THE ASSOCIATION BETWEEN OBESITY AND HYPERTENSION AMONG ELDERLY RESIDING IN A NURSING HOME: IS GENDER IMPORTANT?

Farapti Farapti^{1*}, Chusnul Fadilla², Hari Basuki Notobroto³, Saidatul Afzan Abdul Aziz⁴

¹Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.

²Department of Nutrition, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.

³Department of Epidemiology Biostatistics Population and Health Promotion, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.

⁴Foodservice Management Department. Faculty of Hotel and Tourism Management Universiti Teknologi Mara Selangor, Puncak Alam Campus, Malaysia Correspondence address: Farapti Farapti

Email: farapti@fkm.unair.ac.id

ABSTRACT

Introduction: Elderly exhibit an increased for health complications, including obesity and hypertension (HT).. Obesity has been demonstrated to increase the risk of HT and the mechanism is also often influenced by gender. Aims: The study aimed to analyze the association between obesity and hypertension among elderly in nursing home stratified by gender. Methods: A cross-sectional study was conducted on a sample of 54 elderly subjects in nursing home. A sphygmomanometer was used to assess blood pressure (BIA) and a Bioelectrical Impedance Analysis (BIA) to determine nutritional status includingbody mass index (BMI), body fat (BF), visceral fat (VF), and subcutaneous fat (SF). Analysis of data was performed using an independent t-test and Pearson correlation test. Results: Mean age of respondents was 71.28 ± 8.21, dominated by women (75.9%), and 27.8% had hypertension. Dietary intake indicate excess sodium intake, while potassium, calcium, magnesium, vitamin D, vegetables, and fruits intake remain low. All indicators of nutritional status assessment differ significantly by gender except BMI. However, the present study found that BMI is the only variable associated with systolic BP (p=0.023). Stratified by gender, it was found that BW, BMI, and VF in women were related to systolic BP (p=0.022; p=0.015; p=0.040; respectively), and no such relationship was observed in men. Conclusion: It is proven that obesity and hypertension were more prevalent among elderly women. It is imperative to check nutritional statusfor preventive action for other diseases, including hypertension.

Keywords: elderly, hypertension, nursing home, obesity

INTRODUCTION

Suboptimal nutritional status is a common occurrence among the elderly population. A study in 23 nursing homes in Flanders reported that 38.7% of the residents were at risk for malnutrition and 19.4% were malnourished (Verbrugghe et al., 2013). High figures also occur in India, which stated that out of 360 elderly people, 55% are at risk of malnutrition and an additional 15% have experienced of malnutrition (Agarwalla et al., 2015). A study among older adults residing in Indonesia revealed that 26.23 % and 23% of the elderly are under nutrition and overweight/ obesity, respectively (Farapti et al., 2023). The prevalence of overweight individual is often observed to be higher among women, and statistically indicated

a positive correlation between overweight andelderly females (Boscatto et al., 2013). Research in the Lafeite Coutinho region, Brazil indicated a positive correlation between overweight and hypertension. However, the study also found a negative association between obesity and hypertension among elderly people aged ≥75 years and older who reside independently. (Fares et al., 2012).

Excess nutritional status can be influenced by various factors, including gender. It is established that a decline in estrogen levels in older women can lead to an increased prevalence of various diseases, although it does not necessarily decrease in men. Early detection of malnutrition is necessary for earlier interventions (Sargento et al., 2014). In the elderly with Alzheimer's disease, an

Cite this as: Farapti, F., Fadilla, C., Notobroto, H.B and Aziz, S.A.A, (2025). The Association Between Obesity And Hypertension Among Elderly Residing In A Nursing Home: Is Gender Important?. The Indonesian Journal & Public Health, 20(2), 231-247. https://doi.org/10.20473/ljph.v20i2.2025.231-247

©2025 IJPH. Open access under CC BY NC-SA. License doi: 10.20473/ijph.vl20i2.2025.231-247 Received 9 November 2023, received in revised form 28 July 2025, Accepted 31 July 2025, Published online: August 2025. Publisher by Universitas Airlangga

unfavorable psycho-functional condition has been observed to be associated with obesity (Saragat et al., 2012). The existing body of literature consistently demonstrated a robust correlation between sedentary lifestyle and physical activity on one hand, and body adipose on the other (Gomez-Cabello et al., 2011). Elderly who are overweight and obese generally exhibit a higher body fat (BF) percentage in comparison to their counterparts with optimal nutritional status (Alam et al., 2011). A healthy diet can improve body weight (BW) and also reduce concentration of inflammatory markers (Calder et al., 2011). It has been demonstrated that this intervention is capable ofreducing the risk of cardiovascular disease (CVD) in the elderly individual (Bulló et al., 2011).

