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Abstract. This research investigates the existence and uniqueness of solutions to homogeneous 

linear equations in supertropical algebra. We analyze the structure of supertropical matrices to 

identify the conditions in which nontrivial solutions exist for the system of equations 𝐴⨂𝑥 ⊨ 𝜀, 

where A is a matrix over a supertropical semiring and x is a vector. By applying determinant-based 

criteria, we demonstrate how tropical and supertropical values influence the solution space. The 

research applies theorems that determine the presence of trivial and nontrivial solutions and uses 

examples to illustrate practical methods for solving homogeneous matrix systems. This highlights 

the distinct characteristics of supertropical algebra compared to classical linear algebra. Our findings 

provide a deeper insight into solution behaviors in supertropical systems, paving the way for further 

research in tropical mathematics. 
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1 Introduction 

Tropical algebra is a branch of mathematics that developed in the 1980s and was initially 

introduced by Imre Simon [1]. As an idempotent semiring and semifield, tropical algebra 

provides a novel approach to solving mathematical problems with a structure distinct 

from classical algebra [2]. One example of tropical algebra is the max-plus algebra, which 

replaces addition with the maximum operation and multiplication with addition. It offers 

a unique structure that differs from classical algebra, where the maximum operation 

replaces addition, and multiplication is replaced by addition, as seen in max-plus algebra. 

As tropical algebra evolved, supertropical algebra emerged as a further extension, 

addressing some of the limitations of max-plus algebra. Supertropical algebra offers a 

more general structure, allowing for more complex polynomial analysis and manipulation 

[3]. Research in supertropical algebra covers various topics, including polynomial 

factorization, matrix theory, and valuation theory, with many studies aimed at 

understanding the structure and applications of this algebra [4-7]. 

In supertropical algebra, studying linear systems of equations is essential because of their 

relevance and practical applications [8]. Homogeneous linear systems, in particular, are 
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notable for always having a trivial solution, but their other solutions can vary based on 

the properties of the system. Research on solutions to these homogeneous linear systems 

in supertropical algebra is essential as it helps expand current theories and offers new 

insights into how solutions can be characterized within this more complex algebraic 

framework. 

This research aims to address a gap in the current literature by analyzing solutions to 

homogeneous linear systems within supertropical algebra in depth. By applying existing 

theories of matrices and characteristic polynomials, this study seeks to enhance our 

understanding and application of supertropical algebra in solving linear systems. The 

findings could also have practical applications in areas like optimization and control 

theory, where linear systems are commonly used. 

2 Method 

The theoretical basis of this research is rooted in supertropical algebra, with a focus on 

exploring the existence and uniqueness of solutions for homogeneous linear systems 

represented by 𝐴⨂𝑥 ⊨ 𝜀.   

2.1 Maxplus Algebra 

Definition 2.1.1. [7] Let 𝑅𝜖 = 𝑅 ∪ {𝜀} be the set that includes all real numbers along with 

𝜀 = −∞. We define two operations on 𝑅𝜖 as follows: for any 𝑎, 𝑏 ∈ 𝑅, 

 𝑎 ⊕ 𝑏 = max{𝑎, 𝑏} (1) 

 𝑎 ⊗ 𝑏 = 𝑎 + b 

Then (𝑅,⨁,⨂) is referred to as max-plus algebra, where 𝜀 = −∞ is the neutral element 

and 𝑒 = 0 is the identity element for the operation ⊗. 

Furthermore (𝑅,⨁,⨂) is a semifield, it is a commutative semiring where, for every 𝑎 ∈
𝑅, there exists – 𝑎 such that 𝑎⨂–𝑎 =– 𝑎⨂𝑎 = 0. Maxplus algebra is a particular type of 

tropical algebra and is denoted as 𝑅𝑚𝑎𝑥.  

