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Abstract. Indonesia is one of the countries that ratified the Paris Agreement, a legally binding 
international treaty under the United Nations Framework Convention on Climate Change 
(UNFCCC) regarding greenhouse gas emissions. In line with this commitment, Indonesia is 
expected to prioritize emission control in sectors that contribute significantly to national emission 
levels. This study applies the Self-Organizing Map (SOM), a type of neural network, to cluster 
emission data by sector based on similarity patterns, aiming to identify priority sectors for emission 
control in Indonesia. The results indicate that the highest-emitting sectors are: Processes for Carbon 
Dioxide (CO₂), Transport for Methane (CH₄), Processes for F-Gases, and Agriculture for Nitrous 
Oxide (N₂O). These findings can inform government efforts to prioritize emission control policies 
in the Processes, Transport, and Agriculture sectors, tailored to each dominant gas type. Such 
recommendations are essential to support data-driven decision-making, improve national emission 
control strategies, and strengthen Indonesia’s position in meeting its Nationally Determined 
Contributions (NDCs) under the Paris Agreement. Model validation using Quantization Error (QE) 
produced values of 0.0218 for CO₂, 0.0207 for CH₄, 0.0040 for F-Gases, and 0.0171 for N₂O. These 
low values indicate high mapping accuracy and confirm that SOM is effective in capturing the 
distribution patterns of emission data, thus providing a scientific basis for designing more targeted 
mitigation strategies.     

Keywords: artificial neural network; self organizing map; paris agreement; greenhouse gas 
emission; quantization error 

1 Introduction  

Climate change is a global challenge that requires serious attention from all countries, including 
Indonesia. One of the largest sources and causes of global climate change is the high emissions 
of gases that become greenhouse gases and result in global warming [1]. The increase in 
greenhouse gas emissions can lead to environmental pollution caused by energy derived from 
fossil fuel combustion in transportation, as well as other harmful substances from industrial, 
household, and other activities [2]. Greenhouse gases in the atmosphere, besides carbon dioxide 
(CO2), methane (CH4), nitrous oxide (N2O), and F-Gases [3]. Realizing this urgency, Indonesia 
has committed to reducing greenhouse gas emissions through the Paris Agreement. 
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The Paris Agreement is an international treaty that is legally binding under the United Nations 
Framework Convention on Climate Change (UNFCCC) regarding the mitigation, adaptation, and 
financing of greenhouse gas emissions [4]. Indonesia has ratified the Paris Agreement based on 
Law Number 16 of 2016 concerning the Ratification of the Paris Agreement to the United Nations 
Framework Convention on Climate Change and was enacted on October 25, 2016. The ratification 
is one of the government's efforts to guarantee every citizen a quality living environment [5]. In 
the Paris Agreement, Indonesia targets a 29% reduction in emissions by 2030 through its own 
efforts, and up to 41% with international support [6]. 

Related to the Sustainable Development Goals (SDGs), one of Indonesia's objectives is to 
prioritize development strategies related to the environment, namely clean energy and efforts to 
address climate change [7]. Nevertheless, until now, Indonesia is still striving to achieve that 
target while facing various challenges. Moreover, Indonesia ranked ninth as the country with the 
highest carbon emissions in the world in 2020, amounting to 590 MtCO2 Eq [8]. Based on this, 
there is a need for immediate efforts to control gas emissions to mitigate the adverse effects of 
emissions on both society and the ecosystem. 

A study on sectors contributing to gas emissions can be conducted to help the government focus 
on the sectors with the highest gas emissions. This way, more attention can be given to controlling 
gas emission levels. To support targeted mitigation efforts, it is not only important to quantify 
total emissions but also to uncover patterns of emissions across sectors and gas types. Identifying 
sectors with consistent emission behaviors regardless of magnitude can offer strategic advantages 
in designing long-term control policies. This requires a method capable of uncovering underlying 
structures within high-dimensional, sector-based datasets. 