The risk of CVD increases with age and hypertension (HT) is a cardiovascular disorder that requires attention from the elderly because HT is the strongest risk factor for almost all CVD (Bulló et al., 2011: Kieldsen, 2018). The prevalence of HT in the elderly population across various regions worldwide is often classified as high (Gao et al., 2013; Ghaffari et al., 2016; Mendes et al., 2013). In Indonesia, he prevalence of heart failure (HF) among the elderly is high in both community and institutional settings, as well as in urban and rural areas (Astutik et al., 2021; Farapti et al., 2023). Obesity (OB) has been identified as a contributing factor to HT in the elderly. However, association between obesity and HT varies according to gender and age, leading to the classification of obesity-induced hypertension (Kotsis et al., 2015). A multitude of Population studies have demonstrated that being overweight is the contribution to hypertension (Astutik et al., 2021; Farapti et al., 2023). Moreover, dietary habit and lifestyle choice have been demonstrated to exert a considerable influence on the development of HT. This influence has been observed to manifest through various factors, including

but not limited to: excessive body mass, a lack of, physical activity, inadequate intake of calcium and magnesium, low potassium intake, and also excessive intake of sodium (Farapti et al., 2017; Geleijnse et al., 2004).

Nursing home is a social institution that house elderly individuals, both female and male. Furthermore, the elderly in home generally have nursing socioeconomic and poor health status (Farapti et al., 2023). Elderly dementia in nursing homes who experience hypertension have been observed demonstrate diminished cognitive function (Wysocki et al., 2012). The prevalence of malnutrition in the elderly also increases with age (Serrano-Urrea and Garcia-Meseguer, 2013). In light of the preceding explanations, the researcher sought to examine the association nutritional status and blood pressure (BP) in the elderly individuals residing in nursing home, and identify potential risk factors that may contribute to both conditions.

METHODS

This present study employed an analytic study design, adopting a crosssectional approach. It was conducted from September to November 2021 in a nursing home, namely UPTD Griya Wreda in Surabaya. The study population comprised 54 elderly individuals. The inclusion criteria for the elderly include a minimum age of 60 years, adequate communication and memory skills, good health when data is collected, and willingness to participate in research. Elderly who had impaired liver, kidney function, and nerve function disorders related to grasping ability were excluded from the study. The respondents were selected through the implementation of a purposive sampling technique and the study included 54 elderly individuals.

The data of characteristic respondents including age, gender, and history of disease were obtained from the

UPTD Griya Wreda. This approach was taken to ensure the validity of the data and minimize bias due to decreased physiological recall abilities of the elderly. Given that the residents of the nursing home were served the same daily menu from the food services, estimates of their nutritional intake could be calculated by evaluating the nutritional value of the food presented. Consequently, the dietary intake data presented was not directly based on each subject's intake. The measurement of blood pressure (BP) was performed by using an Omron sphygmomanometer with classification of normotension (systolic BP <130 and/or diastolic BP <85 mm Hg), pre hypertension (systolic BP 130-139 mm Hg and/or diastolic BP 85-89 mm Hg), and hypertension (systolic BP ≥140 mm Hg and/or diastolic BP ≥90 mm Hg). The measurement of blood pressure was conducted twice and an average of each diastolic systolic and measurement subsequently calculated. Elderly subjects were requested to take a seat and relaxed prior to undergoing the blood pressure measurement. Nutritional measurement (body mass index, body fat, fat, subcutaneous fat) visceral performed with Bioelectrical Impedance Analysis (BIA) Omron HBF 375. The analysis of the data was conducted using independent t-test and Pearson an correlation test in Software Statistical Product and Service Solution (SPSS) 21.0 version with CI 95%. The research ethics review was formally endorsed by the Health Research Ethics Committee of the Faculty of Dentistry, Universitas Airlangga on July 7, 2021, bearing the following certification number: 357/HRECC.FODM/VII/2021.

RESULTS

A total of 54 older people residing in nursing home were selected respondents. The average length of stay for

Table 1. Characteristics and Hypertension Status of Subjects

these individuals was approximately 23.09 \pm 16.76 months. The distribution of characteristics and hypertension status of respondents are summarized in Table 1. Most of the respondents were women (75.9%) and had a history of hypertension (37%) and uric acid (33.3%). The average systolic and diastolic blood pressures of the participants were found to be within the normal range. According to the patient histories and antihypertensive medications documented, 37% of the respondents were classified as subjects with hypertension status. However, at the time of the study, the distribution of patients based on blood pressure measurement was as follow: patients with HT were 27.8%, patient with pre-HT was 11.1%, and the remaining had normal blood pressure.

Table 2 shows the distribution of nutritional status characteristics among the elderly, with both overall and gender-based analysis conducted. A range of factors, including body weight (BW), body mass index (BMI), body fat (BF), visceral fat (VF), and subcutaneous fat (SF), were identified as contributors to the observed variations in the prevalence of these conditions among male and female subjects. The majority of the elderly have a normal BMI; however, based on BF, a prevalence of excess conditions observed. A substantial disparity based on sex was observed in all indicators of nutritional status with the exception of BMI (p > 0.05). Men had a higher BW (p =0.047), as did VF (p = 0.043). On the other hand, the BF of elderly women was above that of men (p = 0.03). From SF perspective, the prevalence is observed to be higher in women than in men in all of anatomical parts, including whole, arms, legs, trunk. However, it can be identified that in both men and women, the percentage of subcutaneous predominantly located in the legs (men 23.13 ± 5.55 ; women 42.96 ± 7.04).

