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Abstract. In this paper, we study the dynamics of a discrete fractional-order logistic growth model 

with infectious disease. We obtain the discrete model by applying the piecewise constant arguments 

to the fractional-order model. This model contains three fixed points namely the origin point, the 

disease-free point, and the endemic point. We confirm that the origin point is always exists and 

unstable, the disease-free point is always exists and conditionally stable, and the endemic point is 

conditionally exists and stable. We also investigate the existence of forward, period-doubling, and 

Neimark-Sacker bifurcation. The numerical simulations are also presented to confirm the analytical 

results. We also show numerically the existence of period-3 solution which leads to the occurrence 

of chaotic behavior. 
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1 Introduction 

The infectious disease is the best opponents of the human’s existence [1]. Therefore, 

many scientists focus in studying the optimal solutions to protect human from the 

infectious disease both theoretically and practically. In mathematical point of view, the 

infectious disease is investigated by using mathematical modeling. One of well-liked 

mathematical approach is the deterministic modeling using differential equation. 

Especially for the mathematical modeling in epidemiological problem, the model 

proposed by Kermack-MacKendrick [2] becomes the most famous among. This model is 

referenced by many scholars in developing new models which associated with the specific 

phenomena. For example, see [2]-[8] and references cited therein.  

In the past few years, many scholars are interested to study the epidemiological model 

with the fractional-order derivative rather than the integer-order derivative. The models 

with fractional-order derivative are considered able to present more realistic 

epidemiological phenomena due to its capability in integrating the memory effects as well 

as the history of the biological properties ([9]-[11]). Although the mathematical modeling 

with fractional-order derivative is growing rapidly, there are several studies investigate 

the biological circumstance in the discrete model, see [12]-[14] and references therein. 

This modeling is considered plausible since the actual conditions are provided in the 
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discrete data. Moreover, the discrete model also attractive for some researchers inasmuch 

as it gives rich dynamics rather than the continuous model. The far-famed discretization 

scheme to obtain the discrete model from the fractional-order derivative model is the 

piecewise constant arguments (PWCA). The PWCA scheme can be found in [15] and 

[16]. 

Table 1 Variables and parameters description 

Variables and parameters Description 

𝑆 Susceptible population 

𝐼 Infected population 

𝑟 Intrinsic growth rate 

𝐾 Environmental carrying capacity 

𝛽 Infection rate 

𝜔 Recovery rate 

𝛿 Death rate 

In this paper, we investigate the dynamics of a discrete model constructed by PWCA from 

the fractional-order model proposed by Panigoro & Rahmi [6]. As far as we know, the 

discrete form of this model has never been studied and investigated. We interest to study 

the discrete form of this model by taking into account the proposed model has a simple 

way in describing the infectious disease using logistic equation. The fairly similar model 

is given by Abdelaziz et al. [12]. The different lies on the growth rate of susceptible 

population and the ability to recover of infected population. Model in [12] using constant 

growth rate and the infected population cannot recover from the disease while model in 

[6] using logistic growth rate and the infect population has the ability to recover. 

This paper is organized as follows. In Section 2, the model formulation including the 

fractional model and its discretization process with PWCA is given. Furthermore, we 

discuss the existence of fixed point and the local stability in Section 3. In Section 4, the 

existence of several bifurcations such as forward, period-doubling, and Neimark-Sacker 

bifurcations are discussed. We give the numerical simulations including the influence of 

the step-size and the infection rate in Section 5. In this Section, we also give short 

discussion about the existence of chaotic behavior near period-3 solution. In Section 6, 

we end our works by giving conclusion. 

2 Model Formulation 

The fractional-order logistic growth model with infectious disease proposed by Panigoro 

& Rahmi [6] is given by the following equations.  



3 

 

 
𝐷𝑡

𝛼𝐶 𝑆 = 𝑟𝑆 (1 −
𝑆 + 𝐼

𝐾
) − 𝛽𝑆𝐼 + 𝜔𝐼,

𝐷𝑡
𝛼𝐶 𝐼 = 𝛽𝑆𝐼 − (𝜔 + 𝛿)𝐼,

 (1) 

where the definition of Caputo fractional-order derivative 𝐷𝑡
𝛼𝐶  is given by 

 𝐷𝑡
𝛼𝐶 𝑢(𝑡) = ℐ1−𝛼𝑢′(𝑡), 0 < 𝛼 ≤ 1. (2) 

𝐼𝜃 denotes integral operator of Riemann-Liouville with order 𝜃 defined by 

 ℐ𝜃𝑣(𝑡) =
1

Γ(𝜃)
∫ (𝑡 − 𝑠)𝜃−1𝑣(𝑠) 𝑑𝑠

𝑡

0

 (3) 

with 𝑡 ≥ 0, 𝑢 ∈ 𝐶𝑛([0, +∞),ℝ), and Γ(⋅) is the Euler’s Gamma function [17],[18]. The 

description of variables and parameters are given in Table 1. To obtain the discrete model, 

we apply the piecewise constant arguments (PWCA) adapted from [19]-[22]. The PWCA 

of model (1) is given by the following equations. 

