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ABSTRACT 
Herniated nucleus pulposus develops when the intervertebral disc portudes through the annulus fibrosus due to the rupture 

of the annulus fibrosus or a decrease in proteoglycans. Hydrogel implant material can be injected into the disc space to 

restore disc thickness caused by disc degeneration with minimal invasiveness. This study aimed to characterize 

poly(ethylene glycol) dimethacrylate-nanofibrillated cellulose (PEGDMA-NFC) in vitro as a potential biomaterial for 
herniated nucleus pulposus substitute. This study utilized PEGDMA-NFC to treat first-degree herniated nucleus pulposus 

using the photopolymerization method. PEGDMA was selected because of its hydrophilic ability to produce hydrogel. The 

addition of NFC to the PEGDMA precursor was expected to show mechanical properties as a hydrogel bio composite 

candidate. The characterization of PEGDMA-NFC was conducted using three tests: Fourier-transform infrared 
spectroscopy (FTIR), viscosity assessment, and an in vitro injection testing model. The normal distribution of the data was 

analyzed using the Kolmogorov-Smirnov test, while the homogeneity was assessed using Levene's test. Homogenous and 

normally distributed data were analyzed using a one-way analysis of variance (ANOVA) with a p-value of <0.05. The 

explored concentrations of PEGDMA-NFC included a ratio of 1:0 for the control samples and ratios of 1:0.5 (K1), 1:0.75 
(K2), and 1:1 (K3) for the experimental samples. The FTIR analysis revealed the presence of various functional groups in 

PEGDMA-NFC, indicating its potential classification as a hydrogel biomaterial. The characterization data showed that the 

K3 sample yielded the most favourable outcome with a viscosity value of 74.67 dPa·s. From the in vitro injection testing 

result, the addition of NFC demonstrated that the hydrogel would not rupture when released from the mold. The hydrogel 
could be injected with an 18 gauge needle. The statistical analysis results showed a significant difference among the samples 

(p<0.05). This study concludes that the PEGDMA-NFC hydrogel biocomposite can be effectively applied in herniated 

nucleus pulposus cases. 
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Highlights: 

1. Novel synthetic biopolymer hydrogels were successfully prepared from pristine poly(ethylene glycol) 

dimethacrylate (PEGDMA) and nanofibrillated cellulose (NFC) using the photopolymerization method. 
2. PEGDMA-NFC biocomposite hydrogel can be developed as an affordable biomaterial for herniated nucleus pulposus 

substitute, with the potential to meet clinical application standards. 
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INTRODUCTION 

 

Low back pain is one of the leading causes of work-

related illness and disability worldwide. The 

prevalence of low back pain in Indonesia is 

estimated to be 18–29%, while globally it is 

approximately 15-20% (Purnamasari et al. 2010, Liu 

et al. 2014). According to Chamradová et al. (2012), 

the United States of America (USA) has spent as 

much as 80 million USD per year on these cases. 

High degrees of low back pain can lead patients to 

experience motor weakness, sensory disturbances, 

and decreased physiological reflexes. Low back pain 

often manifests in the L5-21 lumbar intervertebral 

disc area. Meanwhile, the L5-S1 area is more 

resistant to high loads than other lumbar segments. 

The ratio of men to women for low back pain is 2:1 

(Schmocker et al. 2015). Several diseases that cause 

low back pain include spasms in the lumbar muscles, 

osteoarthritis, herniated nucleus pulposus, and 

infections of the spine. As many as 30–80% of low 

back pain cases are caused by herniated nucleus 

pulposus (Campbell 2013). 

 

Herniated nucleus pulposus is a condition when the 

nucleus pulposus shifts and presses on the spinal 

nerves. The protrusion of the nucleus pulposus on 

the intervertebral disc can occur due to the rupture 

of the annulus fibrosus or a decrease in 

proteoglycans (PGs). Herniated nucleus pulposus 

disease is one of the causes of spinal cord pain 

(DiStefano et al. 2020). Protrusion of the nucleus 

pulposus in the annulus fibrosus can cause 

compression of the spinal cord, resulting in 

neuropathy. Based on the degree of pain, the 

herniated nucleus pulposus is divided into four, i.e., 

protrusion, prolapse, extrusion, and sequestration. 