The operations ⨁ and ⨂ in 𝑅𝑚𝑎𝑥 can be extended to matrices in 𝑅𝑚𝑎𝑥
𝑚×𝑛, where 

𝑅𝑚𝑎𝑥
𝑚×𝑛 = {𝐴 = (𝐴𝑖𝑗)│𝐴𝑖𝑗 ∈ 𝑅𝑚𝑎𝑥, 𝑖 = 1,2, … ,𝑚𝑎𝑛𝑑𝑗 = 1,2, … , 𝑛}. 

Definition 2.1.2. [9] For matrices 𝐴, 𝐵 ∈ 𝑅𝑚𝑎𝑥
𝑚×𝑛 and 𝛼 ∈ 𝑅 the operations are defined as 

follows: 

 (𝐴⨁𝐵)𝑖𝑗 = 𝑎𝑖𝑗 + 𝑏𝑖𝑗 and 𝛼⨂(𝐵)𝑖𝑗 = 𝛼⨂𝑏𝑖𝑗  (2) 
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Definition 2.1.3. [7] For matrices 𝐴 ∈ 𝑅𝑚𝑎𝑥
𝑛×𝑝

 and 𝐵 ∈ 𝑅𝑚𝑎𝑥
𝑝×𝑚

 the matrix product is defined 

by: 

(𝐴⨂𝐵)𝑖𝑗 = ⨁𝑘=1
𝑛 𝑎𝑖𝑘⨂𝑏𝑘𝑗    (3) 

We define ℝ𝑚𝑎𝑥
𝑛 = {[𝑥1, 𝑥2, … , 𝑥𝑛]

𝑇|𝑥𝑖 ∈ ℝ𝑚𝑎𝑥 , 𝑖 = 1,2, … , 𝑛}. This set can be seen as 

ℝ𝑚𝑎𝑥
𝑛×1 , and its elements are referred to as vectors over ℝ𝑚𝑎𝑥. 

Definition 2.1.4. [6] Let matrix 𝑨 and vector 𝑥, the notation 𝑨⊗ 𝑥 = 𝒃 is represents a 

system of maxplus linear equations.  A solution to this system is determined by the given 

vector 𝐱. 

2.2 Supertropical Algebra 

Definition 2.2.1. [8] Supertropical algebra is a structure denoted as (𝑅, 𝒢0, 𝑣) where 𝑅 is 

a semiring with neutral element 𝜀 = 0𝑅 and unity element 𝑒 = 1𝑅. The set 𝒢0 = 𝒢 ∪ 0𝑅 ⊂ 

𝑅 is called the ghost ideal, and it is associated with a map 𝑣 ∶ 𝑅 → 𝒢0, satisfying 𝑣2 = 𝑣 

along with the following condition: 

𝑎⨁𝑏 = {
𝑎, 𝑣(𝑎) ≻ 𝑣(𝑏)

𝑣(𝑎), 𝑣(𝑎) = 𝑣(𝑏)
    (4) 

Here, the monoid 𝒯 represents the tangible elements corresponding to the original max 

plus algebra. Elements of  𝒢 are called ghost elements and are referred to as the ghost 

map 𝑣 ∶ 𝑅 → 𝒢 ∪ 0𝑅.  

We denote 𝑣(𝑎) = 𝑎𝑣 and define the 𝑣-order on 𝑅 by 

𝑎 ≽𝑣 𝑏 ⟷ 𝑎𝑣 ≽ 𝑏𝑣 and 𝑎 ≻𝑣 𝑏 ⟷ 𝑎𝑣 ≻ 𝑏𝑣  (5) 

Definition 2.2.2. [9] The ghost surpassing relation on 𝑅 is defined as follows: 

𝑎 ⊨ 𝑏 if 𝑎 = 𝑏 + 𝑔 for some 𝑔 ∈ 𝒢0   (6) 

Definition 2.2.3. [9] The partial order relation ≺ on 𝒯 is defined as following rules: 