 

𝐷𝑡
𝛼𝐶 𝑆 = 𝑟𝑆 ([

𝑡

ℎ
] ℎ)(1 −

𝑆 ([
𝑡
ℎ
] ℎ) + 𝐼 ([

𝑡
ℎ
] ℎ)

𝐾
)

−𝛽𝑆 ([
𝑡

ℎ
] ℎ) 𝐼 ([

𝑡

ℎ
] ℎ) + 𝜔𝐼 ([

𝑡

ℎ
] ℎ) ,

𝐷𝑡
𝛼𝐶 𝐼 = 𝛽𝑆 ([

𝑡

ℎ
] ℎ) 𝐼 ([

𝑡

ℎ
] ℎ) − (𝜔 + 𝛿)𝐼 ([

𝑡

ℎ
] ℎ) ,

 (4) 

with initial condition 𝑥(0) = 𝑥0 and 𝑦(0) = 𝑦0. Now, for 𝑡 ∈ [0, ℎ), 
𝑡

ℎ
∈ [0,1), we have 

 
𝐷𝑡

𝛼𝐶 𝑆 = 𝑟𝑆0 (1 −
𝑆0 + 𝐼0

𝐾
) − 𝛽𝑆0𝐼0 + 𝜔𝐼0,

𝐷𝑡
𝛼𝐶 𝐼 = 𝛽𝑆0𝐼0 − (𝜔 + 𝛿)𝐼0,

  

which gives solutions 

 
𝑆1 = 𝑆0 + ℐ𝛼 [𝑟𝑆0 (1 −

𝑆0 + 𝐼0
𝐾

) − 𝛽𝑆0𝐼0 + 𝜔𝐼0] ,

𝐼1 = 𝐼0 + ℐ𝛼[𝛽𝑆0𝐼0 − (𝜔 + 𝛿)𝐼0].
 (5) 

By employing eq. (3) to eq. (5), we get solutions  
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𝑆1 = 𝑆0 +
𝑡𝛼

Γ(1 + 𝛼)
[𝑟𝑆0 (1 −

𝑆0 + 𝐼0
𝐾

) − 𝛽𝑆0𝐼0 + 𝜔𝐼0] ,

𝐼1 = 𝐼0 +
𝑡𝛼

Γ(1 + 𝛼)
[𝛽𝑆0𝐼0 − (𝜔 + 𝛿)𝐼0].

  

Next, for 𝑡 ∈ [ℎ, 2ℎ), 
𝑡

ℎ
∈ [1,2), from eqs. (4), we get 

 
𝐷𝑡

𝛼𝐶 𝑆 = 𝑟𝑆1 (1 −
𝑆1 + 𝐼1

𝐾
) − 𝛽𝑆1𝐼1 + 𝜔𝐼1,

𝐷𝑡
𝛼𝐶 𝐼 = 𝛽𝑆1𝐼1 − (𝜔 + 𝛿)𝐼1,

  

where the solutions are 

 
𝑆2 = 𝑆1 + ℐ𝛼 [𝑟𝑆1 (1 −

𝑆1 + 𝐼1
𝐾

) − 𝛽𝑆1𝐼1 + 𝜔𝐼1] ,

𝐼2 = 𝐼1 + ℐ𝛼[𝛽𝑆1𝐼1 − (𝜔 + 𝛿)𝐼1].
 (6) 

Eqs. (6) have solutions 

 

𝑆2 = 𝑆1 +
(𝑡 − ℎ)𝛼

Γ(1 + 𝛼)
[𝑟𝑆1 (1 −

𝑆1 + 𝐼1
𝐾

) − 𝛽𝑆1𝐼1 + 𝜔𝐼1] ,

𝐼2 = 𝐼1 +
(𝑡 − ℎ)𝛼

Γ(1 + 𝛼)
[𝛽𝑆1𝐼1 − (𝜔 + 𝛿)𝐼1].

  

Again, for 𝑡 ∈ [2ℎ, 3ℎ), 
𝑡

ℎ
∈ [2,3), according to eqs. (4), we acquire  

 
𝐷𝑡

𝛼𝐶 𝑆 = 𝑟𝑆2 (1 −
𝑆2 + 𝐼2

𝐾
) − 𝛽𝑆2𝐼2 + 𝜔𝐼2,

𝐷𝑡
𝛼𝐶 𝐼 = 𝛽𝑆2𝐼2 − (𝜔 + 𝛿)𝐼2.

