment aims to regenerate normal tissue and maintain pulp vitality by inducing pulp regeneration using the right material, so that a good percentage and size of material porosity is needed to help cell regeneration by supporting cell proliferation and attachment, stimulating remineralization and differentiation of odontoblast-like cells. Nano-HA has the ability to produce dentine bridges continuously, has porous properties that allow cell growth, improves mechanical properties, but is not anti-inflammatory so that EGCG is added which has the advantage of being an antioxidant, anti-inflammatory which can optimize pulp tissue regeneration and also acts as an antimicrobial by reduce the growth of bacteria in the oral cavity and can trigger the proliferation and differentiation of human dental pulp cells. Purpose: This study aims to prove the difference in surface porosity of nano hydroxyapatite added with EGCG compared to nano hydroxyapatite and aquadest. Methods: This study used a laboratory experimental study with a posttest-only control group design. The research sample consisted of 32 samples which were divided into 2 groups, the treatment group (nano HA - EGCG) and the control group (nano HA - aquadest). Each research group was subjected to freeze drying and SEM tests. Results: There was a significant difference in the percentage of surface porosity between the nano hydroxyapatite added with EGCG compared to nano hydroxyapatite and aquadest.on the results of the Independent T-test (p<0.05). Conclusion: The addition of EGCG to nano hydroxyapatite has a higher porosity percentage compared to nano hydroxyapatite with aquadest.
Sharma, L. A., & Love, R. M. Scaffolds for regeneration of the pulp-dentine complex. In Handbook of Tissue Engineering Scaffolds, 2019; 1: 459–78. Elsevier.
Tjäderhane, L., & Paju, S. Dentin-Pulp and Periodontal Anatomy and Physiology. In Essential Endodontology: Prevention and Treatment of Apical Periodontitis, Third Edition, 2019: 11–23.
Doumani, M. D., Arnous, W. A., Alsafadi, M. F., Alnazer, H. A., Alanazi, S. M., Alotaibi, K. S., & Al-Ammari, A. I. The vital pulp therapy of permanent teeth: A dental practitioner's perspective from Saudi Arabia. Journal of International Society of Preventive & Community Dentistry, 2020; 10(3): 300.
Morotomi, T., Washio, A., & Kitamura, C. Current and future options for dental pulp therapy. The Japanese dental science review, 2019; 55(1): 5–11.
Swarup, S. J., Rao, A., Boaz, K., Srikant, N., & Shenoy, R. Pulpal response to nano hydroxyapatite, mineral trioxide aggregate and calcium hydroxide when used as a direct pulp capping agent: an in vivo study. The Journal of clinical pediatric dentistry, 2014; 38(3): 201–06.
Dwiandhono I, Effendy R, Kunarti S. The thickness of odontoblast-like cell layer after induced by propolis extract and calcium hydroxide. Dent J (Majalah Kedokt Gigi), 2016; 49(1): 17–21.
Gandolfi, M. G., Siboni, F., Botero, T., Bossù, M., Riccitiello, F., & Prati, C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. Journal of applied biomaterials & functional materials, 2015; 13(1): 43–60.
Akbarianrad, N., Mohammadian, F., Nazari, A. A., & Nobar, R. Applications of nanotechnology in endodontic: A Review. Nanomed. J, 2018; 5(3): 121–6.
Pepla, E., Besharat, L. K., Palaia, G., Tenore, G., & Migliau, G. Nano-hydroxyapatite and its applications in preventive, restorative and regenerative dentistry: a review of literature. Annali Di Stomatologia, 2014; 5(3): 108-14.
Septiani T, Hidayati N, Mohadi R. Calcium Oxide from Pomacea canaliculata and Babylonia spirata Snails. Sci Technol Indonesia, 2017: 68-70.
Chu, C., Deng, J., Man, Y., and Qu, Y. Green Tea Extracts Epigallocatechin-3-gallate for Different Treatments. BioMed Research International. Hindawi, 2017, 1-9.
Alipour, M., Firouzi, N., Aghazadeh, Z., Samiei, M., Montazersaheb, S., Khoshfetrat, A. B., & Aghazadeh, M. The osteogenic differentiation of human dental pulp stem cells in alginate-gelatin/Nano-hydroxyapatite microcapsules. BMC biotechnology, 2021; 21(1): 6.
