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Abstract. Graph theory offers a robust framework for examining algebraic structures, especially 
rings and their elements. This paper focuses on the nilpotent graph of rings of the form Zpk, where p 
is a prime and k	∈	N, investigating both their structural and numerical properties. We begin by 
characterizing the nilpotent elements in these rings and examining their relationship to ring ideals. 
The study then presents theoretical results on key graph invariants, including connectivity, chromatic 
number, clique number, and specific subgraph configurations. To complement these, we also analyze 
numerical invariants such as edge count and degree distribution, which reveal deeper connections 
between ring-theoretic and graph-theoretic properties. Our results highlight consistent structural 
patterns in nilpotent graphs of Zpk and provide a concrete contribution to algebraic graph theory by 
bridging properties of commutative rings and their associated graphs. 

 
1 Introduction 

Graph theory has become an essential tool in various branches of mathematics, 
particularly in understanding algebraic structures. One notable application is the study of 
graphs associated with rings, where elements of a ring serve as vertices, and edges are 
defined based on specific algebraic properties. Among the many graph constructions in 
ring theory, the nilpotent graph has gained significant attention due to its deep 
connections with ideal structures and radical properties of rings [1]. 

The concept of nilpotent elements in a ring plays a crucial role in determining the ring's 
behavior and structure. A nilpotent element refers to an element whose power equals zero 
for some positive integer exponent.. The collection of such elements forms the nilradical 
of a ring, which is essential in both commutative and non-commutative algebra. By 
constructing a graph in which vertices represent nilpotent elements and adjacency is 
determined by multiplication, one can visualize and analyze these algebraic properties 
using graph-theoretic approaches. By constructing a graph in which vertices represent 
nilpotent elements and adjacency is determined by multiplication, one can visualize and 
analyze these algebraic properties through graph-theoretic approaches [2].  Some 
applications of this concept can be found in various fields, such as computer networking 
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and molecular graphs, which play a crucial role in chemical structure analysis [3] and 
communication system optimization [4]. 

This paper explores the structural properties of nilpotent graphs associated with integer 
rings modulo prime power orders. We begin by characterizing the nilpotent elements in 
these rings and identifying patterns that emerge in their distribution. Several theorems are 
presented to establish relationships between nilpotent elements and ideals within the ring. 
Furthermore, we introduce the concept of the nilpotent graph, analyzing its connectivity, 
chromatic properties, clique structure, and subgraph formations [5]. 

Through this study, we demonstrate how nilpotent graphs can serve as a tool to visualize 
and analyze structural properties of rings, particularly highlighting the behavior of 
nilpotent elements and their relation to ideals in ℤ𝒑𝒌. The results contribute to the 
development of algebraic graph theory by providing graph-theoretic characterizations of 
ring-theoretic concepts. Furthermore, this work paves the way for future research on 
classifying ring elements using graph invariants, exploring connections between ideal 
structures and subgraphs, and developing computational methods for analyzing algebraic 
objects via their graph representations. 

2 Literature review 

Numerical invariants of a graph representation of a group provide essential insights into 
the algebraic structure it represents. Nurhabibah et al. give a detailed analysis of the 
numerical invariants of the coprime graph of a generalized quaternion group. They 
characterize the coprime elements within this group and examine their structural 
properties. Various graph invariants, such as connectivity, chromatic number, clique 
structure, and degree distribution, are analyzed to identify emerging patterns. The study 
demonstrates how the coprime graph provides a novel perspective on group structures 
through a graph-theoretic approach. The findings contribute to the field of algebraic graph 
theory and open new avenues for further research on graph representations in algebraic 
systems [6]. 

In 2023 Malik et al. studied nilpotent graphs in algebraic structures, focusing on the ring 
of integers modulo a prime power. They show that for ℤ𝒑, the nilpotent graph forms a star 
graph 𝑲𝟏,𝒑$𝟏,, with zero as the central node. For ℤ𝒑𝒌, the nilpotent elements form a 
complete subgraph 𝑲𝒑𝒌$𝟏 and multiple star subgraphs. Their findings align with previous 
work by Nikmehr and Khojasteh and expand understanding in algebraic graph theory. 
The study suggests applications in computational algebra and cryptography [1].  

In 2024, Malik et al. further investigated the chemical topological properties of nilpotent 
graphs in modular rings of prime power order. They analyzed topological indices such as 
the Wiener, Zagreb, and Gutman indices to describe molecular structures mathematically. 
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Their study demonstrated how these indices reflect the connectivity and adjacency of 
nilpotent elements. The findings provide deeper insight into the interplay between 
algebraic structures and graph-based chemical models [7]. 

