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Abstract. This paper discussed about construction of some quotients spaces of the 2-inner product 

spaces. On those quotient spaces, we defined an inner product with respect to a linear independent 

set. These inner products was derived from the 𝑛-inner product. We then defined a norm which 

induced by the inner product in these quotient spaces. 
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1 Introduction 

The concept of the inner product space  

In 1960’s S. Gähler initially introduced the concept of 2-normed space [1-4] which is a 

generalization of the concept of norm space. Let 𝑋 be a real vector space of dimension 

𝑑 ≥ 2. A real-valued function ‖⋅,⋅‖ on 𝑋 × 𝑋 that satisfies the following conditions: 

N1.  ‖𝑥, 𝑦‖ = 0 if and only if  𝑥 and 𝑦 are linearly dependent, for all 𝑥, 𝑦 ∈ 𝑋; 

N2.  ‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖, for all 𝑥, 𝑦 ∈ 𝑋; 

N3.  ‖𝛼𝑥, 𝑦‖ = |𝛼| ‖𝑥, 𝑦‖ for all 𝛼 ∈ ℝ and 𝑥, 𝑦 ∈ 𝑋; 

N4.  ‖𝑥, 𝑦 + 𝑧‖ ≤ ‖𝑥, 𝑦‖ + ‖𝑥, 𝑧‖; for all 𝑥, 𝑦, 𝑧 ∈ 𝑋; 

is called a 2-norm on X, and the pair of (𝑋, ‖⋅,⋅‖ ) is called a 2-normed spaces. 

For example, if (𝑋, 〈⋅,⋅〉) is an inner product space then the following function 

‖𝑥, 𝑦‖ = |
〈𝑥, 𝑥〉 〈𝑥, 𝑦〉

〈𝑦, 𝑥〉 〈𝑦, 𝑦〉
|

1
2
 

is a 2-norm in 𝑋. We can check that the above function satisfies (N1 – N4). Geometrically, 

he value of ‖𝑥, 𝑦‖ represents the area spanned by 𝑥 and 𝑦. We called it standard 2-norm 

on 𝑋. 

Moreover, one can see that from (N3) and (N4) we have 
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‖𝑥, 𝑦‖ ≥ 0, for any 𝑥, 𝑦 ∈ 𝑋, 

which means the 2-norm is nonnegative. On 2-normed space, we also have 

‖𝑥, 𝛼𝑥 + 𝑦‖ = ‖𝑥, 𝑦‖, for any 𝛼 ∈ ℝ and 𝑥, 𝑦 ∈ 𝑋. 

A concept which is related to the 2-normed space is the 2-inner product space. This is a 

generalization of the concept of inner product space. Concept of 2-normed space and 2-

inner product space it has been developed extensively with various results by many 

researchers, (see for instance [5-11]).   

Let 𝑋 be a real vector space and dim(𝑋) = 𝑑 ≥ 3. A function ⟨⋅,⋅ | ⋅⟩: 𝑋 × 𝑋 × 𝑋 → ℝ 

which satisfies the following conditions 

I1. ⟨𝑥, 𝑥|𝑧⟩ ≥ 0 and ⟨𝑥, 𝑥|𝑧⟩ = 0 if and only if 𝑥 and 𝑧 are linearly dependent; 

I2. ⟨𝑥, 𝑥|𝑧⟩ = ⟨𝑧, 𝑧|𝑥⟩, for any 𝑥, 𝑧 ∈ 𝑋; 

I3. ⟨𝑥, 𝑦|𝑧⟩ = ⟨𝑦, 𝑥|𝑧⟩, for any 𝑥, 𝑦, 𝑧 ∈ 𝑋; 

I4. ⟨𝛼𝑥, 𝑦|𝑧⟩ = 𝛼⟨𝑥, 𝑦|𝑧⟩, for any 𝛼 ∈ ℝ and 𝑥, 𝑦, 𝑧 ∈ 𝑋; 

I5. ⟨𝑥1 + 𝑥2, 𝑦|𝑧⟩ = ⟨𝑥1, 𝑦|𝑧⟩ + ⟨𝑥2, 𝑦|𝑧⟩; 

is called a 2-inner product on 𝑋, while the pair (𝑋, ⟨⋅,⋅ | ⋅⟩) is called a 2-inner product 

space.  

