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Abstract. This paper discusses the stability analysis of the model for the spread of tuberculosis and 

the effects of treatment. It is shown the analyze the dynamic behavior of the model to investigate 

the local stability properties of the model equilibrium point. The Routh-Hurwitz criterion is used to 

analyze local stability at the disease-free equilibrium point, while the Transcritical Bifurcation 

theorem is used to investigate the local stability properties of the endemic equilibrium point. The 

discussion results show that the equilibrium point's stability properties depend on the value of the 

basic reproduction number, which is calculated based on the Next Generation Matrix (NGM). When 

the basic reproduction number value is less than one, then the disease-free equilibrium point is 

locally asymptotically stable, whereas if it is more than one, then the endemic equilibrium point is 

locally asymptotically stable. Numerical simulations are included to explain the dynamic behavior 

of disease spread and to understand the effectiveness of tuberculosis treatment in a given population. 

The simulation results show that treatment in the infected individual phase is known to be more 

effective than treatment in latent individuals. 
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1 Introduction 

Mycobacterium tuberculosis (Mtb) is the bacteria that typically causes tuberculosis (TB), 

a lung infection. This illness can affect the kidneys, lymphatic system, central nervous 

system, and brain in addition to the lungs. It can also attack the spine, kidneys, and brain. 

The immune system of a person will fight off these bacteria, but when that system is 

compromised, the bacteria will become active again [1]. Indonesia is among the Top Five 

Countries, along with China, India, Pakistan, and the Philippines, accounting for 56% of 

the estimated cases. To provide the most recent information on the evolution of the TB 

epidemic, its prevention, diagnosis, and treatment globally at both regional and national 

levels, the World Health Organization (WHO) has been publishing its annual TB case 

report since 1997. This report is intended to become a Strategy for 2016–2035 and 

Sustainable Development Goals (SDGs) to end TB cases [2]. As a result, more targeted 

TB disease prevention is required. 
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While advances in medical science are critical in the fight against tuberculosis, several 

other fields that rely on operational research and evidence-based research are also 

involved. One such field is applied technology and epidemiology, whose analysis is 

inextricably linked to mathematics. Through the mathematical modeling branch of the 

field, mathematics plays a significant role in mitigating the spread of tuberculosis [3]. 

Zhang [4] applied the treatment function to the infected phase with the susceptible 

(suspected) subpopulation moving to the exposed phase in the SEIR model (with no 

susceptible individuals immediately entering the active infected phase). Next, in the 

infected phase, Elkhaiar and Kaddar [5] also conducted a non-linear treatment function 

analysis. Additionally, in [6], a nonlinear incidence function that was created based on a 

linear incidence function is used in a SEIR model. Even though the non-linear incidence 

function isn't used in this article, it's a fascinating subject for future research. 

Many theoretical investigations have been carried out to understand Mtb infection data, 

from an epidemiological point of view. Different mathematical models, such as [7][8][9], 

have been proposed to evaluate the influence of factors such as Mtb population dynamics, 

immune system, vaccination, treatment, bacterial resistance on infection development and 

optimal control. 

In this article, the model for the spread of tuberculosis is divided into susceptible (S), 

exposed (E), Actively-Infected (I) and Recovery (R) subpopulations with the rate towards 

susceptibility after recovery and the equilibrium point analyzed locally. The author 

developed a model based on the model introduced by Bowong and Tewa [10], namely 

the model for the spread of tuberculosis with subpopulations susceptible (S), latently 

infected (E), Infectious (I) and Loss of Sight (L). 

2 Mathematical Formulation 

The flow of TB disease spread proposed by the author in this paper is illustrated in Figure 

1. Based on the scheme proposed in [7][11]. The characteristics of Bowong and Tewa 

[10] the internal disease spread scheme are explained as follows: (1) the model does not 

contain transmission from the latently infected (E) directly to the recovered subpopulation 

(R), (2) the model does not contain the recovered subpopulation (R) and instead contains 

the subpopulation of individuals missing from surveillance (L), (3) treatment in the 

latently infected phase (E) allows individuals to worsen to become Infectious and does 

not address the recovered subpopulation, while treatment in the Infectious subpopulation 

(I) allows infected individuals to progress to the latently infected period (E) or the 

subpopulation of individuals lost from surveillance (L). 