Based on the work of Malik et al. in 2023 and 2024, this research aims to find its 
numerical invariants in nilpotent graphs. Following the approach of Nurhabibah et al., 
who investigated numerical invariants in related algebraic graph structures, we aim to 
explore additional graph parameters such as chromatic number, clique number, and 
diameter. These numerical invariants could offer further structural insights and potential 
applications in both algebraic graph theory and computational modeling. 

The study of nilpotent elements in rings has been a fundamental topic in algebra, 
particularly in understanding ring structures and their ideal properties. Various 
researchers have explored the role of nilpotent elements in different classes of rings, 
including their influence on radical theories and algebraic graph representations. One key 
approach in analyzing these elements is through the construction of graphs that capture 
the multiplicative interactions among nilpotent elements within a ring. 

Definition 1. [8] Let 𝑹 be a ring. An element 𝒓 in 𝑹 is called a nilpotent element if 𝒓𝒌 =
𝟎𝑹, for 𝒌 ∈ ℕ.  

Definition 2. [8] Let 𝑁(𝑅) be a non-empty subset of the ring (𝑅,+,∙). The set 𝑁(𝑅) is 
called a nilpotent set if every element of 𝑁(𝑅) is a nilpotent element of (𝑅,+,∙).  

 Based on this, the pattern of nilpotent sets in the ring ℤ𝒏 is obtained for 𝒏 =
𝒑𝟏
𝒌𝟏𝒑𝟐

𝒌𝟐 …𝒑𝒎
𝒌𝒎 as explained in the following theorem. 

Theorem 1 [7] Let ℤ* be a ring and 𝑛 = 𝑝+
,%𝑝-

,& …𝑝.
,' with 𝑝/ prime and 𝑘/ ∈ ℕ, 𝑖 =

1,2, … ,𝑚. Hence, for  𝑥̅ ∈ ℤ*, we have  𝑥̅ ∈ 𝑁(ℤ*) if and only if  𝑥̅ = 𝑞(𝑝+𝑝-…𝑝.)>>>>>>>>>>>>>>>>> with 
𝑞 ∈ ℕ. 

For example, the ring ℤ0123 where  ℤ0123 = ℤ-(.5&.0& = {0>, 1>, … , 4607>>>>>>>},  we have  240>>>>> ∈
𝑁(ℤ0123) since  240>>>>> = 10(2.3.4)>>>>>>>>>>>>. Building upon Theorem 1, we can determine the 
cardinality of all nilpotent elements, as articulated in the following theorem. 

Theorem 2 [7] The cardinality of all nilpotent element of  ℤ* for 𝑛 = 𝑝+
,%𝑝-

,& …𝑝.
,' is: 

|𝑁(ℤ*)| = 𝑝+
,%$+𝑝-

,&$+…𝑝.
,'$+ 

Graphs provide a useful way to visualize algebraic structures, including rings and their 
elements. In particular, nilpotent elements play a crucial role in ring theory, influencing 
ideals and radical properties. By representing these elements as vertices and defining 
adjacency based on their interactions, we obtain a nilpotent graph, which offers insights 
into the structure of the ring. The following definition formalizes this concept. 
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Definition 3. [9] For a ring R, the nilpotent graph of R, denoted by 𝚪𝑹 is a graph whose 
vertex set is 𝑹  for 𝒖, 𝒗 ∈ 𝑹 are said to be adjacency if 𝒖𝒗 ∈ 𝑵(𝑹), where 𝑵(𝑹) is the 
nilpotent set of ring 𝑹. 

Theorem 3. [7] If ℤ𝒏 is a modulo integer ring with 𝒏 = 𝒑𝒌where 𝒌 ∈ ℕ, then there exists 
a subgraph of 𝚪𝑵(ℤ𝒏)which is a complete subgraph of 𝑲𝒑𝒌)𝟏. 