One of the methods that can be used is the Self Organizing Map (SOM), which can perform 
mapping that is quite valid and unbiased. SOM can map feature-based datasets through self-
organization rules. The main advantage of SOM is its ability to reduce the dimensions of complex 
data into a two-dimensional representation that is easy to interpret [9]. In the context of gas 
emissions, SOM can help identify emission patterns and provide new insights to develop more 
effective emission control strategies. This research aims to apply SOM in the analysis of gas 
emission data in Indonesia based on the contributions of relevant sectors. Thus, it can provide a 
clearer picture of the priorities for gas emission control in Indonesia and support the 
implementation of climate change mitigation policies more strategically. 

2 Literature Review 

2.1 Self Organizing Map 

Self Organizing Map (SOM) is a network discovered by Kohonen and is classified as one type of 
neural network. Neural network is a learning model that resembles the neuron system in living 
beings. Neural networks consist of a set of input and output units that are interconnected, with 
each connection between units having its own weight [10]. SOM is one of the networks widely 
used to divide input patterns into several groups. In terms of how it modifies weights, SOM is 
classified as one of the methods of the Neural Network approach that uses unsupervised learning. 
That means, unsupervised learning does not require a target; during the learning process, inputs 
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that are almost the same are grouped into certain clusters that produce output [11]. SOM can be 
chosen as a data analysis tool option due to its ability to reveal non-linear structures and hidden 
patterns in the data [12].  

 

Figure 1. Structure of SOM 

 

𝑥    ∶  input used in learning  𝑥 = 𝑥!, 𝑥", … , 𝑥# 
𝛼      ∶  learning rate 
𝜎     ∶	 neighborhood radius 
𝑥!    ∶  neuron/vector input  
𝑤$%    ∶  bias neuron output j-th  
𝑌$   ∶  neuron/vector output i-th.  
 
Here are the steps explained for the operation Self Organizing Map [11]: 

Step 0 : Starting with weight initialization 𝑤$%, learning rate (𝛼), grid size, neighborhood 
    radius  (𝜎), and number of iterations. 

Step 1 : As long as the stop condition is false, perform Step 2 to 8. 
Step 2 : For each input vector 𝑥!, perform Step 3 to 5. 
Step 3  : For each index 𝑗  (𝑗 = 1, 2, … ,𝑚), calculate the Euclidean distance: 

𝐷(𝑗) = 	2 3𝑤$% − 𝑥$5
"

$
 (1) 

Step 4 : Find the winning unit (index j), which is the unit with the minimum distance 𝐷(𝑗). 
Step 5  : Calculate all the new 𝑤$% values with the j value from Step 4, namely: 

𝑤$%(𝑛𝑒𝑤) = 𝑤$%(𝑜𝑙𝑑) + 𝛼 <𝑥$ −𝑤$%(𝑜𝑙𝑑)= (2) 
Step  6 : Update the learning rate value. 

𝛼(𝑛𝑒𝑤) = 0,5	𝛼	(𝑜𝑙𝑑) (3) 
Step 7  : Reducing the radius of the surrounding function when the time required (epoch).  
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Step 8 : Test the stopping condition. Iteration stops when there is a difference between 𝑤$% at the 
current moment and 𝑤$% in the previous iteration. If the change in 𝑤$% is minimal, then 
the iteration can be stopped. 

2.2 Quantization Error 

Quantization error (QE) is a metric used to assess the quality of data representation in the 
quantization process or algorithms such as Self-Organizing Map (SOM). QE measures how close 
the model's representation is to the original data by calculating the average distance between each 
input data and the winning neuron or Best Matching Unit (BMU) [13]. 