While the scheme proposed in Figure 1, the model does not contain transmission from 

the susceptible phase (S) directly to the infected subpopulation (I) but rather to the latent 

(E), treatment 𝑝 in the latent phase allows latent individuals (E) with a rate of change 𝑘 

to can progress to the recovery (R) subpopulation or get worse and become actively 
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infected. Treatment 𝑟 in the infected phase can also allow infected individuals with a rate 

of change 𝛼 to recover (R) or simply improve towards a latent subpopulation (E) with a 

rate of change 𝛾. In the recovery phase, individuals can become susceptible again at a rate 

of 𝛿, and some have immunity due to previous infections. The variables and parameters 

involved in the model can be seen in Table 1. The author formulated a model based on 

the scheme in Figure 1 where the applicable system of differential equations is modeled 

as follows: 

 

Figure 1 The flow chart for the tuberculosis disease spread model 

 

𝑑𝑆

𝑑𝑡
= Λ − 𝛽𝐼𝑆 + 𝛿𝑅 − 𝜇𝑆 

𝑑𝐸

𝑑𝑡
= 𝛽𝐼𝑆 + 𝛾𝑟𝐼 − 𝑘𝐸 − 𝜇𝐸 

𝑑𝐼

𝑑𝑡
= 𝑘(1 − 𝑝)𝐸 − (𝛾 + 𝛼)𝑟𝐼 − (𝜇 + 𝑑)𝐼 

𝑑𝑅

𝑑𝑡
= 𝑘𝑝𝐸 + 𝛼𝑟𝐼 − (𝜇 + 𝛿)𝑅 

  (1) 
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Table 1 Description of parameters 

Parameter Definition 

Λ 

𝛽 

𝑘 

𝑝 

(1 − 𝑝) 

𝑟 

𝛾 

𝛼 

𝜇 

𝑑 

𝛿 

Recruitment rate of susceptible 

TB contact and transmission rates 

Rate of movement from latent to infected subpopulation 

Rate of effective treatment in the latent phase 

Rate of ineffective treatment in the latent phase 

Treatment rates in infected subpopulations 

Rate of progression from infected subpopulation to latent 

Rate of infected subpopulation to recovered 

Natural death rate 

Infectious death rate 

Rate of movement from recovered to susceptible 

In analyzing the stability properties of the model's equilibrium point, the following 

lemmas are needed. 

Lemma 1.1 The feasible region Ω is defined by: 

Ω = {(𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡)) ∈ ℝ+ |0 ≤ 𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅(𝑡) ≤
Λ

𝜇
} 

is positively invariant for model (1) with initial conditions in ℝ+ 

Proof. By adding all the equations in the model (1), it is obtained 
𝑑𝑁

𝑑𝑡
= Λ − 𝜇𝑁 − 𝑑𝐼 ≤

Λ − 𝜇𝑁. So it is also found that 0 ≤ 𝑁(𝑡) ≤
Λ

𝜇
+ 𝑁(0)𝑒−𝜇𝑡 where 𝑁(0) represents the 

initial value of the population. Therefore lim
𝑡→∞

sup𝑁(𝑡) ≤
Λ

𝜇
 which means that area Ω is 

positively invariant. Consequently, model (1) is finite. 