To illustrate this, we give an example for the ring ℤ𝟗 

 

Figure 2 Graph of 𝜞𝑵Mℤ𝟑𝟐N 

In the graph 𝚪𝑵Mℤ𝟑𝟐N the nilpotent vertices are 𝟎O, 𝟑O,		and 𝟔O, all of which are pairwise 
adjacent. As a result, these vertices form a complete subgraph, denoted by 𝑲𝟑. This is 
consistent with the theorem stating that the nilpotent graph of ℤ𝟐𝟐 forms a complete graph 
𝑲𝟐𝟐$𝟏, as shown below  

 

Figure 3 Complete Subgraph 𝜞𝑵Mℤ𝟑𝟐N 

Another characteristics of nilpotent graph on the integer ring modulo with an arbitrary 
prime orde is the existence of a twin star subgraph 
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Theorem 4. [7] If ℤ𝒏 is the integer ring modulo with 𝒏 = 𝒑𝒌 where 𝒌 ∈ ℕ	, then 
𝚪𝑵(ℤ𝒏)	contains 𝒑𝒌$𝟏 star subgraph 𝑲𝟏,𝒏$𝟏. 

It is easy to see that the star subgraph 𝑲𝟏,𝒏$𝟏 is the largest star subgraph of the graph 
𝚪𝑵Mℤ𝒑𝒌N.  Based on Figure 2, the nilpotent graph 𝚪𝑵Mℤ𝟑𝟐N has three star subgraphs 𝑲𝟏,𝟖.  

 Besides subgraphs, there are other characteristics of the nilpotent graph of the ring of 
integers modulo 𝒏 with an arbitrary prime power order, as stated in the following theorem. 

Theorem 5. [7] A nilpotent graph of the ring ℤ𝒏 for 𝒏 = 𝒑𝒌 where 𝒑 is prime and 𝒌 ∈
ℕ	, denoted by 𝚪𝑵(ℤ𝒏), has an edge count (size) given by: 

(𝐸 *	𝛤!-ℤ"!		/0( = *𝑝$%&$(𝑝 − 1)0 +
(𝑝$%&$ − 𝑝%&')

2
 

In graph theory, graph coloring refers to the assignment of colors to elements of a graph 
Γ, such as its vertices 𝑉(Γ), edges 𝐸(Γ) or both 𝑉(Γ) ∪ 𝐸(Γ). If the coloring applies only 
to the vertices, it is called vertex coloring. The chromatic number is the smallest number 
of colors needed to color the vertices so that no two adjacent vertices have the same color. 

Definition 4. [10] The chromatic number of a graph 𝚪 is the minimum number of 
colors needed in any proper vertex coloring of 𝚪 , such that adjacent vertices have 
different colors. It is denoted by 𝝌(𝚪).  

The nilpotent graph of the ring ℤ: has a minimal coloring. The vertex 0 is adjacent to all 
other vertices, requiring a different color from the remaining four vertices. Moreover, any 
two vertices other than  0> are not adjacent, allowing them to be colored the same. Thus, 
the minimal number of colors needed is 2, meaning that the chromatic number is 
𝜒MΓ;(ℤ:)N = 2. 

3 Results and Discussion.   

This chapter presents the main findings from the analysis of nilpotent graphs in integer 
modulo rings. It highlights key structural and numerical properties, such as chromatic 
number, degree, and clique size, supported by examples and figures to illustrate 
the results clearly 

Theorem 6.  Let 𝜞𝑵(ℤ𝒏	)  is the nilpotent graph of the ring ℤ𝒏. If 𝒏 = 𝒑𝒌 where 𝒑 is a 
prime and 𝒌 ∈ 𝑵, then the chromatic number of  𝜞𝑵(ℤ𝒏	)  is 

𝝌Y𝚪𝑵Mℤ𝒑𝒌NZ = 𝒑𝒌$𝟏 + 𝟏 

Proof. We will show that 𝝌Y𝚪𝑵Mℤ𝒑𝒌NZ = 𝒑𝒌$𝟏 + 𝟏 . Based on Theorem 3, the graph 
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𝜞𝑵(𝒁𝒑𝒌	) contains a complete subgraph 𝑲𝒑𝒌)𝟏 , every vertex in this subgraph is adjacent 
to every other vertex because they are nilpotent vertices. Therefore, at least 𝒑𝒌$𝟏 colors 
are needed to color the complete subgraph 𝑲𝒑𝒌)𝟏. 

 

Figure 7 Complete Subgraph 𝑲𝒑𝒌)𝟏 

A non-nilpotent vertex is adjacent to all nilpotent vertices but not to other non-nilpotent 
vertices. Therefore, each non-nilpotent vertex can be colored with a single color distinct 
from those assigned to the nilpotent vertices. It follows that, So  number of colors needed 
to color the vertices so that no two adjacent vertices have the same color is 𝑝,$+ + 1. 