We can derive a 2-norm from a 2-inner product by define 

‖𝑥, 𝑧‖ = ⟨𝑥, 𝑥|𝑧⟩
1

2. (1) 

We say that the 2-norm in (1) is induced by a 2-inner product.  

Furthermore, we will construct some quotient spaces in a 2-inner product space and define 

an inner product in each quotient space. If 𝑋 be a vector space, then we can construct 

some quotient spaces of 𝑋. These quotient spaces can be constructed with respect to some 

equivalent relations. Moreover, we can define an inner product in 𝑋 whenever it is 

possible.  

Let ~ be an equivalence relation on 𝑋. For an𝑥 ∈ 𝑋, the set of all elements equivalent to 

𝑥 is denoted by  

�̅� ≔ {𝑦 ∈ 𝑋 ∶ 𝑦 ~ 𝑥}, 
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is called the equivalence class of 𝑥. 

Let 𝑋 be a vector space over 𝐹, 𝑥 ∈ 𝑋, and 𝑉 ⊆ 𝑋. The set �̅� = 𝑥 + 𝑉 = {𝑥 + 𝑣 ∶   𝑣 ∈ 𝑉} 

is called a coset of 𝑉 in 𝑋, 𝑥 is called a coset representative for 𝑥 + 𝑉. Moreover, the set 

of all cosets of 𝑉 on 𝑋 is denoted by 

𝑋/𝑉 = {�̅�  ∶   𝑥 ∈ 𝑋}. 

This set is called the quotient of 𝑋 modulo 𝑉. [12] 

An addition and scalar multiplication operation on 𝑋/𝑉 is defined by �̅� + �̅� = 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅ and 

𝛼�̅� = 𝛼𝑥̅̅̅̅  respectively, for any 𝑥, 𝑦 ∈ 𝑋/𝑉 and 𝛼 ∈ 𝐹.  

2 Results and Discussion 

Now, we will construct some quotient spaces in a 2-inner product space. Let (𝑋, ) be a 2-

inner product space and 𝑌 = {𝑦1, 𝑦2} be a linear independent set on 𝑋. Define a set of 𝑋 

generated by {𝑦1} 

𝑌1 = span{𝑦1} = {𝛼𝑦1  ∶ 𝛼 ∈  ℝ}.  

It is easy to see that 𝑌1 is a subspace. For any 𝑥 ∈ 𝑋, the corresponding coset of 𝑌1 on 𝑋 

is 

�̅� = {𝑥 + 𝛼𝑦1  ∶ 𝛼 ∈  ℝ}. 

Then we have 0̅ = span{𝑦1} = 𝑌1, and if �̅� = �̅� then 𝑥 − 𝑦 ∈ 𝑌1. Further, we define the 

quotient space of 𝑋 as 

𝑋1
∗ = 𝑋/𝑌1 = {�̅�   ∶   𝑥 ∈ 𝑋}. (2) 

 

The addition and scalar multiplication also apply on 𝑋1
∗, those are 

1. �̅� + �̅� = 𝑥 + 𝑦̅̅ ̅̅ ̅̅ ̅, for for any 𝑥, 𝑦 ∈ 𝑋/𝑌1; 

2. 𝛼�̅� = 𝛼𝑥̅̅̅̅  respectively, for any 𝑥 ∈ 𝑋/𝑌1 and 𝛼 ∈ ℝ. 

Next, on 𝑋1
∗ we define a function 〈⋅,⋅〉1  ∶  𝑋1

∗ → ℝ defined by 
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〈�̅�, �̅�〉1 = 〈𝑥, 𝑦 | 𝑦1〉 (3) 

We can see easily that he function defined on (3) is well defined. This function defines 

an inner product on 𝑋1
∗, so that the pair (𝑋1

∗, 〈⋅,⋅〉1) is an inner product space as stated in 

the following theorem. 