1. −∞ ≺ 𝑎 for all 𝑎 ∈ 𝒯 ∖ −∞ 

2. For any real numbers 𝑎 < 𝑏 then 𝑎 ≺ 𝑏 , 𝑎 ≺ 𝑏𝑣, 𝑎𝑣 ≺ 𝑏 and 𝑎𝑣 ≺ 𝑏𝑣 

3. 𝑎 ≺ 𝑎𝑣 for every 𝑎 ∈ 𝑅 
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Definition 2.2.4. [10] For any semiring 𝑅, 𝑀𝑛(𝑅)represents the semiring of 𝑛 × 𝑛 

matrices for every 𝑛 ∈ 𝑁, 𝑛 ≠ 0where matrix addition and multiplication in 𝑅. In 

𝑀𝑛(𝑅), the identity matrix acts as the unit element. The supertropical determinant of 

matrices 𝐴 ∈ 𝑀𝑛(𝑅) is defined by  

|𝐴| = ⨁𝜎∈𝑆𝑛𝑎1𝜎1…𝑎𝑛𝜎𝑛    (7) 

For a matrix 𝐴 ∈ 𝑀𝑛(𝑅), the minor 𝑀𝑖,𝑗 is defined as the determinant obtained by deleting 

the 𝑖 rows and 𝑗 column of 𝐴. The adjoint matrix of 𝐴 is given by 

𝑎𝑑𝑗(𝐴) = (𝑐𝑜𝑓(𝐴))
𝑇
where 𝐶𝑜𝑓𝑖,𝑗 = 𝑀𝑖,𝑗.  (8) 

 

A matrix 𝐴 ∈ 𝑀𝑛(𝑅) is called nonsingular if |𝐴| ∈ 𝒯 and singular if |𝐴| ∈ 𝒢0. 

3 Results and Discussion 

In this section, we will discuss homogeneous linear systems. To motivate the discussion 

on homogeneous linear systems, we will consider a specific homogeneous system in the 

max-plus algebra. The system is defined as follows A⨂x=ε. The selection of matrix 𝐴 is 

based on the structure of the supertropical semiring, where tropical addition (⨁) and 

tropical multiplication (⨂) operations apply. As explained by Izhakian (2024), this 

structure is crucial in the analysis of matrices and supertropical linear equations because 

the algebraic properties differ from those of matrices in classical algebra. The matrix 𝐴 

chosen in this study adheres to the fundamental principles of the supertropical semiring, 

where matrix entries operate under tropical operations to ensure the consistency of 

solutions and analysis results within the supertropical space [11]. 

𝐴 = [
0 3 −∞
1 4 6
−∞ −∞ 0

] , 𝑥 = [

𝑥1
𝑥2
𝑥3
] 

In matrix multiplication form, it can be written as: 

[
0 3 −∞
1 4 6
−∞ −∞ 0

]⨂ [

𝑥1
𝑥2
𝑥3
] = [

−∞
−∞
−∞

] 

The above system is equivalent to 

(0⨂𝑥1)⨁(3⨂𝑥2)⨁(−∞⨂𝑥2) = −∞ 

 
(1⨂𝑥1)⨁(4⨂𝑥2)⨁(6⨂𝑥2) = −∞ 
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(−∞⨂𝑥1)⨁(−∞⨂𝑥2)⨁(0⨂𝑥2) = −∞ 

The system of equations 𝐴⨂𝑥 = 𝜀 does not have a nontrivial solution. This is because if 

there were a nontrivial solution, it would imply the existence of a vector 𝑥 = [

𝑥1
𝑥2
𝑥3
] Where 

not all components are equal to 𝜀, the condition for nontrivial solutions is not satisfied. 

[
0 3 −∞
1 4 6
−∞ −∞ 0

]⨂ [

𝑥1
𝑥2
𝑥3
] = [

−∞
−∞
−∞

] 

obtained 

(−∞⨂𝑥1)⨁(−∞⨂𝑥2)⨁(0⨂𝑥2) = −∞ ↔ 𝑥2 = −∞ 

(0⨂𝑥1)⨁(3⨂𝑥2)⨁(−∞⨂𝑥2) = −∞ ↔ 𝑥1⨁(3⨂𝑥2) = 3 

 

There will be no 𝑥1, 𝑥2 ∈ ℝ𝑚𝑎𝑥 such that −∞ ↔ 𝑥1⨁(3⨂𝑥2) = 3 Therefore, the only 

solution to this system is 

[

𝑥1
𝑥2
𝑥3
] = [

−∞
−∞
−∞

] 