Suppose 𝑝,$+ colors are sufficient to color Γ;Mℤ=*N. Since there are 𝑝,$+ nilpotent 
vertices, all of which are adjacent to every other vertex, these colors would be entirely 
used for the nilpotent vertices. The non-nilpotent vertices would then remain uncolored, 
making it impossible to properly color the entire graph with only 𝑝,$+ colors. Thus, 
𝑝,$+ + 1 is the smallest number of colors needed to color the vertices so that no two 
adjacent vertices have the same color. From this, we conclude that: 

𝜒 *Γ!-ℤ"!/0 = 𝜒-𝐾"!"#/ + 1 = 𝑝%&' + 1∎. 

To illustrate Theorem 6,  the graph Γ;(ℤ5&) in Figure 2 contains a complete subgraph 𝐾5, 
meaning its chromatic number is 𝜒(𝐾5) = 3-$+ = 3 with one additional color assigned 
to all non-nilpotent vertices to ensure they are distinct from the nilpotent vertices. Thus, 
we have 𝜒(Γ;(ℤ5&) = 3-$+ + 1 = 4 
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Theorem 7. Let  𝑣̅ ∈ 𝑉 YΓ;Mℤ=*NZ, then: 

i. If 𝑣̅ ∈ 𝑁(ℤ=*) then 𝑑𝑒𝑔(𝑣̅) = 𝑝, − 1  

ii. If 𝑣̅ ∉ 𝑁(ℤ=*) then 𝑑𝑒𝑔(𝑣̅) = 𝑝,$+ 

Proof. 

i. For every 𝒗O ∈ 𝑽Y𝚪𝑵Mℤ𝒑𝒌NZ such that 𝒗O ∈ 𝑵(ℤ𝒑𝒌). 

According to Theorem 1, nilpotent vertices are adjacent to all other vertices in the 
graph Γ;(ℤ=*), as evident. Since the total number of vertices is 𝑝,, the degree of a 
nilpotent vertex is 𝑝, − 1 

ii. For every 𝑣̅ ∈ 𝑉 YΓ;Mℤ=*NZ such that 𝑣̅ ∉ 𝑁(ℤ=*). 

From Theorem 1, 𝑣̅ is adjacent to all nilpotent vertices of the ring ℤ=*. This means 𝑣̅ 
is adjacent to 𝑝(,$+) vertices in the graph. However, according to Theorem 1, 𝑣̅ is not 
adjacent to any non-nilpotent vertices, meaning it is adjacent only to nilpotent vertices. 
Thus, the degree of 𝑣̅ is 𝑝(,$+)∎. 

To illustrate Theorem 7, consider the nilpotent graph of the ring ℤ:& are as follows.   

i. For vertices that are nilpotent elements of ℤ:& the degree is given by: 

5$ − 1 = 24 

ii. For vertices that are nilpotent elements of ℤ:& the degree is given by: 

5$&' = 5 

Definition 5. A clique in a graph Γ is a subset 𝑉′(𝛤) of the vertex set 𝑉(𝛤) such that in the 
induced subgraph Γ′[𝑉(], every pair of distinct vertices in 𝑉′(𝛤) is adjacent. The clique number 
of Γ denoted by 𝜔(Γ) is the size of the largest clique in Γ. 
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Figure 8 Graph of 𝚪𝟓 
In this graph, the largest clique can be determined as follows: 

 

Figure 9 Subgraph of 𝚪𝟓A 

Thus, the clique number of the graph Γ: is given by: 

𝜔(Γ:) = 4 

Theorem 8.  The clique number of the nilpotent graph Γ!-ℤ"!/ is given by: 

𝜔 YΓ;Mℤ=*NZ = 𝑝,$+ + 1. 

Proof. According to Theorem 3, there are exactly 𝒑𝒌$𝟏  nilpotent vertices, all of which 
are adjacent to each other. Furthermore, each non-nilpotent vertex is adjacent to every 
nilpotent vertex but not to any other non-nilpotent vertices. It follows that precisely one 
non-nilpotent vertex can be chosen to form a complete subgraph of maximum cardinality. 
As a result, the largest complete subgraph is 𝐾=*)%B+ in terms of cardinality. Therefore, 

the clique number is 𝜔 YΓ;Mℤ=*NZ = 𝑝,$+ + 1,	 this completes the proof ∎. 
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For  examples, the clique number of the nilpotent graph of the ring ℤ:& is given below: 

𝜔MΓ;(ℤ:&)N = 5-$+ + 1 = 6. 