3 Stability of Equilibrium Solutions 

By looking for the equilibrium points, it is found that (1) has a disease-free equilibrium 

point 𝐸0(𝑆
0, 𝐸0, 𝐼0, 𝑅0) = (

Λ

𝜇
, 0,0,0) and the endemic equilibrium point 𝐸1(𝑆

∗, 𝐸∗, 𝐼∗, 𝑅∗) 

𝑆∗ =
Λ

𝜇𝑅0
 



5 

 

𝐸∗ =
𝜇ℎ(𝛿 + 𝜇)(𝑅0 − 1)(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝜇)

𝛽𝑔(1 − 𝑝)𝑘
 

𝐼∗ =
𝜇ℎ(𝛿 + 𝜇)(𝑅0 − 1)

𝛽𝑔
 

𝑅∗ =
𝜇ℎ(𝑅0 − 1)(𝛼𝑟 + 𝛾𝑟𝑝 + 𝑑𝑝 + 𝜇𝑝)

𝛽𝑔(1 − 𝑝)
 

         (2) 

 

With 

𝑔 = 𝜇ℎ + 𝛿(𝜇2 + (𝛼𝑟 + 𝛾𝑟 + (1 − 𝑝)𝑘 + 𝑑)𝜇 + 𝑑(1 − 𝑝)𝑘) 
ℎ = 𝛾𝑘𝑝𝑟 + 𝛼𝑘𝑟 + 𝛼𝜇𝑟 + 𝛾𝜇𝑟 + 𝑑𝑘 + 𝑑𝜇 + 𝑘𝜇 + 𝜇2 

By using the NGM Method [12], [13] the basic reproduction number of (1) is obtained 

𝑅0 =
Λ𝛽𝑘(1 − 𝑝)

𝜇ℎ
 

(3) 

The following theorems explain the stability properties of the equilibrium points that have 

been obtained. 

Theorem 1.2 If  𝑅0 < 1 then the disease-free equilibrium point 𝐸0(𝑆
0, 𝐸0, 𝐼0, 𝑅0) is 

locally asymptotically stable. Conversely, if  𝑅0 > 1, then 𝐸0(𝑆
0, 𝐸0, 𝐼0, 𝑅0) is unstable. 

Proof Linearization of model (1) around the disease-free equilibrium point produces a 

Jacobian matrix 

𝐽(𝐸0) =

[
 
 
 
 
 
 
−𝜇 0

0 −(𝑘 + 𝜇)

−
Λβ

𝜇
                      𝛿

γμr + Λβ

𝜇
                     0

0 𝑘(1 − 𝑝)

0 𝑘𝑝
−(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝜇) 0

𝛼𝑟 −(𝛿 + 𝜇)]
 
 
 
 
 
 

 

(4) 

Suppose 𝜆 represents the eigenvalue of (4), the characteristic equation of the Jacobian 

matrix is in the form of a polynomial (𝜆 + 𝜇)(𝜆 + 𝛿 + 𝜇)(𝜆2 + (𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝑘 +

2𝜇)𝜆 + ℎ(1 − 𝑅0)) = 0. It is obtained that the eigen 𝜆 = −𝜇 < 0, 𝜆 = −(𝜇 + 𝛿) <

0 and the other eigen values will be negative if 𝑅0 < 1. Based on the Routh-Hurwitz 

criterion, these results conclude that the equilibrium 𝐸0(𝑆
0, 𝐸0, 𝐼0, 𝑅0) is locally 

asymptotically stable. 
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Theorem 1.3 If  𝑅0 > 1 then the endemic equilibrium point 𝐸1 is locally asymptotically 

stable. 

Proof. Bifurcation analysis in [10] and Manifold Center Theory in [11] are used in this 

proof. Assume 𝑅0 = 1 and choose 𝛽 = 𝛽∗ to be the bifurcation parameter in the equation 

 𝑅0 to obtain 

𝛽∗ =
𝜇ℎ

Λ𝑘(1 − 𝑝)
 

The value of the Jacobian matrix of system (4) when 𝛽 = 𝛽∗ is 

𝐽(𝐸0, 𝛽
∗) =

[
 
 
 
 
 
 
−𝜇 0

0 −(𝑘 + 𝜇)

−
ℎ

𝑘(1 − 𝑝)
                      𝛿

ℎ + (1 − 𝑝)𝛾𝑘𝑟

𝑘(1 − 𝑝)
                     0

0 𝑘(1 − 𝑝)