Thus, the equation 𝐴⨂𝑥 = 𝜀 only has the trivial solution and does not have any nontrivial 

solutions. In the previous discussion, it was explained that a special semiring, which is an 

extension of 𝑅𝑚𝑎𝑥, can be constructed. This allows the solution of linear equation systems 

to be generalized using the ghost surpass relation in R [12]. Following the discussion from 

the previous section, using the ghost surpass relation, the solution of the system 𝐴⨂𝑥 =
𝜀 is weakened to 𝐴⨂𝑥 ⊨ 𝜀. Below is an explanation of the ghost surpass relation in 

supertropical algebra for homogeneous equations. 

Definition 3.1. [5]. Given 𝑎 ∈ 𝑅, we have 𝑎 ⊨𝜀 ↔ 𝑎 = 𝜀 ⊕ 𝑐, 𝑐 ∈ 𝒢0 

Definition 3.2. [5]. Given 𝑎 ∈ 𝑅, we have 𝑎 ⊨𝜀 ↔ 𝑎 ∈ 𝒢0 

Next, we will discuss the solution of a homogeneous equation using the ghost 

surpass relation in 𝑅. For 𝑥 ⊨ 𝜖 the solution set of 𝑥 is given by {𝜀} ∪ {𝑏𝑣, 𝑏 ∈ 𝒯}. 

Lemma 3.1. [13].  If 𝑎 ∈ 𝒯 and 𝑥 ∈ 𝒯0 then the equation 𝑎⨂𝑥 = 𝒢0 has only the trivial 

solution 𝑥 = 𝜀 
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Proof. 

From Definition 3.1, we know that 𝑎 ⊨𝜀 ↔ 𝑎 = 𝜀 ⊕ 𝑐, 𝑐 ∈ 𝒢0. 
Based on this, we can conclude that if 𝑎 ∈ 𝒯, then for every 𝑥 ∈ 𝒯0, there is only the 

trivial solution 𝑥 = 𝜀 such that 𝑎⨂𝑥 ∈ 𝒢0. 

Next, we will extend the ghost surpass relation to vectors in the context of homogeneous 

linear equations in supertropical algebra.  

Definition 3.3. Given 𝑢 ∈ 𝑅𝑛, then 𝑢 ⊨ 𝜀 if and only if 𝑢 ∈ 𝒢0
𝑛, which is equivalent to 

𝑢𝑖 ⊨ 𝜀 if and only if  𝑢𝑖 ∈ 𝒢0 for every 𝑖 ∈ 𝑛. 

Definition 3.4. Given 𝐴 ∈ 𝑀𝑛(𝑅), and 𝑢 ∈ 𝑅𝑛 then the system 𝐴⨂𝑥 ⊨ 𝜀 if and only if 

𝐴⨂𝑥 ⊨ 𝒢0
𝑛 

The following are some definitions related to the solution𝐴⨂𝑥 ⊨ 𝒢0
𝑛 

 

Definition 3.5. [9] A set of vectors 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} ∈ 𝑅𝑛 is called supertropical 

linearly independent if 

⨁𝑖=1
𝑛 𝛼𝑖⨂𝑣𝑖 ∈ 𝒢0

𝑛 

implies that 𝛼𝑖 = 𝜀 = −∞ for every 𝑖 ∈ 𝑛. 

 

Definition 3.6. [10] A set of vectors 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} ∈ 𝑅𝑛 It is called supertropical 

linearly dependent if there exist scalars. 𝛼1, 𝛼2, … , 𝛼𝑛 ∈ 𝒯0 where not all 𝛼𝑖 = 𝜀 such that 

⨁𝑖=1
𝑛 𝛼𝑖⨂𝑣𝑖 ∈ 𝒢0

𝑛 

with 𝒯0 ∈ 𝒯 ∪ {−∞} and 𝑖 ∈ 𝑛. 

 

The following examples illustrate the concepts related to Definitions 3.5 and 3.6. 

