Identification of Stroke with MRI Images Using the Learning Vector Quantization (LVQ) Method Based on Texture Features
Downloads
Research on the Identification of Stroke with MRI Imagery Using the Learning Vector Quantization (LVQ) Method Based on Texture Features has been carried out. This study aims to determine the program's best parameters and the highest accuracy level of the stroke identification program. This research was conducted at Haji Sukolilo Hospital - Surabaya by obtaining 57 images of stroke patients and 15 images of regular patients. The study used the intelligence of stroke, tumor, and standard images to determine each category's image characteristics. After knowing the differences in each class, the next process is digital image processing, followed by feature extraction used is the Gray-Level Co-occurrence matrix (GLCM) with four parameters: contrast, correlation, diversity, and homogeneity. These four parameters are the best input parameters with an intelligence rate of 0.100 with a decrease in intelligence rate of 0.100, so the best accuracy value for training is 74.97%, and test data is 78.60%. Regarding the program's ability to correctly identify 11 data from 14 data tested, the program is feasible to be used as a second opinion.
Fadli.SM..2013. Pengetahuan dan ekspresi emosi keluarga serta frekuensi kekambuhan penderita skizofrenia.program studi megister ilmu kesehatan masyarakat sekolah tinggi ilmu kesehatan hang tuah. pekanbaru
Juniarti.S. 2008 Buletin Jendela Data Informasi Dan Kesehatan. Kementrian Kesehatan RI. Jakarta
Kusumadewi.S.2004. Artificial Intelligence (Teknik Dan Aplikasinya).Graha Ilmu. Jakarta
Matlab Documentation. The Mathworks, Inc
Metta.S.2009.Identifikasi citra CT Scan kanker paru – paru dengan Metode Learning Vector Quantization. Fakultas Sains dan Teknologi Universitas Airlangga Surabaya. Surabaya
Notosiswoyo.M.2004.Pemanfaatan Magnetic Resonance Imagin (MRI) Sebagai Sarana Diagnosis Pasien.Media Litbang Kesehatan Volume XIV Nomor 3
Ole.Y..2008.Artificial Intelegence.jurusan informatika fakultas teknik informatika universitas Sumatra utara. Sumatra utara
Prionika.D.2012. Kecerdasan Buatan Untuk Pemula.Jogjakarta
Pupitaningrum.D..2004 pengantar jaringan syaraf tiruan.fakultas teknik. jurusan teknologi informasi. universitas semarang
Riyadina.W.2013. determinan penyakit stroke.badan penelitian dan pengembangan kesehatan kementrian kesehatan republik Indonesia
Samsudin.Dr.H.2009 Buletin Jendela Data Informasi Dan Kesehatan. Kementrian Kesehatan RI Jakarta
Tatang.2015.Penyebab Terjadinya Kerusakan Otak Manusia. Tatangsma.Com/2015/03/Penyebab-Terjadinya-Kerusakan-Otak-Manusia.Html
Tjahjadi.Hendrana.2014 Magnetic Resonance Imagin.Jurusan Teknobiomedik.Program Pasca Sarjana.Universitas Indonesia
Valadka.Ab..Gonipath Sp.. Et Al.1996.Relationship Of Brain Tissue Po2 To Outcome After Severe Head Injury. Crift Care Med
Wismanto..2015 Penunjang Diagnosis Fisioterapi.Fakultas Kedokteran.Universitas Airlangga
Zahoor.Arbaaz.2015 Computer Aided Diagnosis of Stroke from Brain CT Images.M. Tech Student.SJCE Mysore
Copyright (c) 2022 Indonesian Applied Physics Letters
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.