Theorem 2.1. Let (𝑋, ⟨⋅,⋅ | ⋅⟩) be a 2-inner product space and 𝑌 = {𝑦1, 𝑦2} is a linearly 

independent set in 𝑋. Then (𝑋1
∗, 〈⋅,⋅〉1) is an inner product space, where 〈⋅,⋅〉1 is a function 

in (3). 

Proof.  

To prove the above theorem we have to prove that the function we defined in (2) is an 

inner product on 𝑋1
∗. Recall that  

〈�̅�, �̅�〉1 = 〈𝑥, 𝑦 | 𝑦1〉, 

then using the properties of 2-inner product (N1) we have 

〈�̅�, �̅�〉1 = 〈𝑥, 𝑥 | 𝑦1〉 ≥ 0. 

If 〈�̅�, �̅�〉1 = 0, then 〈𝑥, 𝑥 | 𝑦1〉 = 0. This means 𝑥 and 𝑦1 are linearly dependent. We can 

write 𝑥 = 𝛼𝑦1, for an 𝛼 ∈ ℝ or 𝑥 ∈ span{𝑦1} = 𝑌1, which means �̅� = 0̅. Conversely, if 

�̅� = 0̅ then it is obvious that 〈�̅�, �̅�〉1 = 〈0̅, 0̅〉1 = 〈0,0 | 𝑦1〉 = 0.  

Next, using (N3) and (N4) we have for any 𝛼 ∈ ℝ and 𝑥, 𝑦 ∈ 𝑋, we have  

〈�̅�, �̅�〉1 = 〈𝑥, 𝑦|𝑦1〉 = 〈𝑥, 𝑦|𝑦1〉 =  〈�̅�, �̅�〉1 

and  

〈𝛼�̅�, �̅�〉1 = 𝛼〈𝑥, 𝑦|𝑦1〉 = 𝛼 〈�̅�, �̅�〉1 

Moreover, using (N5)we have for any 𝑥1, 𝑥2 ∈ 𝑋 

〈𝑥1̅̅̅ + 𝑥2̅̅ ̅, �̅�〉1 = 〈𝑥1 + 𝑥2, 𝑦|𝑧〉 = 〈𝑥1, 𝑦|𝑧〉 + 〈𝑥2, 𝑦|𝑧〉 = 〈𝑥1̅̅̅, �̅�〉1 + 〈𝑥2̅̅ ̅, �̅�〉1. 

These prove that the function on (3) is an inner product space on 𝑋1
∗, which means 

(𝑋1
∗, 〈⋅,⋅〉1) is an inner product space.              
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Recall that if (𝑋, 〈⋅,⋅〉) is an inner product space then the following formula 

‖𝑥‖ = 〈𝑥, 𝑥〉
1
2, 

defines a norm on 𝑋, where 𝑥 ∈ 𝑋. By this fact, we can define a norm on 𝑋1
∗. 

Let (𝑋, ⟨⋅,⋅ | ⋅⟩) be a 2-inner product space and 𝑌 = {𝑦1, 𝑦2} is a linearly independent set 

in 𝑋. A function ‖⋅‖1: 𝑋1
∗ → ℝ  which defined by 

‖𝑥‖1 = 〈𝑥, 𝑥〉
1

1

2  (4) 

 

is a norm on 𝑋1
∗.  

By (3) and (1) we can see that  

〈𝑥, 𝑥〉
1

1
2 = 〈𝑥, 𝑥 | 𝑦1〉

1
2 = ‖𝑥, 𝑦1‖. 

This means The norm ‖⋅‖1 defined in (4) can be seen as 2-norm on 𝑋 with respect to 𝑦1. 

Furthermore, we will construct another quotient space in a 2-inner product space. Let 

(𝑋, ) be a 2-inner product space and 𝑌 = {𝑦1, 𝑦2} be a linear independent set on 𝑋.  For 

constructing the previous quotient space we considered 𝑦1 ∈ 𝑌. Now, we consider 𝑦2 ∈
𝑌  and use the same construction to define another quotient space. Define a set of 𝑋 

generated by {𝑦2} 

𝑌2 = span{𝑦2} = {𝛼𝑦2  ∶ 𝛼 ∈  ℝ}.  