Corollary 1. For 𝒖, 𝒗 ∈ 𝑽 Y𝚪𝑵Mℤ𝒑𝒌NZ, if 𝒖, 𝒗 ∈ 𝑵Mℤ𝒑𝒌N then	(𝒖, 𝒗) ∈ 𝑬 Y𝚪𝑵Mℤ𝒑𝒌NZ and 
𝒅(𝒖, 𝒗) = 𝟏 

Proof. By Theorem 1, let 𝒖 = 𝒓𝒑>>>> and 𝒗 = 𝒔𝒑>>>> where 𝒓, 𝒔 ∈ ℕ, then 𝒖𝒗 = (𝒓𝒑)(𝒔𝒑)>>>>>>>>>>>> =
(𝒓𝒑𝒔)𝒑>>>>>>>>>> where 𝒓𝒑𝒔 ∈ ℕ. Thus 𝒖𝒗 ∈ 𝑵Mℤ𝒑𝒌N By the Definition 1, we conclude that 

(𝒖, 𝒗) ∈ 𝑬Y𝚪𝑵Mℤ𝒑𝒌NZ and the distance between 𝒖 and 𝒗 is 𝒅(𝒖, 𝒗) = 𝟏.  

Corollary 2. For 𝒖, 𝒗 ∈ 𝑽 Y𝚪𝑵Mℤ𝒑𝒌NZ, if 𝒖 ∈ 𝑵Mℤ𝒑𝒌N 𝒗 ∉ 𝑵Mℤ𝒑𝒌N then	(𝒖, 𝒗) ∈

𝑬 Y𝚪𝑵Mℤ𝒑𝒌NZ and 𝒅(𝒖, 𝒗) = 𝟏 

Proof. By Theorem 1, let 𝒖 = 𝒓𝒑>>>> and 𝒗 = 𝒙O ≠ 𝒔𝒑>>>> where 𝒓, 𝒔 ∈ ℕ, then 𝒖𝒗 = (𝒓𝒑)(𝒙)>>>>>>>>>> =
(𝒓𝒙)𝒑>>>>>>>>  where 𝒓𝒑𝒔 ∈ ℕ. Thus 𝒓𝒙 ∈ 𝑵Mℤ𝒑𝒌N By the Definition 1, we conclude that 

(𝒖, 𝒗) ∈ 𝑬Y𝚪𝑵Mℤ𝒑𝒌NZ and the distance between 𝒖 and 𝒗 is 𝒅(𝒖, 𝒗) = 𝟏. 

Corollary 3. For 𝒖, 𝒗 ∈ 𝑽 Y𝚪𝑵Mℤ𝒑𝒌NZ, if 𝒖, 𝒗 ∉ 𝑵Mℤ𝒑𝒌N then	(𝒖, 𝒗) ∉ 𝑬 Y𝚪𝑵Mℤ𝒑𝒌NZ and 
𝒅(𝒖, 𝒗) = 𝟐 

Proof.  By Theorem 1, let 𝒖 ≠ 𝒓𝒑>>>> and 𝒗 ≠ 𝒔𝒑>>>> where 𝒓, 𝒔 ∈ ℕ. Since 𝒑 is prime, it follows 
that  𝒖𝒗 ≠ 𝒕𝒑>>>, implying (𝒖, 𝒗) ∉ 𝑬Y𝚪𝑵Mℤ𝒑𝒌NZ For 𝒘 ∈ 𝑵Mℤ𝒑𝒌N, we have 

(𝒘, 𝒖), (𝒘, 𝒗) ∈ 𝑬 Y𝚪𝑵Mℤ𝒑𝒌NZ, meaning that there exists a path from 𝒖 to 𝒗 given by: 

𝑢 → 𝑤 → 𝑣 

Thus, the distance between 𝑢 and 𝑣 is:  

𝑑(𝑢, 𝑣) = 2. 

Theorem 9. Let  𝑣̅ ∈ 𝑉 YΓ;Mℤ=*NZ, then: 

i. If 𝑣̅ ∈ 𝑁(ℤ=*) then 𝑑𝑒𝑔(𝑣̅) = 𝑝, − 1  

ii. If 𝑣̅ ∉ 𝑁(ℤ"!) then 𝑑𝑒𝑔(𝑣̅) = 𝑝%&' 
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Proof.  

i. For every 𝑣̅ ∈ 𝑉 YΓ;Mℤ=*NZ such that 𝑣̅ ∈ 𝑁(ℤ=*). 

According to Theorem 1, nilpotent vertices are adjacent to all other vertices in the graph 
Γ;(ℤ=*), as evident. Since the total number of vertices is 𝑝,, the degree of a nilpotent 
vertex is 𝑝, − 1 

ii. For every 𝑣̅ ∈ 𝑉 YΓ;Mℤ=*NZ such that 𝑣̅ ∉ 𝑁(ℤ=*). 