Variable	n	%	Mean ± SD
Age (Mean \pm SD)			71.28 ± 8.21
55-64 y/o	10	18.5	
65-74 y/o	23	42.6	
≥75 y/o	21	38.9	
Gender			
Men	13	24.1	
Women	41	75.9	
History of Disease			
Diabetes Mellitus	8	14.8	
Uric Acid	21	38.9	
Hypercholesterolemia	17	31.5	
Hypertension	20	37.0	
Blood Pressure (mmHg)			
Systolic BP			127.03 ± 17.96
Diastolic BP			73.03 ± 9.06
Hypertension status based on			
measurement			
Normotension	33	61.1	
Prehypertension	6	11.1	
Hypertension	15	27.8	
Hypertension status based on HT			
history or consume antihypertension			
drug			
Normotension	34	63.0	
Hypertension	20	37.0	

Table 2. Characteristics of Nutritional Status Based on Gender

Characteristic	Total (n=54)	Women (n=41)	Men (n=13)	– p-value
	Mean ± SD or n (%)	Mean ± SD or n (%)	Mean ± SD or n (%)	
Body Weight (kg)	51.13 ± 1.22	49.27 ± 12.48	56.98 ± 10.05	0.047^{β}
Body Mass Index (kg/m ²)	21.60 ± 4.57	21.54 ± 4.88	21.78 ± 3.56	0.869
Obesity	9 (16.7)	8 (19.5)	1 (7.7)	
Normal	33 (61.1)	23 (56.1)	10 (76.9)	
Underweight	12 (22.2)	10 (24.4)	2 (15.4)	
Body Fat (%)	30.58 ± 7.26	32.21 ± 6.60	25.45 ± 7.08	0.003^{β}
Fat	29 (53.7)	21 (51.2)	8 (61.5)	
Average	7 (13.0)	6 (14.6)	1 (7.7)	
Lean	18 (33.3)	14 (34.1)	4 (30.8)	
Visceral Fat Index	6.60 ± 5.11	5.81 ± 4.84	9.08 ± 5.33	0.043^{β}
High	11 (20.4)	5 (12.2)	6 (46.2)	
Normal	43 (79.6)	36 (87.8)	7 (53.8)	
Subcutaneous Fat (%)				
Whole	25.25 ± 6.74	27.23 ± 6.09	18.32 ± 4.23	0.000^{β}
Arms	20.48 ± 10.08	26.03 ± 8.68	17.67 ± 4.88	0.002^{β}
Legs	34.62 ± 15.78	42.96 ± 7.04	23.13 ± 5.55	$< 0.001^{\beta}$
Trunk	32.26 ± 8.45	34.32 ± 7.75	21.92 ± 6.88	<0.001 ^β

βsignificance <0.05 (independent t-test CI 95%)

As demonstrated in Table 3, overall, only BMI was related to BP in the elderly. and even then, only to systolic BP. When the data is stratified by gender, significant relationships are only appeared in women and not among men. Specifically, the nutritional status based on BW (p = 0.022; r = 0.356), BMI (p = 0.015; r = 0.376), and VF (p = 0.040; r = 0.322). The findings suggest a correlation between the rise in BW, BMI, and VF among elderly women residing in nursing homes and escalation in systolic BP. The calculation of the correlation coefficient between the three variables indicates that the strength of the correlation between each variable tends to be similar. Therefore, is the correlation classified as weak.

Based on daily menus in nutrition services, the estimated intake respondent in nursing home can be seen in table 2. The intake data presented in this study is an average estimate of elderly intake in 1 cycle (14 days) of nutrition services, as a more in-depth review more of food waste was not a component of this study. It was found that respondents who consumed all portions served met the recommendations adequate macro nutrient according to their age, with the exception of energy, protein, and fiber intake. Micro nutrient intake estimate data shows sodium intake exceeds the recommended level, while potassium, calcium, magnesium, and vitamin D remain significantly below the recommended adequacy figures. consumption of vegetables and fruit was identified as low intake.

Majority of the respondents are women and the proportion of women in nursing home is notably higher, accounting for more than half of the total number of respondents. This finding is consistent with the findings of several studies in Indonesia (Farapti et al., 2023; Pramesona and Taneepanichskul, 2018). A review of the medical records revealed that a number of subjects had been diagnosed with various chronic diseases, including hypertension, high uric acid, hypercholesterolemia, and diabetes mellitus. The aging of the population has increased the prevalence of chronic diseases, with elderly people often affected by multiple chronic diseases, more frequently cardiovascular diseases, chronic respiratory diseases, metabolic syndrome and cancer (Fabbri and Ferrari, 2006; Hung et al., 2011). Hypertension has been identified as the most significant risk factors for CVD, particularly among the elderly population. it is estimated that over 68% of the population is hypertensive (Sierra, 2017). This present study revealed minimal variance in the prevalence of hypertensive status, based on measurement antihypertensive history. or utilization. Nevertheless, the prevalence of HT in this study is sufficiently high. from According to data Indonesian National Health Survey of 2018, the prevalence of HTbased the on consumption of AH drugs among individuals aged 55 years and over was 19.3%- 25.26% (Félix-Redondo et al., 2013; Ministry of Health of Indonesia I, 2018; Qin et al., 2014; Sierra, 2017).