  

Therefore, we achieve 

 
𝑆3 = 𝑆2 + ℐ𝛼 [𝑟𝑆2 (1 −

𝑆2 + 𝐼2
𝐾

) − 𝛽𝑆2𝐼2 + 𝜔𝐼2] ,

𝐼3 = 𝐼2 + ℐ𝛼[𝛽𝑆2𝐼2 − (𝜔 + 𝛿)𝐼2].
 (7) 

By using eq. (3), we achieve solutions for eqs. (7) as follows. 

 

𝑆3 = 𝑆1 +
(𝑡 − ℎ)𝛼

Γ(1 + 𝛼)
[𝑟𝑆1 (1 −

𝑆1 + 𝐼1
𝐾

) − 𝛽𝑆1𝐼1 + 𝜔𝐼1] ,

𝐼3 = 𝐼1 +
(𝑡 − ℎ)𝛼

Γ(1 + 𝛼)
[𝛽𝑆1𝐼1 − (𝜔 + 𝛿)𝐼1].

  



5 

 

Repeating this scheme for 𝑛 times, whe have 𝑡 ∈ [𝑛ℎ, (𝑛 + 1)ℎ), 
𝑡

ℎ
∈ [𝑛, 𝑛 + 1), and 

hence 

 
𝑆𝑛+1 = 𝑆𝑛 + ℐ𝛼 [𝑟𝑆𝑛 (1 −

𝑆𝑛 + 𝐼𝑛
𝐾

) − 𝛽𝑆𝑛𝐼𝑛 + 𝜔𝐼𝑛] ,

𝐼𝑛+1 = 𝐼𝑛 + ℐ𝛼[𝛽𝑆𝑛𝐼𝑛 − (𝜔 + 𝛿)𝐼𝑛].
 (8) 

where according to eq. (3), eqs. (8) have solutions 

 

𝑆𝑛+1 = 𝑆𝑛 +
(𝑡 − 𝑛ℎ)𝛼

Γ(1 + 𝛼)
[𝑟𝑆𝑛 (1 −

𝑆𝑛 + 𝐼𝑛
𝐾

) − 𝛽𝑆𝑛𝐼𝑛 + 𝜔𝐼𝑛] ,

𝐼𝑛+1 = 𝐼𝑛 +
(𝑡 − 𝑛ℎ)𝛼

Γ(1 + 𝛼)
[𝛽𝑆𝑛𝐼𝑛 − (𝜔 + 𝛿)𝐼𝑛].

 (9)  

Finally, Let 𝑡 → (𝑛 + 1)ℎ. Then the eqs. (9) are reduced to a discrete model as follows. 

 

𝑆𝑛+1 = 𝑆𝑛 +
ℎ𝛼

Γ(1 + 𝛼)
[𝑟𝑆𝑛 (1 −

𝑆𝑛 + 𝐼𝑛
𝐾

) − 𝛽𝑆𝑛𝐼𝑛 + 𝜔𝐼𝑛] ,

𝐼𝑛+1 = 𝐼𝑛 +
ℎ𝛼

Γ(1 + 𝛼)
[𝛽𝑆𝑛𝐼𝑛 − (𝜔 + 𝛿)𝐼𝑛].

 (10) 

The model (10) is the discrete form of model (1) obtained by PWCA. Denote if 𝛼 → 1 

then we have the forward Euler discretization. Furthermore, we study the dynamics of 

model (10) including the existence of fixed points and their local stability. 

3 Fixed Points and Their Local Stability 

In this section, the existence of fixed points and their local stability is investigated. To 

support our analytical study, the following Lemmas are given. 

Lemma 1. [12] Let 𝜆1 and 𝜆2 are the eigen values of the Jacobian matrix evaluated at a 

fixed point 𝑥∗ ∈ ℝ2 of a difference equation 𝑥𝑛+1 = 𝑓(𝑥𝑛), 𝑥 ∈ ℝ2. Then the fixed point 

𝑥∗ is 

(i) a sink (locally asymptotically stable) if |𝜆1| < 1 and |𝜆2| < 1; or 

(ii) a source (unstable) if |𝜆1| > 1 and |𝜆2| > 1; or 

(iii) a saddle (unstable) if |𝜆1| < 1 and |𝜆2| > 1, or if |𝜆1| > 1 and |𝜆2| < 1; or 

(iv) a non-hyperbolic if |𝜆1| = 1 or |𝜆2| = 1. 