The QE value is directly correlated with the SOM's ability to detect very fine-scale visual changes 
in high-resolution images, even down to the pixel level [14]. As reported in a previous SOM-
based study, a QE value of 0.354 was considered to provide a sufficiently good topological 
representation, therefore a lower QE value indicates better data representation because the input 
data vectors tend to be closer to the corresponding SOM unit [15]. The equation for the 
quantization error is shown below [16]: 

𝑄𝐸 =
1
𝑁
2 ‖𝑥$ −𝑤&'(‖

)

$*!
 (4) 

where 
𝑄𝐸      ∶  quantization error 
𝑁        ∶  number of data 
𝑥$      ∶   i-th data vector 
𝑤&'(     ∶  weight vector of the BMU for the data 𝑥$  
‖𝑥$ −𝑤&'(‖   ∶ the distance between the data and the BMU weight 

2.3 Greenhouse Gases 

Greenhouse gases (GHGs) are gases contained in the atmosphere, both natural and from human 
activities (anthropogenic), that absorb and re-emit infrared radiation [17]. Some of the solar 
radiation in the form of short waves received by the Earth's surface is re-emitted back into the 
atmosphere in the form of long-wave radiation (infrared radiation). This long-wave radiation 
emitted by GHGs present in the lower atmosphere layer, close to the Earth's surface, is absorbed 
and causes a warming effect known as the greenhouse effect. 

According to the United Nations Framework Convention on Climate Change (UNFCCC), there 
are 6 types of gases classified as GHGs, namely carbon dioxide (CO2), methane (CH4), and nitrous 
oxide (N2O). Then there is the category of F-Gases which includes sulfur hexafluoride (SF6), 
perfluorocarbons (PFCs), and hydrofluorocarbons (HFCs) [18]. Of all these types of gases, the 
main greenhouse gases (GHGs) are CO2, CH4, and N2O. Among these three types of gases, CO2 
is the most abundant in the atmosphere, while the others are less so. Although the concentration 
of CH4, and N2O gases is low, their global warming potential is higher. Here are the global 
warming potential capabilities of several types of GHGs: 

 

 



68 
 

Table 1. Classification of greenhouse gases and their types 

Greenhouse 
Gases 

Chemical 
Formula 

Global Warming 
Potential Value Lifetime in the Atmosfere 

Carbon dioxide CO2 1 Dozens to thousands of years 
Methane CH4 24 12,2 years 

Dinitrogen oxide N2O 298 120 years 

F-Gases themselves are a group of greenhouse gases primarily produced from industrial activities 
and various manufacturing processes. These gases do not occur naturally in the atmosphere but 
are instead by-products of the production or use of certain materials. 

2.4 Related Studies 

A study in Salvador-Bahia applied the Self-Organizing Map (SOM) algorithm to cluster 
atmospheric pollutants and meteorological factors. The resulting maps revealed hidden emission 
patterns and source characteristics, demonstrating SOM’s effectiveness in handling complex 
environmental data and supporting its application in emission pattern analysis [19] 

In comparison, several studies have employed alternative clustering methods such as K-Means to 
analyze greenhouse gas emissions. One such application focused on grouping countries based on 
similarities in methane (CH₄) emission patterns. These clusters were used to help identify global 
mitigation priorities [20]. However, SOM has demonstrated superior clustering performance in 
various environmental contexts. For instance, a study on industrial potential across Indonesian 
provinces found that SOM produced more well-separated and meaningful clusters than K-Means, 
highlighting its ability to capture non-linear relationships in high-dimensional datasets [21]. 

At the local level, a sectoral emission study conducted at Terminal Mangkang and Terminal 
Penggaron quantified GHG emissions from vehicle activity using the Tier 2 method. The analysis 
identified major CO₂ sources from both moving and idle vehicles, and proposed mitigation 
through policy and behavioral changes. While informative, this study was confined to specific 
transport-related activities and did not address national-scale, sector-based contributions across 
multiple types of greenhouse gases [22]. 