Horta, M. K., Moura, F. J., Aguilar, M. S., Westin, C. B., Campos, J. B., Peripolli, S. B., Ramos, V. S., Navarro, M. I., & Archanjo, B. S. Nanostructured hydroxyapatite from hen´s eggshells using sucrose as a template. Materials Research, 2020; 23(6).
Lee, S., Razqan, G. S. al, & Kwon, D. H. Antibacterial activity of epigallocatechin-3-gallate (EGCG) and its synergism with β-lactam antibiotics sensitizing carbapenem-associated multidrug resistant clinical isolates of Acinetobacter baumannii. Phytomedicine, 2017; 24: 49–55.
Kwon, Y., Kim, H., & Hwang, Y. Effects of Epigallocatechin Gallate, an Antibacterial Cross-linking Agent, on Proliferation and Differentiation of Human Dental Pulp Cells Cultured in Collagen Scaffolds. Journal of Endodontics, 2017; 43(2): 289–96.
Al-Sherbiny, I. M., Farid, M. H., Abu-Seida, A. M., Motawea, I. T., & Bastawy, H. A. Chemico-physical and mechanical evaluation of three calcium silicate-based pulp capping materials. The Saudi dental journal, 2021; 33(4): 207–14.
Milla, L. El, Indrani, D.J. & Irawan, B. Sintesis dan Uji Porositas scaffold Hidroksiapatit/Alginat. Odonto Dental Journal,2018; 5: 49–3.
Kim, T.R., Kim, M.S., Goh, T.S., Lee, J.S., Kim, Y.H., Yoon, S.Y. & Lee, C.S. Evaluation of structural and mechanical properties of porous artificial bone scaffolds fabricated via advanced TBA-based freeze-gel casting technique. Applied Sciences (Switzerland), 2019; 9(9): 1–17.
Kaur, M., Singh, H., Dhillon, J. S., Batra, M., & Saini, M. MTA versus Biodentine: Review of Literature with a Comparative Analysis. Journal of clinical and diagnostic research: JCDR, 2017; 11(8): ZG01–ZG05.
Sarna-Boś, K., Skic, K., Sobieszczański, J., Boguta, P., & Chałas, R. Contemporary Approach to the Porosity of Dental Materials and Methods of Its Measurement. International journal of molecular sciences, 2021; 22(16): 8903.
Kook, Y. J., Tian, J., Jeon, Y. S., Choi, M. J., Song, J. E., Park, C. H., Reis, R. L., & Khang, G. Nature-derived epigallocatechin gallate/duck's feet collagen/hydroxyapatite composite sponges for enhanced bone tissue regeneration. Journal of biomaterials science. Polymer edition, 2018; 29(7-9): 984–96.
Nurdin, A. Teknologi Proses Pembuatan Molecular Sieve TiZA Untuk Pemekatan Asam Nitrat. Jurnal Kimia dan Kemasan, 2017; 39(2): 55-60.
Wardani, S. C., Hapsari, D. N., & Fatima, F. Perbandingan Morfologi dan Rasio Ca/P Serbuk Hidroksiapatit dari Tulang Ikan Cakalang (Katsuwonus Pelamis) dengan Hidroksiapatit Sisik Ikan. E-Prodenta Journal of Dentistry, 2020; 4(2), 314-20.
Brown, T. E., LeMay, H. E., Bursten, B. E., Murphy, C., Woodward, P., & Stoltzfus, M. E. 2015. Chemistry: The Central Science (13th edition). New Jersey: Pearson Education, Inc.
Xu, Y. Q., Yu, P., & Zhou, W. Combined effect of pH and temperature on the stability and antioxidant capacity of epigallocatechin gallate (EGCG) in aqueous system. Journal of Food Engineering, 2019; 250: 46–4.
Nielsen, M. J., Casey, J. A., VanderWeele, R. A., & Vandewalle, K. S. Mechanical properties of new dental pulp-capping materials. General dentistry, 2016; 64(1): 44–8.
Ranjbar Omrani, L., Moradi, Z., Abbasi, M., Kharazifard, M. J., & Tabatabaei, S. N. Evaluation of Compressive Strength of Several Pulp Capping Materials. Journal of dentistry (Shiraz, Iran), 2021; 22(1): 41–7.
This work is licensed under a Creative Commons Attribution 4.0 International License.
CDJ by Unair is licensed under a Creative Commons Attribution 4.0 International License.
1. The journal allows the author to hold the copyright of the article without restrictions.
2. The journal allows the author(s) to retain publishing rights without restrictions