DISCUSSION

Table 3. Relationship Between Nutritional Status with Blood Pressure in Elderly

	Blood Pressu	re (mmHg)	
Systolic		Diastolic	
p-value	r	p-value	r
0.095	0.23	0.675	0.058
0.023^{β}	0.310	0.635	0.066
	p-value 0.095	Systolic p-value r 0.095 0.23	p-value r p-value 0.095 0.23 0.675

XY . II . CNT I	Blood Pressure (mmHg)				
Variable of Nutritional	Systolic		Diast	Diastolic	
Status	p-value	r	p-value	r	
Body Fat	0.067	0.252	0.898	0.018	
Visceral Fat Index	0.144	0.201	0.786	0.038	
Subcutaneous Fat					
Whole	0.145	0.201	0.957	0.007	
Arms	0.177	0.186	0.808	0.034	
Legs	0.178	0.186	0.865	0.024	
Trunk.	0.106	0.222	0.998	0.000	
Women subjects (n=41)					
Body Weight	0.022^{β}	0.356	0.900	0.020	
Body Mass Index	0.015^{β}	0.376	0.915	0.017	
Body Fat	0.189	0.209	0.767	-0.048	
Visceral Fat Index	0.040^{β}	0.322	0.970	0.006	
Subcutaneous fat					
Whole	0.415	0.131	0.802	-0.040	
Arms	0.340	0.153	0.893	0.022	
Legs	0.576	0.090	0.699	-0.062	
Trunk	0.324	0.158	0.698	-0.063	
Men subjects (n=13)					
Body Weight	0.998	0.001	0.301	0.311	
Body Mass Index	0.912	0.034	0.357	0.278	
Body Fat	0.553	0.182	0.800	0.078	
Visceral Fat Index	0.827	0.067	0.492	0.209	
Subcutaneous fat					
Whole	0.699	0.119	0.850	-0.058	
Arms	0.954	-0.018	0.748	-0.099	
Legs	0.852	0.058	0.859	-0.055	
Trunk.	0.663	0.134	0.914	-0.033	

βsignificance <0.05 (Pearson correlation CI 95%)

Hypertension is a comorbidity that most frequently manifests in the elderly individuals residing in nursing homes and the pattern is associated with age based on different identified sex (Moore et al., 2012). Nursing homes are places where elderly individuals receive care attention to their physical health, nutrition intake, activity levels, as well appropriate medication therapy. According to Lochner et al. (2011), the elderly in nursing home have BP that is more is more closely monitored and managed compared to their community-dwelling counterparts (Lochner et al., 2012). In Korea, the presence of a nurse-led home visitation program has been demonstrated to enhance elderly self-management in controlling

high BP (Park and Kim, 2016). Moreover, it is imperative to acknowledge the significance of dietary intake in the control of hypertension (Farapti et al., 2020). In addition, research conducted in French and Italian nursing home has revealed an absence of a correlation between BP and morbidity or mortality among the elderly in the community. This observation is attributed to the presence of distinct hemodynamic characteristics among this demographic (Benetos et al., 2012). This is what probably causes the elderly in nursing home to homes exhibit lower BP levels, attributable to the consistent and directed HT management implemented by the institution. However, other factors have been identified as potential contributors to this phenomenon, including psychosocial stress. As posited by Liu et al. (2017), the elderly individuals encountering psychosocial stress have a 2.4 times risk of HT (Liu et al., 2017). The social isolation frequently encountered among the elderly population has been demonstrated to elevate the probability of developing heart failure (HT) incidence up to 1.3 times

(Momtaz et al., 2012). Nevertheless, the intake and physical activity of the elderly individuals who have been provided remains the responsibility of each individual in their daily lives. These factors affect the nutritional status of said which is individuals. one ofthe intermediaries for HT.

Table 4. Dietary Intake of Subjects Based on Daily Menus in Nutrition Services

Components	Mean dietary intake ± SD	Recommendation ⁸
Macro nutrient		
Energy (Cal)	1723.33 ± 198.66	1600-2150
Carbohydrate (g)	$229.64 \pm 45.29 \ (59.8\%)$	200-340
Fibers (g)	10.86 ± 3.21	20-30
Protein (g)	$57.43 \pm 9.35 \ (15.14\%)$	58-65
Fat (g)	$44.58 \pm 16.01 \ (25.07\%)$	40-60
Cholesterol (mg)	220.09 ± 115.03	$180-325^{\beta}$
Micronutrient		
Sodium (mg)	2361.49 ± 598.72	1000-1400
Potassium (mg)	1725.76 ± 540.74	± 4700
Magnesium (mg)	257.28 ± 69.11	320-360
Calcium (mg)	341.16 ± 225.34	± 1200
Vitamin D (μg)	3.01 ± 3.55	15-20
Fruits (g)	80.36	200-250γ
Vegetables (g)	125.98	$\pm 400^{\gamma}$

⁸Recommendation for age >50 years old for both male and female (Ministry of Health of Indonesia, 2019); ⁷Recommendation for age >50 years old for both male and female (Ministry of Health of Indonesia, 2014); βInstitute of Medicine, 2005

Hypertension is frequently accompanied by nutritional deficiencies, which are prevalent among the elderly population. Even in Flanders, more than 50% of the elderly at nursing home are at risk or have experienced malnutrition (Verbrugghe et al., 2013). The majority of the elderly have high BF and normal BMI. According to Fukuoka et al. (2019), high BF and low BMI in one individual are at risk for sarcopenia in the elderly (Fukuoka et al., 2019). Fat greatly affects the body's metabolism including BP (Koster et al., 2010). However, when compared to high (53.7%),high VF was BFonly experienced by one-fifth of respondents (20.4%). Even so, Kang et al. (2011) explained that android fat in the elderly is more at risk of metabolic syndrome than abdominal VF (Kang et al., 2011).