Lemma 2. [12] Let 𝐹(𝜆) = 𝜆2 − 𝑇𝑟𝜆 + 𝐷𝑒𝑡. Suppose that (1) > 0, 𝜆1, 𝜆2 are the two 

roots of 𝐹(𝜆) = 0. Then 

(i) |𝜆1| < 1 and |𝜆2| < 1 if and only if 𝐹(−1) > 0 and 𝐷𝑒𝑡 < 1, 

(ii) |𝜆1| > 1 and |𝜆2| > 1 if and only if 𝐹(−1) > 0 and 𝐷𝑒𝑡 > 1, 
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(iii) |𝜆1| < 1 and |𝜆2| > 1, or |𝜆1| > 1 and |𝜆2| < 1 if and only if 𝐹(−1) < 0, 

(iv) 𝜆1 = −1 and 𝜆2 ≠ 1 if and only if 𝐹(−1) = 0 and 𝑇𝑟 ≠ 0,2, and 

(v) 𝜆1and 𝜆2 are complex and |𝜆1| = |𝜆2| = 1 if and only if 𝑇𝑟2 − 4𝐷𝑒𝑡 < 0 and 

𝐷𝑒𝑡 = 1. 

Furthermore, we first identify the fixed points by solving the following equations. 

 

𝑆 = 𝑆 +
ℎ𝛼

Γ(1 + 𝛼)
[𝑟𝑆 (1 −

𝑆 + 𝐼

𝐾
) − 𝛽𝑆𝐼 + 𝜔𝐼] ,

𝐼 = 𝐼 +
ℎ𝛼

Γ(1 + 𝛼)
[𝛽𝑆𝐼 − (𝜔 + 𝛿)𝐼].

 (11) 

Eqs (11) give three fixed points as follows. 

1. The origin point 𝐸0 = (0,0) which is always exists. 

2. The disease-free point 𝐸1 = (𝐾, 0) which is always exists. 

3. The endemic point 𝐸2 = (0, (
𝐾

𝑅0
, (1 −

1

𝑅0
)

𝑟𝐾

𝑟+𝛿𝑅0
)) which is exists if 𝑅0 > 1 where 

𝑅0 is the ratio reproduction number given by 𝑅0 =
𝛽𝐾

𝜔+𝛿
, see [6]. 

These fixed points are similar with its fractional-order model (1) in [6]. Now, we study 

the dynamics of these fixed points by considering the influence of the given step size (ℎ) 

occurs from the PWCA process. 

Theorem 3. Let ℎ0 = √
2𝛤(1+𝛼)

𝜔+𝛿

𝛼
 . The origin point 𝐸0 = (0,0) is  

(i) A saddle if ℎ < ℎ0; or 

(ii) A source if ℎ > ℎ0; or 

(iii) A non-hyperbolic if ℎ = ℎ0. 

 

Proof. By evaluating the Jacobian matrix of model (10) at 𝐸0 = (0,0), we acquire 

 𝐽(𝑆, 𝐼)|𝐸0
=

[
 
 
 
 1 + (

ℎ

ℎ0
)
𝛼 2𝑟

(𝜔 + 𝛿)
(

ℎ

ℎ0
)
𝛼 2𝜔

(𝜔 + 𝛿)

0 1 − 2(
ℎ

ℎ0
)
𝛼

]
 
 
 
 

. (12) 

The Jacobian matrix (12) gives two eigenvalues as follows.  
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𝜆1 = 1 + (
ℎ

ℎ0
)
𝛼 2𝑟

(𝜔 + 𝛿)
,

𝜆2 = 1 − 2(
ℎ

ℎ0
)
𝛼

.

  

It is clear that |𝜆1| > 1 and hence 𝐸0 is always unstable. To identify more detail of the 

dynamics, we study the sign of 𝜆2. When ℎ < ℎ0, ℎ > ℎ0, and ℎ = ℎ0, we have |𝜆2| < 1, 
|𝜆2| > 1, and |𝜆2| = 1, respectively. In accordance with Lemma 1, the dynamics of 𝐸0 

given by Theorem 3 are proven.   □ 

Theorem 4. Suppose that 

 ℎ𝑎 = √
2Γ(1 + 𝛼)

𝑟

𝛼

𝑎𝑛𝑑 ℎ𝑏 = √
2Γ(1 + 𝛼)

(𝜔 + 𝛿)(1 − 𝑅0)

𝛼
  

The disease-free point 𝐸1 = (𝐾, 0) is  

(i) A sink if ℎ < ℎ𝑎 and ℎ < ℎ𝑏. 

(ii) A source if ℎ > ℎ𝑎 and ℎ > ℎ𝑏. 

(iii) A saddle if ℎ < ℎ𝑎 and ℎ > ℎ𝑏, or ℎ > ℎ𝑎 and ℎ < ℎ𝑏. 

(iv) A non-hyperbolic if ℎ = ℎ𝑎 or ℎ = ℎ𝑏. 