0 𝑘𝑝
−(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝜇)             0

𝛼𝑟 −(𝛿 + 𝜇)]
 
 
 
 
 
 

 

 

The eigenvalues of the Jacobian matrix are 𝜆 = −𝜇, 𝜆 = 0, 𝜆 = −(𝜇 + 𝛿) and 𝜆 =
−(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝑘 + 2𝜇). The Jacobian matrix 𝐽(𝐸0, 𝛽

∗) has a simple eigenvalue 𝜆 = 0 

for that the right eigenvector corresponding to the eigenvalue 𝜆 = 0 can be denoted by 

𝑤 = [𝑤1 𝑤2 𝑤3 𝑤4]𝑇 which the right eigenvector must satisfy 

𝐽(𝐸0, 𝛽
∗) ∙ 𝑤 = 0 

and the value of the right eigenvector is obtained 

𝑤 = [−
𝑔𝑤3

𝑘𝜇(1 − 𝑝)(𝛿 + 𝜇)

(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝜇)𝑤3

𝑘(1 − 𝑝)
𝑤3

(𝛼𝑟 + 𝛾𝑟𝑝 + 𝑑𝑝 + 𝜇𝑝)𝑤3

(1 − 𝑝)(𝛿 + 𝜇)
]

𝑇

 

 

Then look for the left eigenvector corresponding to the eigenvalue 𝜆 = 0 which is denoted 

by 𝑣 = [𝑣1 𝑣2 𝑣3 𝑣4]. The left eigenvector v satisfies 

𝑣 ∙ 𝐽(𝐸0, 𝛽
∗) = 0, 

that is 𝑣 = [𝑣1 𝑣2 𝑣3 𝑣4] = [0
𝑣3𝑘(1−𝑝)

𝑘+𝜇
𝑣3 0]. Then look for the values of 𝑤3 

and 𝑣3 satisfies 𝑤 ∙ 𝑣 = 1, and obtains 

𝑤3 = 1 > 0 
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𝑣3 =
𝑘 + 𝜇

𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝑘 + 2𝜇
> 0 

Suppose 𝑆(𝑡) = 𝑓1, 𝐸(𝑡) = 𝑓2, 𝐼(𝑡) = 𝑓3 and 𝑅(𝑡) = 𝑓4 then the model (1) can be written 

as 

𝑑𝑓
1

𝑑𝑡
= Λ − 𝛽𝑓

3
𝑓

1
+ 𝛿𝑓

4
− 𝜇𝑓

1
= 𝑦1 

𝑑𝑓
2

𝑑𝑡
= 𝛽𝐼𝑓

1
+ 𝛾𝑟𝑓

3
− 𝑘𝑓

2
− 𝜇𝑓

2
= 𝑦2 

𝑑𝑓
3

𝑑𝑡
= 𝑘(1 − 𝑝)𝑓

2
− (𝛾 + 𝛼)𝑟𝑓

3
− (𝜇 + 𝑑)𝑓

3
= 𝑦3 

𝑑𝑓
4

𝑑𝑡
= 𝑘𝑝𝑓

2
+ 𝛼𝑟𝑓

3
− (𝜇 + 𝛿)𝑓

4
= 𝑦4 

Second-order partial derivative of the above system of equations at the disease-free 

equilibrium point 𝐸0(𝑆
0, 𝐸0, 𝐼0, 𝑅0) = (𝑓1

0, 𝑓2
0, 𝑓3

0, 𝑓4
0) = (

Λ

𝜇
, 0,0,0) is 

𝑎 = ∑ 𝑣𝑛

4

𝑛,𝑖,𝑗

𝑤𝑖𝑤𝑗

𝜕2𝑦𝑘

𝜕𝑓𝑖𝜕𝑓𝑗
(𝐸0, 0). 