Nucleotomy is a method of treating herniated 

nucleus pulposus, which is the surgical removal of 

the nucleus pulposus tissue. This procedure does not 

restore the original disc structure and function (de 

Lamo-Rovira et al. 2008). The disadvantage of this 

method is that it is invasive and can change the 

biomechanical properties of the spine. Numerous 

patients have reported pain after surgery (Aichmair 

et al. 2014). On the other hand, hydrogel-based 

regenerative medicine is a minimally invasive 

method. This option is able to restore the 

biomechanical properties of the nucleus pulposus 

and has the potential to reduce the risk of herniation 

(Cramer 2014). 

 

Injectable hydrogel can restore the thickness of the 

disc that has been reduced due to disc degeneration. 

The advantage of hydrogel is that it contains 

bioactive molecules, which can increase cell 

viability, cell differentiation, and tissue regeneration 

(Chan et al. 2013, Benhamou et al. 2014). 

Furthermore, hydrogel is easy to form and can fill 

the entire empty space of the disc. The material has 

good mechanical properties and biocompatibility 

(Sivashanmugam et al. 2015). However, Joshi et al. 

(2006) demonstrated that hydrogel has low 

mechanical properties and is not able to withstand 

high pressure. A hydrogel biocomposite can be 

formed by combining nanofibrillated cellulose 

(NFC) biopolymer, which has excellent 

biocompatibility and mechanical properties, with 

poly(ethylene glycol) dimethacrylate (PEGDMA) 

synthetic polymer (Baker et al. 2012, Schmocker et 

al. 2015). 

 

Previous studies have investigated the 

photopolymerization of PEGDMA for the purposes 

of tissue engineering and drug delivery. As 

PEGDMA is hydrophilic, it can be applied to the 

nucleus pulposus, which contains 90% water (Cortes 

et al. 2014, Schmocker et al. 2015, Molladavoodi et 

al. 2020). The proteoglycans (PGs) bond in the 

nucleus pulposus can be formed by a protein link 

present in the PEGDMA chain 7. An addition of 

NFC to PEGDMA has been found to be able to 

improve the mechanical properties of the hydrogel 

biocomposite. Previous research has synthesized 

PEGDMA-NFC with the most favorable outcome at 

a concentration ratio of 1:0.75 (Schmocker et al. 

2015). The findings pertaining to compressive 

strength, swelling, and the in vitro injection model 

are applicable to the nucleus pulposus, with the 

exception of the viscosity test. Nevertheless, 

additional characterization and optimization at 

varying concentrations are still necessary. This 

research aimed to characterize poly(ethylene glycol) 

dimethacrylate-nanofibrillated cellulose (PEGDMA 

-NFC) in vitro as a potential biomaterial for 

herniated nucleus pulposus substitute. The use of 

this biomaterial is expected to be beneficial for 

patients with herniated nucleus pulposus. 

 

 

MATERIALS AND METHODS 

 

This study employed a true experimental research 

design, involving the fabrication of poly(ethylene 

glycol) dimethacrylate-nanofibrillated cellulose 

(PEGDMA-NFC) characterization using the 

photopolymerization method and in vitro assay. The 

characterization procedures encompassed Fourier-

transform infrared spectroscopy (FTIR), viscosity 

assessment, and an in vitro injection testing model. 

The hydrogel photopolymerization process was 

carried out utilizing visible light  (Hola et al. 2023). 

The materials used in this study were poly(ethylene 

glycol) dimethacrylate (PEGDMA) with Chemical 

Abstracts Service (CAS) number 25852-47-5 

(Sigma-Aldrich, USA), Irgacure 2959 Photoinitiator 

with CAS number 106797-53-9 (Advanced 

BioMatrix, USA), and nanofibrillated cellulose 

(NFC) with CAS number 9004-34-6 (Performance 

BioFilaments, Canada). Phosphate buffered saline 
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(PBS) and distilled water were produced in 

Indonesia by CV Chemical Indonesia. 

 

The PEGDMA-NFC hydrogel preparation was 

produced by combining 10% (w/v) of PEGDMA, 

NFC, and Irgacure 2959 (0.1 wt%) with PBS.  The 

concentrations of PEGDMA-NFC for the control 

samples were at a ratio of 1:0, whereas the 

experimental samples had ratios of 1:0.5 (K1), 

1:0.75 (K2), and 1:1 (K3). The solution was 

homogenized using a magnetic stirrer for 30 

minutes. Afterwards, it was placed in the TLC 

Visualizer (CAMAG, Muttenz, Switzerland) and 

exposed to 366 nm of light waves for 60 minutes 

(Widiyanti et al. 2020). 