Beyond methodological considerations, several studies emphasize the importance of identifying 
dominant emission-contributing sectors to guide effective environmental policy. One review 
chapter highlighted power generation, cement production, and transportation as major 
contributors to global warming, while also noting that international efforts to reduce emissions 
remain constrained by implementation gaps. This underscores the urgency for accurate sectoral 
identification to support more targeted and impactful mitigation strategies [23]. 

Building upon these previous studies, the present research adopts a SOM-based visualization 
approach to identify dominant emission sectors for each type of greenhouse gas (CO₂, CH₄, N₂O, 
and F-Gases) in Indonesia. Unlike conventional approaches that emphasize total emission 
volume, this study focuses on analyzing emission patterns across sectors to identify recurring and 
distinguishable trends. These patterns reflect not only the magnitude but also the consistency and 
uniqueness of sectoral emission behaviors over time. Understanding these patterns is critical for 
prioritizing sectors in emission control policies, as it provides a more stable and representative 
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basis for long-term planning. By leveraging the Self-Organizing Map (SOM), this research 
emphasizes pattern-based mapping to support more nuanced, data-driven climate strategies in 
Indonesia. 

3 Research Methodology  

The data used in this study consist of greenhouse gas emission statistics obtained from the 
EDGAR (Emissions Database for Global Atmospheric Research), published by the European 
Commission Joint Research Centre (JRC). Each gas type includes sectoral emission values which 
are organized and preprocessed for training. 

To ensure consistent scaling and fair treatment across all variables, input data were normalized 
per sector using the Min-Max Scaler prior to SOM training. Normalization is a crucial step in 
unsupervised learning tasks to prevent variables with larger magnitudes from dominating the 
distance calculations, especially in models like SOM that rely heavily on Euclidean distance. By 
rescaling all input values to a standard [0,1] range, this step ensures that the SOM model captures 
the underlying emission patterns rather than absolute values, which may vary significantly 
between sectors and gases. 

In this study, the SOM model was configured using specific parameter values designed to 
optimize the balance between learning stability, convergence speed, and interpretability. Initial 
node weights were randomly assigned to avoid bias and allow the map to self-organize entirely 
based on the training data. The learning rate was set to 0.3, providing moderate adaptability—fast 
enough for meaningful updates in early training stages, yet stable enough to prevent erratic weight 
changes. A neighborhood radius of 1.0 was chosen to define the local region around the Best 
Matching Unit (BMU) that adjusts during each iteration, thereby promoting spatial coherence 
across the SOM grid. 

The SOM grid was set to 4×4 neurons, providing a two-dimensional representation with 16 nodes. 
This grid size offers a reasonable compromise between resolution and generalization—large 
enough to capture distinct sectoral emission profiles, yet compact enough to prevent 
overfragmentation or the formation of empty nodes. The training was conducted over 400 
iterations, which allowed the SOM to adjust sufficiently while avoiding overfitting or excessive 
computation. These settings were selected based on best practices in SOM modeling, particularly 
for structured environmental datasets with moderate dimensionality. 

In line with the study’s primary objective of identifying dominant emission patterns across 
sectors, the output analysis focuses on three key elements: 

a. SOM visualization, which provides spatial insights into clustering patterns. 
b. Average sectoral weight comparisons, to identify which sectors consistently occupy 

dominant regions of the map. 
c. Quantization Error (QE), which serves as a quantitative measure of model accuracy in 

preserving the topological structure of input data. 
As elaborated in Section 2.2, this study adopts a QE threshold of 0.3 as the benchmark for reliable 
topological representation, in accordance with previous SOM-based applications. All model 
development, training, and visualization processes were implemented using Python in Google 
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Colaboratory, employing the MiniSom library for SOM computation. This open-source 
framework offers flexible configuration and reproducible results, ensuring transparency and 
accessibility in the research workflow. 

4 Result and Discussion 

4.1 Carbon Dioxide (CO₂) 

The Self-Organizing Map (SOM) training results on CO₂ emission data reveal clear sectoral 
distinctions, both visually and numerically. These distinctions are evident in the average SOM 
weight values per sector, as presented in Table 2, and further visualized through the weight vector 
distribution across the SOM grid in Figure 2. 