Because 𝑣1 = 𝑣4 = 0 is obtained 

𝑎 = −
2𝜇 (𝛿(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝑘 + 2(1 − 𝑝)) + 𝜇(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 𝜇 + 2)) ℎ

(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 2𝜇 + 2)(𝛿 + 𝜇)Λ𝑘(1 − 𝑝)
 

−
2𝜇(2(𝛼𝑟 + 𝛾𝑝𝑟 + 𝑑) + 2𝑑𝛿(1 − 𝑝))ℎ

(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 2𝜇 + 2)(𝛿 + 𝜇)Λ𝑘(1 − 𝑝)
< 0 

and 

𝑏 = ∑𝑣𝑛

4

𝑛,𝑖

𝑤𝑖

𝜕2𝑦𝑘

𝜕𝑓𝑖𝜕𝛽∗
(𝐸0, 0) =

2(1 − 𝑝)Λ

(𝛼𝑟 + 𝛾𝑟 + 𝑑 + 2𝜇 + 2)𝜇
> 0. 

Based on Central Manifold Theory, because 𝑎 < 0 and 𝑏 > 0, this shows that model (1) 

experiences a transcritical bifurcation when  𝑅0 = 1, and there is an exchange of stability 

from a stable disease-free equilibrium point to an endemic equilibrium point, when  𝑅0 >
1. This means that the endemic equilibrium point 𝐸1(𝑆

∗, 𝐸∗, 𝐼∗, 𝑅∗) is locally 

asymptotically stable when  𝑅0 > 1. 
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4 Simulation 

In this section, numerical simulation results are given using the parameter values in Table 

2. 

Table 2 Values of the parameters. Data are deduced from the literature (references). 

Parameter 𝚲 𝜷 𝒌 𝒑 (𝟏 − 𝒑) 𝒓 

Value 0.08 0.8 0.005 0.9706 0.0294 0.8182 

Reference [14] Generated [10] [15] [15] [10] 

 

Parameter 𝜸 𝜶 𝝁 𝒅 𝜹  

Value 0.01 0.02 0.0101 0.022722 0.8  

Reference [11] [10] [10] [10] Generated  

 

The numerical simulation in Figure 2(a) shows that conditions with 𝛽 = 0.01 produce 

𝑅0 < 1, according to Theorem 1.2, a locally asymptotically stable disease-free 

equilibrium point. Meanwhile, the numerical simulation of Figure 2(b) with 𝛽 =
0.8 produces a value of 𝑅0 > 1, and according to Theorem 1.3, the endemic equilibrium 

point is locally asymptotically stable. 
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(a) The numerical simulations  𝑅0 =

0.01345 < 1 
(b) The numerical simulations  𝑅0 =

1.07679 

(b) The numerical simulations with 

variations of p and r 
(c) The numerical simulations of 

temporal course for infected  

Figure 2 The numerical simulations result (a) when  𝑅0 = 0.01345 < 1, (b) when 

 𝑅01.07679 => 1, (c) with variations of p and 𝑟, and (d) temporal course for infected. 

Third, by using variations in the value of the portion of treatment in the latent phase p and 

treatment in the infected phase r, various effects occur on the infected subpopulation 

which corresponds to the results in Figure 2(c). This can be taken into consideration if the 
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problem is faced with the situation of having to choose to treat latent or infected 

individuals. Both processes of treating latent and infected subpopulations can certainly 

reduce the number of latent and infected populations. From Figure 2(c) it can be seen that 

the large portion of treatment (which is proportional to the level of effectiveness) in the 

latent and infected subpopulations shows that treatment in the latent phase produces a 

smaller infected population and vice versa. This means that detection and treatment in the 

latent phase must be prioritized to anticipate developments in the infection stage. in 

Figure 2(d) which depicts the temporal course of infected subpopulations for several 

initial conditions. 

5 Conclusion 

From the results of existence and stability it can be concluded that for  𝑅0 < 1 where the 

balance is stable, and free from disease, 𝐸0 and branching become endemic, stable at a 

value of  𝑅0 > 1. The process of handling and treating latent and infected subpopulations 

can certainly reduce the number of latent and infected populations. However, detection 

and treatment in the latent phase should be prioritized to anticipate the development of 

the infection stage. 
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