Subcutaneous fat (SF) in the elderly is predominantly located in the legs and trunk. A cross-sectional study of elderly people in Jakarta has indicated a correlation between BF and truncal SF with insulin resistance (Dwimartutie et al., 2010). The most common nutritional status identified by measuring BMI. However, this study revealed that there was no difference in BMI between male and female elderly. This finding aligns with the findings of a cross-sectional gender study, which reported that BMI is comparable across gender lines among the elderly population. The study further asserts that the measurement of fat mass and fat free mass provides a more accurate representation representative of the real condition in the elderly (Kirchengast, 2010). The assessment of obesity in the

elderly population should not only be through anthropometric indicators of BMI, but also BF as a risk factor associated with metabolic disorders (Batsis and Zagaria, 2018). According to the extant research, the us utilization of BMI cut off points established by the WHO is not appropriate to the elderly population due to their low sensitivity (de Vasconcelos et al., 2010). The physiological conditions of the elderly who experience a decrease in bone anatomy and physiology can result in a decrease in height, thereby increasing BMI in a state of constant BW (Cetin and Nasr, 2014).

According to BF, there differences between male and female elderly individuals residing in nursing home. The mean BF in women was higher than that of men $(32.21 \pm 6.60 \text{ vs } 25.45 \pm$ 7.08). This assertion substantiated by a similar study employing a cohort design in California (Maskarinec et al., 2020). Menopausal elderly have decreased levels of estrogen which lead to increased aldehyde dehydrogenase-1 and adipogenesis regulation (Petrosino et al., 2014). This phenomenon leads to a prevalence of higher BF in elderly women compared to men because naturally they are not much dependent on estrogen. In contrast to BF, VF manifests at a higher rate in elderly men than in women. Research conducted in Korea also obtained similar results although with different units (Kim et al., 2011). The higher visceral fat in men (vs. women) is because in women there is a more active signaling activity of estradiol-ERa, which reduces autophagy and adipogenesis (Tao et al., 2018). It is important to note that these activities will decrease with age. According to Kim et al. predict (2011),VF can metabolic syndrome in elderly men and postmenopausal women, but research on premenopausal is still needed (Kim et al., 2011). In line with BF, SF was also higher in women. A study reported that SF in the elderly was higher than in younger people. Furthermore, within the elderly group, the

proportion of females exhibiting SF was notably higher compared to their male counterparts.

Nutritional status has been demonstrated to exert an influence on the augmentation of BP. Among respondents, it is proven that only BMI is related unidirectional to BP, even then only systolic BP. Kaur et al. (2013) also found that BMI has a high significant correlation with systolic BP, while diastolic BP is related to the waist-hip ratio (Kaur et al., 2013). In contrast to the findings of a community-based study conducted on an elderly cohort, an increase in BMI is associated with impaired left ventricle diastolic function (Russo et al., 2011). Studies that have nearly equal male and female respondents report that BMI is related to both systolic and diastolic BP (Oladoyinbo et al., 2015). Hypertension that is induced by weight gain, particularly adipose tissue gain, is often referred to as obesity-induced HT (Hall et al., 2015). The increase in adipose leads to increased stiffness of the ventricular arteries, which places individuals at risk for development of CVD (Fernandes-Silva et al., 2018). Overweight and obesity have been demonstrated to exert a crucial influence on microvascular dysfunction (Karaca et al., 2014). As Stępień et al. (2012) explained, the concentration of the hormone insulin, adiponectin, and leptin is also associated with obesity according to BMI in people with HT. However, it is preferable to use abdominal obesity (Stepień et al., 2012). It is necessary to acknowledge that the characteristics of a bad lifestyle is widely recognized as a significant catalyst for obesity-induced HT (Leggio et al., 2017).

When the data were stratified by gender, it was found that the variables BW, BMI, and VF in women were correlated (nearly as strong) with systolic BP. However, this phenomenon is not observed in elderly men The present study is consistent with other research that has demonstrated a comparable correlation