Table 2. Average SOM weight values for CO₂ 
Name of Sector Average SOM Weight Values 

Processes 0.6825 
Industrial Combustion 0.6044 

Agriculture 0.5535 
Transport 0.5399 
Buildings 0.5315 

Waste 0.5237 
Power Industry 0.5185 

Fuel Exploitation 0.4623 
 
Based on the average SOM weight vectors for each sector, the Processes sector ranks highest with 
a value of 0.6825, indicating strong and consistent CO₂ emission patterns. This aligns with its 
typical role in high-emission activities such as cement manufacturing and chemical processing. 
The Industrial Combustion sector follows with an average weight of 0.6044, reflecting the energy-
intensive nature of industrial operations that rely heavily on fossil fuels. The Agriculture sector 
holds the third-highest value at 0.5535, which may reflect consistent yet moderate emissions from 
activities such as crop cultivation and livestock management. Next, Transport (0.5399) and 
Buildings (0.5315) show comparable weight levels, indicating steady but slightly more variable 
emissions due to factors like vehicle usage and electricity demand in urban environments. 
Meanwhile, the Waste sector has an average weight of 0.5237, which could be attributed to 
relatively localized or irregular emission sources such as landfills and wastewater treatment. At 
the lower end, Power Industry (0.5185) and Fuel Exploitation (0.4623) register the smallest 
average weights, possibly indicating more scattered or less consistent emission patterns within 
these sectors, or differences in reporting and monitoring intensity.  
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Figure 2. SOM based sectoral mapping for CO₂ emissions 

 

These weight values are consistent with the SOM visualization, where brighter color intensities 
appear in the regions corresponding to the Processes, Industrial Combustion, and Agriculture 
sectors. The clustering observed in the SOM grid reflects meaningful differentiation, with these 
sectors forming more defined and densely activated areas, signifying stronger learned patterns. In 
contrast, darker regions associated with Fuel Exploitation and Power Industry further validate 
their relatively weaker emission signals within the dataset. 

The reliability of the SOM model is affirmed through the calculated Quantization Error (QE) of 
0.0218, indicating minimal average distance between each data point and its best-matching unit 
(BMU). This value is substantially lower than those reported in several prior studies (e.g., QE ≈ 
0.35 for certain environmental datasets), signifying excellent topological preservation and 
accurate mapping performance. These findings highlight the SOM model’s ability to capture and 
differentiate CO₂ emission patterns across sectors with high precision. The Processes, Industrial 
Combustion, and Agriculture sectors emerge as dominant contributors, aligning with known high-
emission activities in industrial and agricultural domains. These sectors exhibit strong and 
structured emission profiles, effectively visualized through SOM clustering. The model’s 
exceptionally low Quantization Error supports the robustness of these results, confirming SOM’s 
value as a reliable analytical tool for informing targeted emission reduction strategies in CO₂-
intensive sectors. 

4.2 Methane (CH₄) 

The Self-Organizing Map (SOM) training results on CH₄ emission data reveal clear distinctions 
are evident in the average SOM weight values per sector, as presented in Table 3, and further 
visualized through the weight vector distribution across the SOM grid in Figure 3. 
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Table 3. Average SOM weight values for CH₄ 
Name of Sector Average SOM Weight Values 

Transport 0.6033 
Waste 0.5780 

Processes 0.5598 
Agriculture 0.4916 

Power Industry 0.4723 
Buildings 0.4484 

Industrial Combustion 0.4467 
Fuel Exploitation 0.4205 

 