 

The characterization of PEGDMA-NFC was 

initially conducted using FTIR analysis. The use of 

infrared spectroscopy as an analytical technique was 

able to identify functional groups by utilizing 

electromagnetic radiation (Zeng et al. 2016). The 

results were presented in a graphical format and 

analyzed using the correlation table. The samples 

identified were control, K2, and K3. 

 

The characterization procedures also involved 

viscosity assessment to determine the viscosity 

value of PEGDMA-NFC hydrogel. This test was 

performed to determine the hydrogel's resistance to 

flow. The tool utilized in this test was the Rion 

Viscotester. The standard viscosity value for 

injectables was established at 80 dPa·s (Widiyanti et 

al. 2020). 

 

An in vitro injection testing model was used in the 

characterization of PEGDMA-NFC to figure out the 

process of gel formation in the body. This was 

achieved by creating a mold model using agarose. 

The gel was prepared using 3% (w/v) of agarose 

dissolved in PBS solution (Frith et al. 2013, 

Schmocker et al. 2015). The PEGDMA-NFC 

hydrogel was mixed with food coloring and then 

placed into agarose molds. The molds were 

incubated at 37°C for two hours (Schmocker et al. 

2016). 

 

The statistical analysis was performed using IBM 

SPSS Statistics for Windows, version 21.0 (IBM 

Corp., Armonk, N.Y., USA). The normality and 

homogeneity of the data were assessed using the 

Kolmogorov-Smirnov test and Levene's test, 

respectively. One-way analysis of variance 

(ANOVA) was employed for data that exhibited 

homogeneity and a normal distribution, with a 

significance value established at p<0.05 (Kim 

2017). 
 

 

 

 

 

RESULTS 

 

A total of 10 wt% of PEGDMA, NFC and irgacure-

2959 were included in PBS was synthesized using 

the TLC Visualizer. The synthesis results indicated 

that the K1, K2, and K3 samples produced a higher 

degree of hydrogel gelation compared to the control 

samples. In the TLC Visualizer, the interaction 

between visible light and the Irgacure 2959 

Photoinitiator resulted in the formation of free 

radicals, which initiated the process of 

photopolymerization (Nicol 2021). 

 

Characterization of PEGDMA-NFC using FTIR 

analysis 

 

The range of wavelength used was 4000–500 cm-1. 

Figure 1 shows a peak at 2,947.23 cm-1, indicating 

the stretching of C-H, which is the main chain of 

PEGDMA. The presence of a C-O ether chain in 

PEGDMA was suggested by a peak at 1,085.92 cm-

1. 

 

 

 
Figure 1. FTIR analysis of the (a) control sample 

(1:0) and (b) K2 sample (1:0.75). 

 

 

 

The absorption of PEGDMA was observed at 

846.75 cm-1, and a C=C bond was identified at 

1,639.49 cm-1 (Burke et al. 2019). The absorption 

area of NFC was found to span from 3,660 to 2,900 

cm-1. The peak at 3,412.08 cm-1 exhibited the 

distinctive characteristics of the polysaccharide 

hydroxyl group, namely the NFC chain. As shown 

in Table 1, the absorption area of each functional 

group was present for all concentration ratios. 

Figure 2 depicts the photopolymerization process 

involving PEGDMA, NFC, and Irgacure 2959.  

 

a 

b 
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Figure 2. Illustration of PEGDMA-NFC chain 

reaction. 

 

 

Table 1. Absorption area of each functional group. 

Functional 

groups 

Wavenumber (cm-1) 

PEGDMA NFC 
PEGDMA-

NFC 

C-H 

stretching 
2,947.23 - 2,875.86 

C=C 
1,639.49 - 1,639.49 

846.75 - 846.75 

C-O 1,085.92 - 1,085.92 

O-H - 3,412.08 3,423.65 

C=O 

stretching 
- - 1,722.43 

C-C - - 1,354.03 

C-O-C 

stretching 
- 1,103.28 1,103.28 

 

 

Characterization of PEGDMA-NFC through an 

in vitro injection testing model 

 

An in vitro injection test was employed as a form of 

qualitative analysis by assessing the ability of 

PEGDMA-NFC hydrogel to completely fill a given 

space and maintain its intactness upon release from 

the agarose molds. All of the samples were 

incubated in PBS at 37°C for two hours. 