between obesity (based on BMI, waist circumference, waist to height ratio, waist to hip ratio) and HT only occurs in women (Chen et al., 2014). The inactivity of women is often compared to that of men, causing an increase in BW and BP (Doumas et al., 2013). This phenomenon attributable to the occurrence of hormonal imbalances, a common occurrence in menopausal women. The provision of proven hormone therapy that can suppress the progress of increasing BW and CVD as soon as women enter menopause (Rosano et al., 2007). The prevalence of elevated fat levels in women of all ages has been observed to be higher than men, a phenomenon that has been associated with an increased risk of developing obesityinduced hypertension. The underlying mechanisms include higher leptin levels, leptin receptor (ObR) expression, and aldosterone levels in women compared to men that trigger hypertension through increased sympathetic nerve activity and sodium retention. Leptin and aldosterone increase with the increase in BMI and adipose in women (Faulkner and Belin de Chantemèle, 2018). Adipose tissue has been demonstrated to be a rich source of cytokines, which can stimulate an increase the rate of inflammation and vascular dysfunction (Taylor and Sullivan, 2016). In obese individuals (based on BMI), it is known that an increase in VF has a 2.61 times risk of experiencing metabolic syndrome only in elderly women (Koster et al., 2010). Visceral fat in obese individuals has a more important role in increasing BP than peripheral fat (Kotchen, 2010). Upon entering the menopause period, most of the women experiencing a change in fat position, initially gynoid obesity tended to become android obesity (Rosano et al., 2007). Indeed, android fat is more at prone to metabolic syndrome when only compared to VF (Karastergiou et al., 2012). Therefore, a study explains that the term metabolic obesity, which refers to fat accumulation in both lean and obese individuals, represents a greater risk of

CVD than the term obesity based solely on anthropometric measurements (Beasley et al., 2009).

Hypertension and obesity are the most important risk factors contributing to the high morbidity and mortality rates associated with cardiovascular disease. It is noteworthy that the prevalence of these conditions often increases in advanced age. The present study has demonstrated a correlation between overall BMI and systolic BP. This finding aligns with the results of the PURE Malaysia cohort study age and overweight or that advanced obese were associated with an elevated risk prehypertension and hypertension (Ismail et al. 2023). Furthermore, obesity has been identified as a contributing factor to multimorbidity among Malaysian older adults (Shariff Ghazali et al. 2021). Epidemiological studies demonstrated that dietary and lifestyle habits considerable influence on CVD. particularly on hypertension and obesity (Furgonia et al., 2023; Geleijnse et al., 2004). The National Health and Morbidity survey 2018 among older adults in demonstrated Malaysia that being physically inactive was independently associated with self-reported modifiable CVD risk factors (Chan et al. 2021). In the elderly population, there is frequently an inadequacy of high-quality nutrients, while there is often an excess of nutrient that fall recommended levels. nutrients identified as risk factors of HT and OB are the excess of energy, carbohydrate, fat, and salt intake (Furgonia et al., 2023; Pinto de Souza Fernandes et al., 2017). The findings of the present study indicated that the sodium salt intake was excessive, with levels almost twice as high as the recommended amount. The degree of knowledge and behavior regarding salt intake were found related to adherence to healthy dietary pattern (Iaccarino Idelson et al., 2020). a preceding investigation of older people indicated that a low daily salt intake was associated with awareness of the harmful effects of

excessive salt intake (Farapti et al., 2020) In contrast, the present study demonstrated that the consumption of fruits and vegetables, fiber, potassium, calcium, magnesium, vitamin D was categorized as inadequate or lower than recommended. As indicated by the findings of previous studies, an inadequate diet characterized by a deficiency in essential nutrients has been demonstrated to be associated hypertension and obesity (Boeing et al., 2012; Chiavaroli et al., 2019; Geleijnse et al., 2004; Slavin and Lloyd, 2012). Interestingly, the present study's focus on elderly individuals residing in nursing homes reveals noteworthy distinctions in their characteristics when compared to the broader community. The subjects were provided with a daily intake, which was based on a menu arranged by the food service. They consumed the same foods and were not permitted to acquire foods Consequently. external sources. nutrient intake was not a confounding variable in this study. However, the actual intakes of each subject were not measured. and thus, the intakes may have differed from subject to subject. Further studies are required to measure food waste for each subject and other supplementary food apart from nursing homes. This will allow for precise measurement of nutrient intake and analysis of the correlation between intake and conditions such as hypertension and obesity. Lastly, the stratification analysis may not provide enough pool sample of elderly men compared to women. The observed association between gender and the outcome variables may be attributed to the underrepresentation of male subjects in the study. However, the ratio of elderly women to men is comparable to those population.

CONCLUSIONS

The majority of residents in nursing homes are female and have a medical a history of hypertension (HT). The most prevalent nutritional issue among the elderly is excessive body fat. Among the various nutritional status assessments, BMI

emerged as the sole factor demonstrating a positive correlation with systolic BP. Following the stratification of the data based on gender, it was determined that relationship between nutritional status and systolic BP was present exclusively among the female subjects. It is imperative to ascertain the nutritional intake by food service and the nutritional status of the elderly in nursing home at the earliest iuncture. knowledge possible This facilitates the implementation preventive measures against other diseases, particularly heart disease (HT). Therefore, it is imperative to concurrently assess metabolic health status and obesity when implementing risk management strategies for hypertension (HT).