Proof. By evaluating the Jacobian matrix of model (10) at 𝐸1 = (𝐾, 0), we acquire 

 𝐽(𝑆, 𝐼)|𝐸1
=

[
 
 
 
 1 − 2 (

ℎ

ℎ𝑎
)
𝛼 2

𝑟
(

ℎ

ℎ𝑎
)
𝛼

[(1 − 𝑅0)𝜔 − (𝑟 + 𝛿𝑅0)]

0 1 − 2 (
ℎ

ℎ𝑏
)
𝛼

]
 
 
 
 

. (13) 

The eigenvalues obtained from the Jacobian matrix (13) are 

 

𝜆1 = 1 − 2(
ℎ

ℎ𝑎
)
𝛼

,

𝜆2 = 1 − 2(
ℎ

ℎ𝑏
)
𝛼

.

  

 

If ℎ < ℎ𝑎, ℎ > ℎ𝑎, and ℎ = ℎ𝑎, then |𝜆1| < 1, |𝜆1| > 1, and |𝜆1| = 1, respectively. 

Furthermore If ℎ < ℎ𝑏, ℎ > ℎ𝑏, and ℎ = ℎ𝑏, the eigenvalues 𝜆2 will satisfy |𝜆2| < 1, 

|𝜆2| > 1, and |𝜆2| = 1 respectively. Thus, by applying Lemma 1, we have the complete 

dynamics given by Theorem 4.  □ 

Theorem 5. Suppose that 



8 

 

 

ℎ1 = √
4Γ(1 + 𝛼)𝑅0

𝑟(𝜔𝜉𝑅0 + 1) + √Δ

𝛼

, ℎ3 = √
4Γ(1 + 𝛼)𝑅0

𝑟(𝜔𝜉𝑅0 + 1) − √Δ

𝛼

,

ℎ2 = √
(𝜔𝜉𝑅0 + 1)Γ(1 + 𝛼)𝑅0

(𝑅0 − 1)𝛽𝐾

𝛼

, Δ = 𝑟2(𝜔𝜉𝑅0 + 1)2 − 4(𝑅0 − 1)𝛽𝑟𝐾.

  

If 𝑅0 > 1, them the endemic point 𝐸2 = (0, (
𝐾

𝑅0
, (1 −

1

𝑅0
)

𝑟𝐾

𝑟+𝛿𝑅0
)) is 

(i) A sink if Δ ≥ 0 and ℎ ∈ (0, ℎ1), or Δ < 0 and ℎ ∈ (0, ℎ2). 

(ii) A source if Δ ≥ 0 and ℎ > ℎ3, or Δ < 0 and ℎ > ℎ2. 

(iii) A saddle if Δ ≥ 0 and ℎ ∈ (ℎ1, ℎ3). 

(iv) A non-hyperbolic if Δ ≥ 0 and ℎ = ℎ1 or ℎ = ℎ3, or Δ < 0 and ℎ = ℎ2. 

Proof. We first compute the Jacobian matrix of model (10) at fixed point 𝐸2 as follows. 

 𝐽(𝑆, 𝐼)|𝐸2
=

[
 
 
 
 1 −

ℎ𝛼𝑟

Γ(1 + 𝛼)𝑅0

[𝜔𝜉𝑅0 + 1] −
ℎ𝛼(𝑅0 − 1)

Γ(1 + 𝛼)𝜉𝑅0

ℎ𝛼𝛽𝜉𝑟𝐾

Γ(1 + 𝛼)𝑅0
1

]
 
 
 
 

, (14) 

  

where 𝜉 =
𝑅0−1

𝑟+𝛿𝑅0
. In order to use Lemma 1 and 2, we compute trace and determinant of 

Jacobian matrix 𝐽(𝑆, 𝐼)|𝐸2
. We obtain 

 

𝑇𝑟(𝐽(𝑆, 𝐼)|𝐸2
) = 2 −

ℎ𝛼𝑟

Γ(1 + 𝛼)𝑅0

[𝜔𝜉𝑅0 + 1],

𝐷𝑒𝑡(𝐽(𝑆, 𝐼)|𝐸2
) = 1 −

ℎ𝛼𝑟

Γ(1 + 𝛼)𝑅0

[𝜔𝜉𝑅0 + 1] +
ℎ2𝛼(𝑅0 − 1)𝛽𝑟𝐾

Γ2(1 + 𝛼)𝑅0
2 .

  

It is clear that 𝐹(1) =
ℎ2𝛼(𝑅0−1)𝛽𝑟𝐾

Γ2(1+𝛼)𝑅0
2 > 0, which means the necessary condition of Lemma 

2 is satisfied. We also have the characteristic equation of Jacobian matrix 𝐽(𝑆, 𝐼)|𝐸2
 as 

follows. 