 

Example 3.1. Given 𝑉 = {𝑣1, 𝑣2, 𝑣3} in 𝑅3 with 𝑣1 = [
0
−∞
−∞

], 𝑣2 = [
20
5
−∞

], and, 𝑣3 =

[
−∞
4
0
]. The vectors 𝑣1, 𝑣2, 𝑣3 are supertropical linearly independent. To prove this, it must 

be shown that the only way for 

∝1 ⨂[
0
−∞
−∞

]⨁ ∝2 ⨂[
20
5
−∞

]⨁ ∝3 ⨂[
−∞
4
0
] ∈ 𝒢0

3 
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That is, if all scalars. ∝1, ∝2, ∝3are −∞. The above equation can be written as a linear 

system with variables ∝1, ∝2, ∝3 as follows. 

(0⨂ ∝1)⨁(20⨂ ∝2)⨁(−∞⨂ ∝3) ∈ 𝒢0 

(−∞⨂ ∝1)⨁(5⨂ ∝2)⨁(4⨂ ∝3) ∈ 𝒢0 

(−∞⨂ ∝1)⨁(−∞⨂ ∝2)⨁(0⨂ ∝3) ∈ 𝒢0 

In matrix multiplication form, it can be written as: 

[
0 20 −∞
−∞ 5 4
−∞ −∞ 0

]⨂ [

∝1

∝2

∝3

] = [
−∞
−∞
−∞

] 

 

Obtained, 

(−∞⨂ ∝1)⨁(−∞⨂ ∝2)⨁(0⨂ ∝3) ∈ 𝒢0 ↔∝1=∝3 

It can be seen that a scalar exists. ∝1=∝3, so for every scalar ∝1=∝3∈ 𝒯0 where ∝1=∝3, 

the equation will be satisfied. Therefore, this system has a nontrivial solution. From this 

example, it can be seen that the coefficient matrix of this system is singular. This can be 

demonstrated as follows.  

|𝑉| = |
0 20 −∞
−∞ 5 4
−∞ −∞ 0

| = 5 ∈ 𝒯 

The determinant will be calculated. 

|𝑉| = (𝑣11⨂𝑣22⨂𝑣33) ⊕ (𝑣11⨂𝑣23⨂𝑣32) ⊕ (𝑣12⨂𝑣21⨂𝑣33) ⊕ (𝑣12⨂𝑣23⨂𝑣31)
⊕ (𝑣13⨂𝑣22⨂𝑣31) ⊕ (𝑣13⨂𝑣22⨂𝑣31) 

|𝑉| = (0⨂5⨂0)⊕ (0⨂4⨂−∞)⊕ (20⨂ −∞⨂0)⊕ (20⨂4⨂ −∞)⊕ (−∞⨂5⨂
−∞)⊕ (−∞⨂5⨂−∞) 

|𝑉| = 5⊕ 4⊕ 2⊕−∞⊕−∞⊕−∞ = 5 

Since |𝑉| = 5 ∈ 𝒯, the matrix 𝑉 is nonsingular. 

Example 3.2. Given 𝑉 = {𝑣1, 𝑣2, 𝑣3} in 𝑅3 with 𝑣1 = [
0
−∞
0
], 𝑣2 = [

3
4
−∞

], and, 𝑣3 = [
∞
5
0
],  

the vectors 𝑣1, 𝑣2, 𝑣3 are supertropically dependent. To prove this, it must be shown that 

there exist scalars 𝛼1, 𝛼2, 𝛼3 ∈ 𝒯0 , where not all 𝛼𝑖 = 𝜀 for 𝑖 = 1,2,3. The equation is 
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𝛼1⨂[
0
−∞
0
]⨁𝛼2⨂[

3
4
−∞

]⨁𝛼3⨂[
∞
5
0
] ∈ 𝒢0

3 

The above equation can be written as a linear system with variables ∝1, ∝2, ∝3 as 

follows. 