The Transport sector emerges with the highest average SOM weight vector at 0.6033, indicating 
relatively strong and consistent CH₄ emission patterns. This may be attributed to methane released 
during fuel combustion in land-based transportation, which exhibits repeated and measurable 
emission characteristics. The Waste sector follows closely with a weight of 0.5780, likely 
reflecting the continuous contribution of methane from landfill decomposition and wastewater 
processing—sources known for producing predictable and long-term emissions. The Processes 
sector ranks third with 0.5598, consistent with methane generation from specific industrial 
chemical reactions and treatment systems. Other sectors such as Agriculture (0.4916) and Power 
Industry (0.4723) present moderate weights, suggesting regular but less dominant methane 
emissions across regions and time. At the lower end, Buildings (0.4484), Industrial Combustion 
(0.4467), and Fuel Exploitation (0.4205) show the smallest average weights. These may reflect 
more diffuse or irregular methane sources, possibly due to variation in fuel handling, usage 
patterns, or system efficiencies. 

 

Figure 2. SOM based sectoral mapping for CH₄ emissions 

 

The SOM visualization confirms these distinctions, with Transport, Waste, and Processes sectors 
appearing in the brightest regions of the map grid. These high-intensity zones visually indicate 
stronger activation and greater consistency of learned emission patterns for these sectors. In 
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contrast, darker grid regions corresponding to lower-weight sectors validate their relatively 
weaker or less stable methane emission signatures.  

The calculated Quantization Error (QE) is 0.0207, demonstrating high-quality mapping 
performance and minimal deviation between actual data vectors and their best-matching units 
(BMUs). Considering that QE values up to 0.35 are generally acceptable in environmental studies, 
this notably low QE confirms that the SOM model offers excellent topological preservation and 
accurate clustering for sectoral CH₄ emissions. These findings validate the SOM model’s 
effectiveness in identifying and differentiating sectoral CH₄ emission patterns. With the 
Transport, Waste, and Processes sectors consistently emerging as dominant contributors, the 
results emphasize the importance of directing methane mitigation strategies toward these key 
sources. The relatively high and stable weights associated with these sectors suggest persistent 
and structured emission behaviors, which are well captured by the SOM’s topological learning. 
The model’s low Quantization Error further confirms its reliability in representing CH₄ emission 
structures, reinforcing its value as a decision-support tool in policy planning and emission control 
frameworks. 

4.3 F-Gases 

The Self-Organizing Map (SOM) training results for F-Gases emissions reveal a sector-specific 
pattern concentrated solely in the Processes sector, which is the only contributor to this gas type 
in the dataset. Unlike other greenhouse gases that span multiple emission sectors, the F-Gases 
dataset consists of a single-dimensional input vector, simplifying the SOM training process while 
still enabling meaningful interpretation.  

Based on the SOM training, the average weight vector for the Processes sector is 0.5142. This 
moderate-to-high value reflects a stable and consistently recognized emission pattern throughout 
the dataset. Although only one sector is involved, the weight value suggests that emissions from 
the Processes sector are not only prominent but also regularly distributed across spatial or 
temporal dimensions in the input data. 

 

Figure 4. SOM based sectoral mapping for f-gases emissions 
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The SOM visualization supports this result, showing a clear gradient across the map. Brighter 
areas correspond to higher activation levels, which visually represent the strength and structure 
of the emission signal from the Processes sector. Despite the input being one-dimensional, the 
trained map still captures variation in the magnitude of emissions, revealing a meaningful internal 
differentiation even within a single-sector context. 

The reliability of the SOM model is affirmed through the Quantization Error (QE) of 0.0040, 
indicating extremely low deviation between the original input vector and its Best Matching Unit 
(BMU). This value is significantly below commonly reported QE thresholds (e.g., ≈0.35), and 
even lower than most multi-sector mappings demonstrating excellent mapping precision despite 
the model's simplified structure. These findings confirm that the Processes sector plays a central 
role in F-Gases emissions, consistent with its association with industrial activities such as 
refrigeration, chemical manufacturing, and the use of synthetic gases like HFCs, PFCs, and SF₆. 
The strong and consistent SOM response, combined with a very low QE, reinforces the conclusion 
that mitigation strategies for F-Gases should be directly targeted at industrial process control and 
efficiency improvements. 