REFERENCES

Agarwalla, R., Saikia, A.M., Baruah, R., 2015. Assessment of the nutritional status of the elderly and its correlates. J. Fam. Community Med. 22, 39–43. https://doi.org/10.4103/2230-8229.149588

Alam, I., Larbi, A., Pawelec, G., Paracha, P.I., 2011. Relationship between anthropometric variables and nutrient intake in apparently healthy male elderly individuals: A study from Pakistan. Nutr. J. 10, 111. https://doi.org/10.1186/1475-2891-10-111

Astutik, E., Farapti, F., Tama, T.D., Puspikawati, S.I., 2021. Differences Risk **Factors** for Hypertension Among Elderly Woman in Rural and Urban Indonesia. Yale J. Biol. Med. 94, 407-415.

Batsis, J.A., Zagaria, A.B., 2018. Addressing Obesity in Aging Patients. Med. Clin. North Am. 102, 65–85. https://doi.org/10.1016/j.mcna.2017 .08.007

- Beasley, L.E., Koster, A., Newman, A.B., Javaid, M.K., Ferrucci, Kritchevsky, S.B., Kuller, L.H., Pahor, M., Schaap, L.A., Visser, M., Rubin, S.M., Goodpaster, B.H., Harris, T.B., study, T.H.A.B.C., 2009. Inflammation and Race and Gender Differences Computerized Tomographymeasured Adipose Depots. Obesity 1062-1069. https://doi.org/10.1038/oby.2008.2
- Benetos, A., Gautier, S., Labat, C., Salvi, P., Valbusa, F., Marino, F., Toulza, O., Agnoletti, D., Zamboni, M., Dubail, D., 2012. Mortality and cardiovascular events are best predicted by low central/peripheral pulse pressure amplification but not by high blood pressure levels in elderly nursing home subjects: the PARTAGE (Predictive Values of Pressure and Arterial Stiffness i. J. Am. Coll. Cardiol. 60, 1503-1511.
 - https://doi.org/10.1016/j.jacc.2012. 04.055
- Boeing, H., Bechthold, A., Bub, A., Ellinger, S., Haller, D., Kroke, A., Leschik-Bonne, E., Müller, M.J., Oberritter, H., Schulze, M., Stehle, P., Watzl, B., 2012. Critical review: vegetables and fruit prevention of chronic diseases. Eur. Nutr. 51. 637-663. https://doi.org/10.1007/s00394-012-0380-v
- Boscatto, E.C., Duarte, M. de F. da S., Coqueiro, R. da S., Barbosa, A.R., 2013. Nutritional status in the oldest elderly and associated factors. Rev. Assoc. MÃcopyrightdica Bras. 59, 40–47. https://doi.org/10.1590/S0104-42302013000100010
- Bulló, M., Garcia-Aloy, M., Martínez-González, M.A., Corella, Fernández-Ballart, J.D., Fiol, M., Gómez-Gracia, E., Estruch, R.,

- Ortega-Calvo, M., Francisco, S., Flores-Mateo, G., Serra-Majem, L., Pintó, X., Covas, M.-I., Ros, E., Lamuela-Raventós. Salas-R., Salvadó, J., 2011. Association between a healthy lifestyle and general obesity and abdominal obesity in an elderly population at high cardiovascular risk. Prev. 155–161. Med. 53, https://doi.org/10.1016/j.vpmed.20 11.06.008
- Calder, P.C., Ahluwalia, N., Brouns, F., Clement, Buetler, T., Cunningham, K., Esposito, Jönsson, L.S., Kolb, H., Lansink, M., Marcos, A., Margioris, A., Matusheski, N., Nordmann, H., O'Brien, J., Pugliese, G., Rizkalla, S., Schalkwijk, C., Tuomilehto, J., Wärnberg, J., Watzl, Winklhofer-Roob. B.M., 2011. Dietary factors and low-grad inflammation in relation overweight and obesity. Br. J. Nutr. 106. S1-S78. https://doi.org/10.1017/S00071145 110054600
- Chan, Y.Y et al. 2021. Self-Reported Modifiable Risk **Factors** of Cardiovascular Disease among Older Adults in Malaysia: A Cross-Sectional Study of Prevalence and Clustering. *International Journal of* Environmental Research and Public Health 18(15): 1-15.https://doi.org/10.3390/ijerph18157 941
- Cetin, D.C., Nasr, G., 2014. Obesity in the elderly: More complicated than you think. Cleve. Clin. J. Med. 81, 51-61. https://doi.org/10.3949/ccjm.81a.12 165
- Chen, S.C., Lo, T.C., Chang, J.H., Kuo, H.W., 2014. Variations in Aging, Gender, Menopause, and Obesity and Their Effects on Hypertension in Taiwan. Int. J. Hypertens. 2014, 515297.