 𝜆2 −  𝑇𝑟(𝐽(𝑆, 𝐼)|𝐸2
)𝜆 + 𝐷𝑒𝑡(𝐽(𝑆, 𝐼)|𝐸2

) = 0,  

which gives eigenvalues 

 𝜆1,2 = 1 −
(𝑟(𝜔𝜉𝑅0 + 1) ± √Δ)ℎ𝛼

2Γ(1 + 𝛼)𝑅0
.  
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By applying Lemma 1 and Lemma 2, the dynamical behaviors given in Theorem 5(i-iv) 

are completely proven.  □ 

4 Bifurcations 

In this section, we study the existence of one parameter bifurcation of fixed point of model 

(10) including forward, period-doubling, and Neimark-Sacker bifurcations. These 

bifurcation phenomena are the change in stability around the fixed point driven by a 

parameter. Since model (10) is an epidemiological model which constructed by PWCA, 

whe chose the infection rate (𝛽) and the step-size (ℎ) as the bifurcation parameters. 

 

First, we discuss the existence of forward bifurcation driven by the infection rate 𝛽. The 

forward bifurcation is the condition when a stable fixed point losses its stability and the 

other stable fixed point occurs simultaneously when a parameter is varied. Denote from 

the existence condition of the fixed points, 𝐸1 is always exists, while 𝐸2 is exists if 𝑅0 >
1. It is also confirmed that the value ℎ𝑏 depends on 𝛽 while ℎ𝑎 does not.  Therefore, 

according to Theorem 4, the stability of 𝐸1 is changed when 𝛽 is varied. By simple 

algebraic computation, we acquire ℎ < ℎ𝑏 when 0 < 𝛽 < 𝛽∗ with 𝛽∗ =
(𝜔+𝛿)−2Γ(1+𝛼)

ℎ𝛼𝐾
. 

Although the stability of 𝐸1 change sign when 𝛽 passes through 𝛽∗, we must find the 

condition so that  𝐸2 occurs simultaneously when 𝐸1 losses its stability. By considering 

the existence condition of 𝐸2 and the stability condition of 𝐸1, we ensure the step size (ℎ) 

must satisfies ℎ < √1 −
2Γ(1+𝛼)

𝜔+𝛿

𝛼
. Therefore, the existence condition of forward 

bifurcation is given by the following Lemma. 

Lemma 6. Let 𝛽∗ =
(𝜔+𝛿)−2Γ(1+𝛼)

ℎ𝛼𝐾
 and ℎ𝑎

∗ = √1 −
2Γ(1+𝛼)

𝜔+𝛿

𝛼
. Suppose that ℎ <

𝑚𝑖𝑛{ℎ𝑎, ℎ𝑎
∗ }. The disease-free point 𝐸1 = (𝐾, 0) losses its stability via forward 

bifurcation when 𝛽 passes through 𝛽∗. 
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 (a) (b) 

   
 (c) (d) 

   
 (e) (f) 

Figure 1 Numerical simulation of model (10) with parameter values (15), (a) bifurcation 

diagram in interval 0 ≤ 𝛽 ≤ 0.157, (b) local amplification to (a), (c,d,e) phase portrait 

when 𝛽 = 0.132, 0.137, 0.141 respectively, (f) period-4 solution when 𝛽 = 0.147 

Now, we study the existence of period-doubling bifurcation both in 𝐸1 and 𝐸2 driven by 

the step-size (ℎ). The Period-doubling bifurcation is a circumstance where a stable (or 

sink) fixed point becomes unstable and converge to period-2 solution when a parameter 

is varied. This bifurcation exists when a single eigenvalue of the Jacobian matrix of a 

fixed point becomes equal to −1 [23],[24]. From Theorem 4, 𝐸1 is non-hyperbolic when 
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ℎ = ℎ𝑎 or ℎ = ℎ𝑏. We affirm that ℎ𝑎 > 0, and hence ℎ𝑎 does not a bifurcation point. 

Furthermore, when ℎ = ℎ𝑏, an eigenvalue becomes equal to −1. Therefore, the following 

Lemma is achieved. 

   
 (a) (b) 

   
 (c) (d) 

   
 (e) (f) 

Figure 2 Numerical simulation of model (10) with parameter values (16), (a) bifurcation 

diagram in interval 4 ≤ ℎ ≤ 6.4, (b,c,d,e,f) local amplification to (a) 

Lemma 7. The disease-free point 𝐸1 = (𝐾, 0) undergoes the period-doubling bifurcation 

when the step-size (ℎ) passes through ℎ𝑏.  
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By using the similar argument, we investigate the existence of bifurcation around the 

endemic point 𝐸2, we confirm that the period doubling bifurcation may occurs around 𝐸2 

when Δ ≥ 0 and ℎ passes through ℎ1 or ℎ3.  