4.4 Nitrous Oxide (N₂O) 

The Self-Organizing Map (SOM) training results on N₂O emission data reveal meaningful 
sectoral differentiation, observable through both the average weight values per sector and the 
corresponding visual distribution across the map. These distinctions are evident in the average 
SOM weight values processes sector, as presented in Table 4, and further visualized through the 
weight vector distribution across the SOM grid in Figure 5. 

Table 4. Average SOM weight values for N₂O 
Name of Sector Average SOM Weight Values 

Agriculture 0.6469 
Waste 0.6277 

Power Industry 0.5841 
Processes 0.5582 
Transport 0.4966 

Industrial Combustion 0.4948 
Fuel Exploitation 0.4825 

Buildings 0.3785 
 
The Agriculture sector exhibits the highest average SOM weight at 0.6496, indicating that this 
sector contributes the most distinguishable and consistent nitrous oxide (N₂O) emission pattern in 
the dataset. This is consistent with Agriculture’s dominant role in N₂O emissions due to extensive 
fertilizer use and livestock waste management. The Waste sector follows with a weight of 0.6277, 
highlighting the contribution of landfills and wastewater systems to methane and nitrous oxide 
emissions. The Power Industry, with an average weight of 0.5814, likely reflects emissions from 
fossil-fuel combustion and nitrogen-based compounds generated during energy production. Mid-
weight sectors include Processes (0.5582), Transport (0.4966), Industrial Combustion (0.4948), 
and Fuel Exploitation (0.4825). These suggest moderately consistent but less dominant N₂O 
emissions, possibly due to variability in operation scale or technology usage. The Buildings sector 
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has the lowest average weight at 0.3785, indicating limited or highly dispersed N₂O emission 
signals, potentially from indirect sources such as energy consumption patterns. 

 

Figure 5. SOM based sectoral mapping for N₂O emissions 

The SOM visualization aligns with these weight values. Neurons associated with Agriculture, 
Waste, and Power Industry appear in brighter, more activated regions of the SOM grid, signifying 
strong and consistent emission signals captured by the model. The clustering around these sectors 
confirms the SOM’s ability to differentiate dominant patterns from the background variability of 
other sectors. In contrast, darker and more diffused areas correspond to lower-weight sectors like 
Buildings and Fuel Exploitation, reinforcing the interpretation that these sectors contribute 
weaker or more scattered N₂O signals in the dataset. 

The quality of the SOM model is confirmed by the Quantization Error (QE) of 0.0171, which is 
far below the acceptable threshold often cited in environmental applications (QE ≈ 0.35). This 
low QE indicates high topological accuracy and minimal deviation between each data point and 
its Best Matching Unit (BMU), ensuring that the model has reliably captured the structural 
emission patterns present in the N₂O dataset. These findings validate the SOM model’s 
effectiveness in capturing and distinguishing sectoral N₂O emission structures. With Agriculture, 
Waste, and Power Industry emerging as dominant contributors, the results suggest that targeted 
mitigation policies should prioritize these sectors in order to address N₂O emissions more 
effectively. The model’s strong mapping accuracy further reinforces its potential as a decision-
support tool in emission monitoring and control strategies. 