The set 𝑌1 is a subspace and for any 𝑥 ∈ 𝑋, the corresponding coset of 𝑌2 on 𝑋 is 

�̅� = {𝑥 + 𝛼𝑦2  ∶ 𝛼 ∈  ℝ}. 

Then we have 0̅ = span{𝑦2} = 𝑌2, and if �̅� = �̅� then 𝑥 − 𝑦 ∈ 𝑌2. Further, we define the 

quotient space of 𝑋 as 
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𝑋2
∗ = 𝑋/𝑌2 = {�̅�   ∶   𝑥 ∈ 𝑋}. (5) 

 

The addition and scalar multiplication also apply on 𝑋2
∗. 

On 𝑋1
∗ we define a function 〈⋅,⋅〉2  ∶  𝑋2

∗ → ℝ defined by 

〈�̅�, �̅�〉2 = 〈𝑥, 𝑦 | 𝑦2〉. (6) 

This function defines an inner product on 𝑋2
∗, so that the pair (𝑋2

∗, 〈⋅,⋅〉2) is an inner 

product space as stated in the following theorem. 

Theorem 2.2. Let (𝑋, ⟨⋅,⋅ | ⋅⟩) be a 2-inner product space and 𝑌 = {𝑦1, 𝑦2} is a linearly 

independent set in 𝑋. Then (𝑋2
∗, 〈⋅,⋅〉2) is an inner product space, where 〈⋅,⋅〉2 is a function 

in (6). 

Proof.  

The proof is analogue with the proof of Theorem 2.1.            

 

As an analogue result, we also have the following formula 

‖𝑥‖2 = 〈𝑥, 𝑥〉
2

1

2  ;  𝑥 ∈ 𝑋 (7) 

defines a norm on 𝑋1
∗.  

By (6) and (1) we can see that  

〈𝑥, 𝑥〉
2

1
2 = 〈𝑥, 𝑥 | 𝑦2〉

1
2 = ‖𝑥, 𝑦2‖. 

This means The norm ‖⋅‖2 defined in (4) can be seen as 2-norm on 𝑋 with respect to 𝑦2. 

On [13], Gunawan derived an inner product on an 𝑛-inner product space. The inner 

product is derived from the 𝑛-inner product. Let (𝑋, 〈⋅,⋅ | ⋅, … ,⋅ 〉) and 𝑌 = {𝑦1, … , 𝑦𝑛} be 

a linearly independent set. Gunawan derived an inner product on X, defined by 

〈𝑥, 𝑦 〉 = ∑ 〈𝑥, 𝑦| 𝑦𝑖1
, … , 𝑦𝑖𝑛

〉

{𝑖1,…,𝑖𝑛}⊂{1,…,𝑛}

. 
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For 𝑛 = 2, the above formula can be written as 

〈𝑥, 𝑦 〉 = 〈𝑥, 𝑦| 𝑦1〉 + 〈𝑥, 𝑦| 𝑦2〉 (8) 

As we can see, each term of right hand side of equation (8) is the formula of inner product 

on two quotient spaces we constructed earlier. 

〈𝑥, 𝑦 〉 = 〈𝑥, 𝑦〉1 + 〈𝑥, 𝑦2〉2 (9) 

As a consequence, using both of inner products we constructed earlier we can investigate 

some aspects the inner products of both space. Moreover, the norm induced by (9) can be 

written as 

‖𝑥‖ = 〈𝑥, 𝑦 〉
1

2 = (〈𝑥, 𝑦〉1
2 + 〈𝑥, 𝑦2〉2

2)
1

2 = (‖𝑥‖1
2 + ‖𝑥‖2

2)
1

2. (10) 

 

On the above norm, we also can see the induced norms on two quotient spaces we 

constructed on the right hand side of equation (10). 

Furthermore, we can use these inner products or the induced norms to observe some 

aspects on an 𝑛-inner product space. 
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