 

Figure 3 Time series of model (10) with parameter values (16) and ℎ = 6.0656. The 

chaotic solutions occur near period-3 solution. 

Next, we discuss the occurrence of Neimark-Sacker bifurcation around the endemic point 

𝐸2. Neimark-Sacker bifurcation is a condition when a stable (sink) fixed point losses its 

stability and a stable limit-cycle occurs simultaneously if a parameter is varied. This 

bifurcation is pretty similar with Hopf bifurcation in the continuous model. Now, we will 

show the existence of Neimark-Sacker bifurcation driven by the step-size (ℎ). This 

bifurcation occurs when we have a pair of complex conjugate eigenvalues with modulus 

1, see [23] and [24]. It is confirmed that when Δ < 0 and ℎ = ℎ2, we have a pair of 

complex conjugate eigenvalues with modulus 1. Therefore, the existence of both 

bifurcations around 𝐸2 are given by the following Lemma. 

Lemma 8. The endemic point 𝐸2 = (0, (
𝐾

𝑅0
, (1 −

1

𝑅0
)

𝑟𝐾

𝑟+𝛿𝑅0
)) undergoes  

(i) a period-doubling bifurcation when Δ ≥ 0 and ℎ passes through ℎ1 or ℎ3. 

(ii) a Neimark-Sacker bifurcation when Δ < 0 and ℎ passes through ℎ2. 

5 Numerical Simulations 

In this section, we explore the dynamics of model (10) numerically, including the 

existence of forward, period-doubling, and Neimark-Sacker bifurcations. We divide the 

simulation into two parts i.e., the influence of the Infection Rate (𝛽) and the step-size 

(ℎ). These two parameters are chosen according to the theoretical results, where the 

dynamics of model (10) are influenced by the parameter values of  𝛽 and ℎ. 

5.1 The influence of the Infection Rate (𝜷) 

The influence of the infection rate (𝛽) is investigated numerically by first set the 

parameter values as follows. 

 𝑟 = 0.5, 𝐾 = 5, 𝜔 = 0.2, 𝛿 = 0.1, ℎ = 5. (15) 
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In fig. 1a, we portray the bifurcation diagram and some phase portraits of model (10) in 

interval 0 ≤ 𝛽 ≤ 0.157. When 0 < 𝛽 < 𝛽1
∗, where 𝛽1

∗ ≅ 0.06895, the disease-free point 

𝐸1 is a sink and losses its stability after surpasses 𝛽1
∗. A sink 𝐸2 also occurs simultaneously 

after 𝛽 crosses 𝛽1
∗, this stability of 𝐸2 is maintained in interval 𝛽1

∗ < 𝛽 < 𝛽2
∗, where 𝛽2

∗ ≅
0.13569. This circumstance confirms the stability condition in Theorem 4(i) and the 

existence of forward bifurcation in Lemma 6. 

   
 (a) (b) 

 
 (c) (d) 

 
 (e) (f) 

Figure 4 Numerical simulation of model (10) with parameter values (17), (a) bifurcation 

diagram in interval 4.8 ≤ ℎ ≤ 6.4, (b,c,d,e,f) local amplification to (a) 
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Figure 5 Time series of model (10) with parameter values (17) and ℎ = 6.065. The 

chaotic solutions occur near period-3 solution. 

 

 
 (a) (b) 

 
 (c) (d) 

Figure 6 Numerical simulation of model (10) with parameter values (18), (a) bifurcation 

diagram in interval 5.4 ≤ ℎ ≤ 6.4, (b,c,d) phase portraits around 𝐸2 with ℎ = 5.55, 5.7, 
6.1, respectively 

The other bifurcation also occurs when 𝛽 passes through 𝛽2
∗, see fig. 1b. The endemic 

point 𝐸2 undergoes a Neimark-Sacker bifurcation driven by parameter 𝛽. When 𝛽1
∗ <

𝛽 < 𝛽2
∗, 𝐸2 is a sink, and when 𝛽 > 𝛽2

∗, 𝐸2 becomes a source and a stable limit-cycle 

occurs. To confirm the dynamics, we set 𝛽 = 0.132 and 𝛽 = 0.137 and give the phase 
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portraits as in fig. 1c and 1d. Furthermore, we increase the infection rate to  𝛽 = 0.141. 

We find that the diameter of the limit-cycle is getting bigger, see fig.1e. Now, we increase 

more the value of the infection rate to 𝛽 = 0.147 and the limit-cycle vanish and replaced 

by a stable period-4 solution. 

5.2 The influence of the Step-Size (𝒉) 

In this part, the influence of ℎ to the dynamics of model (10) are discussed both for 𝐸1 

and 𝐸2. We start investigate the dynamics of 𝐸1 by setting the parameter as follows. 