4.5 Comparative Validation and Pattern Summary of SOM Across Gas Types 

In addition to evaluating emission patterns within each gas type, this subsection presents a cross-
gas comparative summary, as shown in Table 5. The comparison includes Quantization Error 
(QE) values as indicators of model accuracy, the most dominant sector per gas based on SOM 
weight distribution, and the corresponding average weight values. By consolidating these metrics, 
the analysis highlights key differences in emission structure and clustering consistency across 
CO₂, CH₄, F-Gases, and N₂O. These insights provide a clearer foundation for recommending 
sector-specific mitigation strategies aligned with each gas’s unique emission behavior. 
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Table 5. Quantization error, dominant sector, and average SOM weight by gas type 
Gas Name Dominant Sector Average Weight QE Value 

CO₂ Processes 0.6825 0.0221 
CH₄ Transport 0.6033 0.0206 
N₂O Agriculture 0.6289 0.0171 

F-Gases Processes 0.0040 0.0051 
 
Table 5 presents a comparative summary of SOM results across the three major greenhouse gases 
with multi-sectoral input: CO₂, CH₄, and N₂O. The table includes Quantization Error (QE) values, 
the most dominant emission sector per gas, and the corresponding average weight values. Among 
these gases, N₂O exhibits the lowest QE (0.0171), indicating highly distinct and consistent 
emission patterns across sectors. Its dominant sector, Agriculture, holds an average weight of 
0.6289, reflecting strong, concentrated emission behavior—likely due to fertilizer usage and soil 
processes that produce predictable outputs. On the other hand, CO₂ has the highest QE (0.0218), 
suggesting more diffuse emission behavior. Although Processes emerges as the dominant sector 
(avg. weight 0.6825), the relatively higher QE implies that CO₂ emissions are more evenly 
distributed across other sectors, such as Transport and Buildings, which may reduce clustering 
clarity. CH₄ falls in the middle, with a QE of 0.0207. Its dominant sector, Transport, has a 
moderate average weight (0.6033), indicating a balanced emission pattern influenced by multiple 
sectors—particularly combustion-related activities. This dual-sector relevance is reflected in 
CH₄'s visual and numerical SOM outputs. For comparison, F-Gases have a QE of 0.0040, but due 
to their single-sector input, this value is not directly comparable. The low QE simply reflects 
reduced dimensionality rather than stronger model performance. Collectively, these differences 
reinforce the importance of interpreting SOM results with consideration for data structure, and 
emphasize that emission control strategies must be gas-specific, as sectoral emission behaviors 
vary substantially by gas type. 

Among the three multi-sector gases, N₂O has the lowest QE, indicating more distinct and 
consistent sectoral patterns, while CO₂ has the highest, suggesting more dispersed emission 
behavior. These differences likely reflect the nature of each gas’s sectoral distribution: CO₂ is 
emitted broadly across sectors, whereas N₂O is typically associated with more specific sources. 
The F-Gases model shows an exceptionally low QE. However, this result is not directly 
comparable due to its one-dimensional input (a single emission sector). The reduced complexity 
inherently produces a lower error, but does not imply better clustering performance. As such, 
dimensional context is essential when interpreting QE values in cross-gas comparisons. Overall, 
the SOM demonstrates reliable performance across all gas types, with QE values well below the 
0.3 threshold discussed in Section 2.2, confirming the model’s suitability for identifying sectoral 
emission patterns. 

5 Conclusion 

This study applied the Self-Organizing Map (SOM) to classify greenhouse gas (GHG) emission 
patterns in Indonesia by sector and gas type. The results showed that the most dominant sectors 
vary by gas: Processes for CO₂ and F-Gases, Transport for CH₄, and Agriculture for N₂O. The 
SOM model successfully produced meaningful clusters with low Quantization Error (QE) across 
all gases—ranging from 0.0171 to 0.0218—which are well below the 0.3 threshold commonly 
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used in environmental studies. This confirms that sectoral emission structures were effectively 
captured. 

These findings highlight the need for gas-specific emission control strategies rather than uniform 
measures, and provide data-driven support for national climate mitigation policies. While SOM 
proved effective in mapping emission patterns, its reliance on unsupervised learning and manual 
interpretation requires cautious application in dynamic policy contexts. 

Future research should explore hybrid approaches by combining SOM with supervised methods, 
applying the model to more complex datasets, and integrating policy-relevant indicators to 
strengthen the alignment between emission pattern analysis and strategic decision-making. 
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