(0⨂ ∝1)⨁(3⨂ ∝2)⨁(−∞⨂ ∝3) ∈ 𝒢0 

(−∞⨂ ∝1)⨁(4⨂ ∝2)⨁(5⨂ ∝3) ∈ 𝒢0 

(0⨂ ∝1)⨁(−∞⨂ ∝2)⨁(0⨂ ∝3) ∈ 𝒢0 

In matrix form, this system can be expressed as follows: 

[
0 3 −∞
−∞ 4 5
0 −∞ 0

]⨂[

𝛼1
𝛼2
𝛼3
] ∈ 𝒢0

3 

Obtained, 

(0⨂ ∝1)⨁(−∞⨂ ∝2)⨁(0⨂ ∝3) ∈ 𝒢0 ↔∝1=∝3 

It can be seen that there exists a scalar ∝1=∝3, so for every scalar ∝1=∝3∈ 𝒯0 where 

∝1=∝3, the equation will be satisfied. Therefore, this system has a nontrivial solution. 

From this example, it can be seen that the coefficient matrix of this system is singular. 

This can be demonstrated as follows.  

|𝑉| = |
0 3 −∞
−∞ 4 5
0 −∞ 0

| = 5 ∈ 𝒯 

The determinant will be calculated. 

|𝑉| = (𝑣11⨂𝑣22⨂𝑣33) ⊕ (𝑣11⨂𝑣23⨂𝑣32) ⊕ (𝑣12⨂𝑣21⨂𝑣33) ⊕ (𝑣12⨂𝑣23⨂𝑣31)
⊕ (𝑣13⨂𝑣22⨂𝑣31) ⊕ (𝑣13⨂𝑣22⨂𝑣31) 

|𝑉| = (0⨂4⨂0)⊕ (0⨂5⨂−∞)⊕ (3⨂−∞⨂0)⊕ (3⨂5⨂0)⊕ (3⨂5⨂0)
⊕ (−∞⨂4⨂0) 

|𝑉| = 4⊕−∞⊕−∞⊕ 8⊕ 8⊕−∞ = 8𝑣 

Since |𝑉| = 8𝑣 ∈𝒢0, the matrix 𝑉 is singular. 
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The following is an explanation of several concepts that have been discussed. The vectors 

∝𝑖 with 𝑖 = 1, 2, 3, … , 𝑛 in the supertropical vector space 𝑉 are linearly independent, 

which is equivalent to: 

(𝑥1⨂ ∝1)⨁(𝑥2⨂ ∝2). .⨁(𝑥3⨂ ∝3)𝒢0
𝑛 

is satisfied only when 𝑥1 = 𝑥2 = ⋯ = 𝑥𝑛 = −∞. If 𝑉 = 𝑅𝑛, then the vectors ∝𝑖 with 𝑖 =
1, 2, 3, … , 𝑛 in the vector space 𝑉 over 𝑅 being supertropically independent means that 

the system of homogeneous linear equations. 

(𝑥1⨂ ∝1)⨁(𝑥2⨂ ∝2). .⨁(𝑥3⨂ ∝3)𝒢0
𝑛 

has only the trivial solution 𝑥𝑖 = −∞ with 𝑖 = 1, 2, 3, … , 𝑛. 

If this homogeneous equation has a nontrivial solution, i.e.,𝑥𝑖 ≠ −∞ for some 𝑖 with 𝑥𝑖  
∈ 𝒯0. This means that the vectors ∝𝑖  are not supertropically independent or are 

supertropically dependent. 

The following presents the theorem regarding the existence and uniqueness of the 

solution 𝐴 ⊗ 𝒙 ⊨ 𝜀 in supertropical algebra. 

 

Theorem 3.1. Given𝐴 ∈ 𝑀𝑛(𝑅), the system of equations 𝐴 ⊗ 𝒙 ⊨ 𝜀 has a nontrivial 

solution if and only if |𝐴| ∈ 𝒢0 ≠ 𝜀. 

Theorem 3.2. Given 𝐴 ∈ 𝑀𝑛(𝑅), the system of equations 𝐴 ⊗ 𝒙 ⊨ 𝜀 has a trivial 

solution if and only if |𝐴| ∈  𝒯0. 