 

 

 

 
Figure 3. In vitro injection test results: (a) 

hydrogels in the molds; (b) hydrogels after being 

released from the molds. 

 

The qualitative testing showed that in the control 

samples, two samples partially occupied the agarose 

molds, while the rest completely occupied the 

agarose space (Figure 3). The K1, K2, and K3 

samples remained intact when released from the 

agarose molds. This result indicated that all 

concentration ratios of the hydrogel met the required 

standard and could be injected through an 18 gauge 

needle at a temperature of 37°C (Liu et al. 2014, 

Zeng et al. 2016, Schmocker et al. 2016). 

 

 

Characterization of PEGDMA-NFC by 

employing viscosity assessment 

 

As demonstrated in Figure 4, the addition of NFC 

resulted in an increase in the viscosity of the sample. 

The measured viscosity values were 60.33±1.45 

dPa·s for the control sample, 71.67±0.45 dPa·s for 

the K1 sample, 72.33±0.59 dPa·s for the K2 sample, 

and 74.67±0.44 dPa·s for the K3 sample. The 

concentration ratio of the K3 sample, which was 1:1, 

closely matched the standard viscosity of 80 dPa·s 

(Widiyanti et al. 2020). The resulting color of the K3 

sample was darker and denser compared to the other 

three samples with different concentration ratios. 

 

 

Figure 4. Results of the viscosity test on 

PEGDMA-NFC at different concentration ratios. 

 

 

The data obtained from the tests were subjected to 

statistical analysis. The viscosity assessment data 

were found to be homogeneous and normally 

distributed. The results of the one-way ANOVA 

revealed a significance value of p<0.05, showing a 

significant difference across the samples. 

Furthermore, it was indicated that the addition of 

NFC at different concentration ratios had an 

influence on the test results. 

 

 

DISCUSSION 

 

Previous research conducted by Culbert et al. (2022) 

has proposed the requirements for the effective use 

of biomaterials as nucleus pulposus substitutes. The 

a 

b 



Folia Medica Indonesiana Vol. 60 No. 1                                         Widiyanti et al.: PEGDMA-NFC Injectable Hydrogel 

 

 

58 

 

biomaterials needed have to meet three specific 

criteria. Firstly, they should be minimally invasive 

to prevent damage to surrounding tissue. Secondly, 

the injected biomaterials should be in the form of a 

gel capable of filling the rupture. Thirdly, the 

hydrogels must be biocompatible and have 

mechanical properties similar to those of a healthy 

disc, enabling the restoration of disc function. 

 

Depending on the severity of the herniation, the 

herniated nucleus pulposus may advance to stage 

four. First-degree herniated nucleus pulposus is 

characterized by intervertebral disc protrusion. 

However, the nucleus protrudes without causing any 

damage to the annulus fibrosus. Second-degree 

herniated nucleus pulposus is defined as the prolapse 

of the intervertebral disc, where the nucleus has 

shifted but remains within the annulus fibrosus. 

Extrusion of the intervertebral disc occurs when the 

nucleus protrudes outward and the annulus fibrosus 

is under the posterior longitudinal ligament. 

Intervertebral disc sequestration refers to a condition 

in which the nuclei of the disc have penetrated the 

posterior longitudinal ligament (Ren et al. 2023). 

 

PEGDMA-NFC hydrogels used for herniated 

nucleus pulposus patients require good physical 

properties. The nucleus pulposus serves as a shock 

absorber and is frequently subjected to strenuous 

activities, necessitating high compressive strength 

(Schmocker et al. 2016). PEGDMA is a readily 

soluble derivative of polyethylene glycol (PEG) that 

easily swells. However, the physical properties of 

PEGDMA are subpar, thus requiring the 

incorporation of NFC to improve its physical 

properties (Widiyanti et al. 2020). 