 𝑟 = 0.5, 𝐾 = 5, 𝛽 = 0.05, 𝜔 = 0.2, 𝛿 = 0.1. (16) 

We use parameter (16) to portray the bifurcation diagram driven by the step-size (ℎ) in 

interval 4 ≤ ℎ ≤ 6.4 and achieve fig. 2a. The fixed point 𝐸1 undergoes a period-doubling 

bifurcation when ℎ crosses ℎ𝑏 ≅ 4.21169, which confirm the analytical results given by 

Lemma 7. We also show the existence of some stable periodic solutions which also occurs 

via period-doubling bifurcation. In fig. 2b, for interval 5.2 ≤ ℎ ≤ 5.5  each branch of 

period-2 solution bifurcated to period-4,8,16 and so forth. Next, in interval 5.5 ≤ ℎ ≤ 5.6 

(see fig. 2c), we find the periodic solution with period-12,14,16 and period-20. For 

interval 5.6 ≤ ℎ ≤ 5.7 (fig. 2d), we have period-6,8,10 solution and for interval 5.7 ≤
ℎ ≤ 6 (fig.2e) some solutions converge to period-5 and 7. The interesting phenomenon 

occurs in interval 6 ≤ ℎ ≤ 6.4, see fig.2e. There exists a period-3 solution which leads to 

chaotic solution [23]. We set ℎ = 6.0656 where according to fig.2e, this value of step-

size is very close to period-3 solution. We chose three very close initial values i.e., 

(𝑆0, 𝐼0) = (4,1), (𝑆0, 𝐼0) = (4.00001,1), and (𝑆0, 𝐼0) = (4.00002,1) and plot the time-

series in fig. 3. Denote that the solutions are also very close for 𝑛 ∈ [0,25) and becomes 

separated when the time increase. This condition indicated the existence of chaotic 

solution. 

Now, we study the dynamics around 𝐸2. we set the parameter values as follows. 

 𝑟 = 0.5, 𝐾 = 5, 𝛽 = 0.07, 𝜔 = 0.2, 𝛿 = 0.1. (17) 

The bifurcation diagram using parameter values (17) is given by fig. 4a. The stable 

endemic point 𝐸2 becomes unstable via period-doubling bifurcation. This bifurcation 

point is ℎ1 = 5.09739 which associated with Lemma 8(i). As the dynamics of 𝐸1 when 

period-doubling occurs, there are some periodic solutions also appears around 𝐸2. From 

fig 4b to 4f, we have period-2 until period-10 solutions and so forth. The chaotic solution 

also exists denoted by the occurrence of period-3 solution. When ℎ = 6.065, we plot 

some solutions with adjacent initial values, see fig. 5. For 𝑛 ∈ [0,40), the distance 

between solution still maintained, but the solution becomes chaos when 𝑛 → ∞. 

Finally, we set the parameter values as follows. 
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 𝑟 = 0.5, 𝐾 = 5, 𝛽 = 0.07, 𝜔 = 0.2, 𝛿 = 0.1. (18) 

For ℎ ∈ [5.4,6.4], we portray the bifurcation diagram in fig. 6a. We obtain numerically 

that 𝐸2 undergoes a Neimark-Sacker bifurcation when ℎ passes through ℎ2 where ℎ2 ≅
5.58302. This numerical simulation strengthens the analytical results given by Lemma 

8(ii). We also give the phase portraits to show the dynamics for some values of ℎ. When 

ℎ = 5.55, 𝐸2 is a sink (fig. 6b), when ℎ = 5.7, 𝐸2 is a source and stable limit-cycle occurs, 

and when ℎ = 6.1, 𝐸2 still a source but the diameter of limit-cycle increases. 

6 Conclusion 

The dynamics of a discrete fractional-order logistic growth model with infectious disease 

has been studied. The discrete model is obtained by piecewise constant argument 

(PWCA). By considering the previous work in [6], we ensure that its discrete model (10) 

has rich dynamics rather than the fractional-order derivative model (1). From [6], when 

𝑅0 < 1, the disease disappeared, while in the discrete model  (10), there is condition 

makes the disease still exists and change periodically. When 𝑅0 > 1, model (1) show that 

the disease exists and converges to the endemic point. The discrete model (10) show that 

we have other two optional conditions i.e., the endemic point becomes unstable via 

period-doubling or Neimark-Sacker bifurcation. When period-doubling bifurcation 

occurs, both susceptible and infected populations change periodically, while when 

Neimark-Sacker bifurcation occurs, the density of both populations are bounded by a 

limit-cycle. These conditions are not available in the fractional-order derivative model  

(1). From the epidemiological point of view, we have another alternative in presenting 

the behavior of infectious the disease. 
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