Next, we discuss the nontrivial solution of the equation 𝐴 ⊗ 𝒙 ⊨ 𝜀 in supertropical 

algebra. 

 

Proposition 3.1 [8]. Given 𝐴 ∈ 𝑀𝑛(𝑅), where |𝐴|∈ 𝒢0 ≠ 𝜀 and 𝑥 ∈ 𝒯0
𝑛, the system of 

equations 𝐴 ⊗ 𝒙 ⊨ 𝜀 has a solution 𝑘⨂𝑥 ∈ 𝑅𝑛, where 𝒙 is the 𝑖 − 𝑡ℎ column of 𝑎𝑑𝑗(𝐴) 
for some 𝑖 ∈ 𝑛 and 𝑘 ∈ 𝒯. 

 

The following examples demonstrate the application of the existence and 

uniqueness theorems for solutions to the system of equations 𝐴 ⊗ 𝒙 ⊨ 𝜀 in supertropical 

algebra. These examples aim to show how the theorems can be applied to various cases 

involving matrix equations. 

 

Example 3.3. Consider the following system of equations in supertropical algebra 𝐴 ⊗ 

𝒙 ⊨ 𝜀 with 
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𝐴 = [
1 3 −1
1 0 5
2 1 2

] , 𝑥 = [

𝑥1
𝑥2
𝑥3
] 

Solution: 

First, calculate the determinant of the matrix A: 

|𝐴| = |
1 3 −1
1 0 5
2 1 2

| = 10 

Based on the calculations, it was found that the determinant of matrix A is |𝐴| = 10 ∈ 𝒯, 
which represents the set of nonsingular elements. According to Theorem 4.6, if |𝐴| ∈ 𝒯, 

then the system of equations 𝐴 ⊗ 𝒙 ⊨ 𝜀 has only a trivial solution. 

Hence, we can conclude that this system does not have a nontrivial solution, and the 

solution is 

𝑥 = [

𝑥1
𝑥2
𝑥3
] = [

ε
ε
ε
] 

This indicates that the system is singular, and the only solution that satisfies the 

equation is the trivial. 

Example 3.4. Consider the following system of equations in supertropical algebra 𝐴 ⊗ 

𝒙 ⊨ 𝜀 with 

𝐴 = [
1 2 4
3 1 5
2 2 2

] ,  𝑥 = [

𝑥1
𝑥2
𝑥3
] 

Solution: 

First, calculate the determinant of the matrix A: 

|𝐴| = [
1 2 4
3 1 5
2 2 2

] = 9𝑣 ∈ 𝒢0 

Based on the calculations, it was found that the determinant of matrix A is |𝐴| = 9𝑣 ∈ 𝒢0 

which represents the set of singular elements. According to Theorem 4.5, if |𝐴| ∈ 𝒯, then 

the system of equations 𝐴 ⊗ 𝒙 ⊨ 𝜀 has a nontrivial solution. Therefore, we can conclude 

that this system has a nontrivial solution, and the solution is 

𝑥 = 𝑘 [

𝑝1
𝑝2
𝑝3
] for every 𝑘 ∈ 𝒯 
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where 𝑝1 = 7, 𝑝2 = 7, 𝑎𝑛𝑑𝑝3 = 5 or 𝑝1 = 6, 𝑝2 = 6, 𝑎𝑛𝑑𝑝3 = 4. 

4 Conclusion 

The existence and uniqueness of the solution of homogeneous linear system 𝐴 ⊗ 𝒙 ⊨ 𝜀 
in supertropical algebra can be explained through the determinant properties of matrix A. 

The system has a nontrivial solution if and only if the determinant |𝐴| ∈ 𝒢0 ≠ 𝜀. If |𝐴| ∈  

𝒯0, the system only has a trivial solution where all components of the vector 𝒙 are zero. 

Therefore, the determinant of the matrix determines whether the system has only a unique 

trivial solution or if a nontrivial solution exists, which governs the existence and 

uniqueness of the solution in supertropical algebra. 
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