From Theorem 1, 𝑣̅ is adjacent to all nilpotent vertices of the ring ℤ=*. This means 𝑣̅ is 
adjacent to 𝑝(,$+) vertices in the graph. However, according to Theorem 1, 𝑣̅ is not 
adjacent to any non-nilpotent vertices, meaning it is adjacent only to nilpotent vertices. 
Thus, the degree of 𝑣̅ is 𝑝(,$+). ∎ 

4 Conclusion  

This study explores the structural and numerical properties of nilpotent graphs associated 
with integer modulo rings of prime power order. By characterizing the nilpotent elements 
and analyzing their graph-theoretic relationships, we established key results related to 
connectivity, chromatic number, clique structure, and subgraph formations. These 
findings demonstrate how graph representations can offer valuable insights into ring-
theoretic concepts. 

 
However, this work is limited to specific types of rings, particularly those with prime 
power order, and focuses primarily on undirected graphs formed by multiplicative 
adjacency. Future studies may consider broader classes of rings, different adjacency 
conditions, or extend the analysis to weighted or directed graphs. Additionally, exploring 
algorithmic or computational approaches for large-scale structures remains an open 
challenge. 

 
From a practical perspective, the insights gained from nilpotent graphs can contribute to 
developments in computational algebra, coding theory, and network design, where the 
structure of underlying algebraic systems plays a crucial role. Further research could also 
investigate connections with chemical graph theory or cryptographic applications, where 
ring-based structures are commonly used. 

 
5 Reference 



 
 
 
 

116  

[1] Malik, D. P., et al., 2023, Graf Nilpoten dari Gelanggang Bilangan Bulat Modulo 
Berorde Pangkat Prima (A Note on Nilpotent Graph of Ring Integer Modulo with 
Order Prime Power), JMPM: Jurnal Matematika dan Pendidikan Matematika, 8(1), 
28–33. 

[2] Husni, M. N., Wardhana, I. G. A. W., Dewi, P. K., & Suparta, I. N., 2024, Szeged 
Index and Padmakar-Ivan Index of Nilpotent Graph of Integer Modulo Ring with 
Prime Power Order, Jurnal Matematika, Statistika dan Komputasi, 20(2), 332–339. 

[3] Satriawan, D., Aini, Q., Maulana, F., & Wardhana, I. G. A. W., 2024, Molecular 
Topology Index of a Zero Divisor Graph on a Ring of Integers Modulo Prime Power 
Order, Contemporary Mathematics and Applications, 6(2), 72–82. 

[4] Afdhaluzzikri, M., Wardhana, I. G. A. W., Maulana, F., & Biswas, H. R., 2025, The 
Non-Coprime Graphs of Upper Unitriangular Matrix Groups Over the Ring of 
Integer Modulo with Prime Order and Their Topological Indices, BAREKENG: 
Jurnal Ilmu Matematika dan Terapan, 19(1), 547–556. 

[5] Wahidah, F. M., Maulana, F., Hijriati, I., & Wardhana, I. G. A. W., 2024, The 
Sombor Index of the Nilpotent Graph of Modulo Integer Numbers, Proceedings of 
Science and Mathematics, 26, 48–52. Retrieved from 
https://science.utm.my/procscimath/Volume26 

[6] Nurhabibah, N., Wardhana, I. G. A. W., & Switrayni, N. W., 2023, Numerical 
Invariants of Coprime Graph of a Generalized Quaternion Group, Journal of the 
Indonesian Mathematical Society, 29(1), 36–44. 

[7] Malik, D. P., Husni, M. N., Wardhana, I. G. A. W., & Ismail, G. S., 2024, The 
Chemical Topological Graph Associated With The Nilpotent Graph Of A Modulo 
Ring Of Prime Power Order, Journal of Fundamental Mathematics and 
Applications (JFMA), 7(1), 1–9. 

[8] Anderson, D. F., Asir, T., Badawi, A., & Chelvam, T. T., 2021, Graphs from Rings, 
Springer International Publishing. 

[9] Nikmehr, M. J., & Khojasteh, S., 2013, On the Nilpotent Graph of a Ring, Turkish 
Journal of Mathematics, 37(4), 553–559. 

[10] Chartrand, G., & Zhang, P., 2009, Chromatic Graph Theory, Chapman & 
Hall/CRC. 