 

During the photopolymerization process, a gelation 

of the hydrogel occurred. This was possible because 

the PEGDMA compound, which contains an alkene 

of PEG, reacted with Irgacure 2959. Subsequently, 

it resulted in the formation of a crosslinked hydrogel 

(Schmocker et al. 2016). The dispersion properties 

of NFC enhanced the gelation process. The 

advantages of using the photopolymerization 

method to synthesize hydrogels are its control-

ability and rapid rate of hydrogel formation (Zeng et 

al. 2016, Karami et al. 2018). In this study, the -CH 

stretching vibration observed at 2,875.86 cm-1 

indicated the presence of a hydrocarbon in 

polysaccharides. The characteristics of ethyl 

cellulose were identified by the -C-O-C- stretching 

observed at a wavenumber of 1,103.28 cm-1 (Wang 

et al. 2018, Widiyanti et al. 2020). The transition 

from 1,639.49 cm-1 to 1,722.43 cm-1, representing a 

shift from C=O to C-C caused by Irgacure 2959, 

indicated that the hydrogel reached stability 

(Widiyanti et al. 2020). 

 

The viscosity value of hydrogels is a crucial factor, 

as it determines the hydrogel's ability to be ejected 

from a syringe during the injection procedure. 

According to prior research conducted by Doench et 

al. (2018), NFC has the ability to enhance the 

viscosity value of hydrogels. The viscosity 

assessment results from this study demonstrated that 

the addition of NFC led to an increase in the 

viscosity value. The viscosity of the K3 sample 

(74.64±0.44 dPa·s) was close to the standard 

viscosity value. This finding suggests that 

PEGDMA-NFC hydrogel is applicable as a 

biomaterial for substituting herniated nucleus 

pulposus. 

 

The addition of NFC affected the results of multiple 

tests conducted in this study. As the concentration of 

NFC increases, the viscosity value also increases. 

The hydrogel was able to fill the agarose mold with 

the incorporation of NFC. The physical bond of 

NFC functions as an entanglement that forms a 

network between cellulose and PEGDMA (Karami 

et al. 2018). NFC nanostructures have a large surface 

area that can increase the bonds between molecules. 

This aspect suggests that the addition of NFC led to 

an increase in the density of the hydrogel. 

Furthermore, NFC exhibits excellent crystallinity 

due to its orderly molecular structure (Atikah et al. 

2019, Aristri et al. 2021). According to this 

explanation, NFC can serve as a reinforcement for a 

polymer matrix. As the diameter of the NFC fibers 

reduces, the mechanical strength of the NFC 

increases, which enhances the water retention value 

(Benhamou et al. 2014). In short, NFC is capable of 

acting as a reinforcing component in hydrogels. 

 

The statistical analysis enhanced the results by 

providing stronger evidence of the effect of 

increasing NFC concentration. The analysis 

revealed that the data were homogeneous and 

normally distributed. The subsequent analyses using 

one-way ANOVA and two-way ANOVA for 

degradation data yielded significantly different data. 

Finally, the statistical analysis resulted in the 

rejection of the null hypothesis (H0). The rejection 

of H0 is possible if the error size (p) is less than the 

maximum error tolerance (α). The results of each 

test consistently demonstrated statistical 

significance (p<α) (Widiyanti et al. 2020).       

 

Strength and limitations 

 

The strength of this research is that the hydrogel was 

specifically formulated to be used as an injectable, 

which means it is minimally invasive. The hydrogel 

offers several benefits due to its bioactive 

molecules, which have the potential to enhance cell 

viability, cell differentiation, and tissue 

regeneration. The PEGDMA-NFC hydrogel is 

capable of completely filling the defect caused by 
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the herniated nucleus pulposus. The limitation of 

this research was the absence of scanning electron 

microscopy (SEM) to examine the hydrogel 

morphology. Further research utilizing 

thermogravimetric analysis (TGA) and in vivo 

testing for animal trials is necessary. 

 

 

CONCLUSION 

 

The poly(ethylene glycol) dimethacrylate-

nanofibrillated cellulose (PEGDMA-NFC) hydrogel 

has the potential to be a biomaterial replacing 

herniated nucleus pulposus. This hydrogel can be 

effectively synthesized using the 

photopolymerization method in the Thin Layer 

Chromatography (TLC) Visualizer. The addition of 

NFC can increase the viscosity of the hydrogel, 

allowing it to fill the herniated nucleus pulposus. 
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