- https://doi.org/10.1155/2014/51529
- Chiavaroli, L., Viguiliouk, E., Nishi, S.K., et al, 2019. DASH Dietary Pattern and Cardiometabolic Outcomes: An Umbrella Review of Systematic Reviews and Meta-Analyses. Nutrients 11, 338. https://doi.org/10.3390/nu1102033
- de Vasconcelos, F. de A.G., Cordeiro, B.A., Rech, C.R., Petroski, E.L., 2010. Sensitivity and specificity of the body mass index for the diagnosis of overweight/obesity in elderly. Cad. Saude Publica 26, 1519–1527.

https://doi.org/10.1590/S0102-311X2010000800006

- Doumas, M., Papademetriou, V., Faselis, C., Kokkinos, P., 2013. Gender differences in hypertension: myths and reality. Curr. Hypertens. Rep. 15, 321–330. https://doi.org/10.1007/s11906-013-0359-y
- Dwimartutie, N., Setiati, S., Oemardi, M., 2010. The correlation between body fat distribution and insulin resistance in elderly. Acta Med Indones 42, 66–73.
- Fabbri, L.M., Ferrari, R., 2006. Chronic disease in the elderly: back to the future of internal medicine. Breathe 3, 40 LP 49. https://doi.org/10.1183/18106838.0 301.40
- Farapti, F., Fadilla, C., Yogiswara, N., Adriani, M., 2020. Effects of vitamin D supplementation on 25(OH)D concentrations and blood pressure in the elderly: a systematic review and meta-analysis. F1000 Res. 9, 1–21. https://doi.org/10.12688/f1000resea rch.24623.2
- Farapti, F., Nadhiroh, S.R., Sayogo, S., Mardiana, N., 2017. Urinary and dietary sodium to potassium ratio as a useful marker for estimating

- blood pressure among older women in Indonesian Urban coastal areas. Mediterr. J. Nutr. Metab. 10, 113–122. https://doi.org/10.3233/MNM-17138
- Farapti, F., Wangi, M.P., Adiningsih, S., 2023. The Assessment of Daily Menus in Nursing Home Residents Improving for Intake and Nutritional Status in Elderly: Penilaian Harian dari Menu Panti Werdha dalam Penghuni Rangka Memperbaiki Asupan dan Status Gizi Lansia. Amerta Nutr. 7, 262-266.

https://doi.org/10.20473/amnt.v7i2. 2023.262-266

- Fares, D., Rodrigues Barbosa, A., Ferreti Borgatto, A., Silva Coqueiro, R. da, Henrique Fernandes, M., 2012. Factors associated with nutritional status of the elderly in two regions of Brazil. Rev. Assoc. Médica Bras. Engl. Ed. 58, 434–441. https://doi.org/10.1016/S2255-4823(12)70225-4
- Faulkner, J.L., Belin de Chantemèle, E.J., 2018. Sex differences in mechanisms of hypertension with associated obesity. 15-21. Hypertension 71, https://doi.org/10.1161/HYPERTE NSIONAHA.117.09980
- Félix-Redondo, F.J., Grau, M., Fernández-Bergés, D., 2013. Cholesterol and cardiovascular disease in the elderly. Facts and gaps. Aging Dis. 4, 154–169.
- Fernandes-Silva, M.M., Shah, A.M., Claggett, B., Cheng, S., Tanaka, H., Silvestre, O.M., Nadruz. Borlaug, B.A., Solomon, S.D., 2018. Adiposity, body composition and ventricular-arterial stiffness in the elderly: the Atherosclerosis Risk in Communities Study. Eur. J. 1191-1201. Heart Fail. 20, https://doi.org/10.1002/ejhf.1188
- Fukuoka, Y., Narita, T., Fujita, H., Morii, T., Sato, T., Sassa, M.H., Yamada,

- Y., 2019. Importance of physical evaluation using skeletal muscle mass index and body fat percentage to prevent sarcopenia in elderly Japanese diabetes patients. Diabetes Investig. 10, 322-330. https://doi.org/10.1111/jdi.12908
- Furgonia, A.W., Farapti, F., Notobroto, H.B., 2023. Apakah Asupan Natrium Berlebih Merupakan Risiko Overweight?: Faktor Tinjauan Sistematis: Is Excess Sodium Intake a Risk Factor for Overweight?: **Systematic** A Review. Amerta Nutr. 7, 459-467. https://doi.org/10.20473/amnt.v7i3. 2023.459-467
- Gao, Y., Chen, G., Tian, H., Lin, L., Lu, J., Weng, J., Jia, W., Ji, L., Xiao, J., Zhou, Z., Ran, X., Ren, Y., Chen, T., Yang, W., Group, for the C.N.D. and M.D.S., 2013. Prevalence of Hypertension in China: A Cross-Sectional Study. **PLOS ONE** e65938. https://doi.org/10.1371/journal.pon e.0065938
- Geleijnse, J.M., Kok, F.J., Grobbee, D.E., 2004. Impact of dietary and lifestyle factors on the prevalence hypertension in Western populations. Eur. J. Public Health 235-239. https://doi.org/10.1093/eurpub/14.3
- Ghaffari, S., Pourafkari, L., Tajlil, A., Sahebihagh, M.H., Mohammadpoorasl, A., Tabrizi. J.S., Nader, N.D., Azizi A., 2016. Zeinalhajlou, The prevalence, awareness and control rate of hypertension among elderly in northwest of Iran. J. Cardiovasc. Thorac. Res. 8, 176–182. https://doi.org/10.15171/jevtr.2016. 35
- Gomez-Cabello, A., Pedrero-Chamizo, R., Olivares, P.R., Luzardo, L., Juez-Bengoechea, A., Mata, E., Albers, U., Aznar, S., Villa, G., Espino, L.,

- Gusi, N., Gonzalez-Gross, 2011. Casajus, J.A., Ara, I., Prevalence of overweight and obesity in non-institutionalized people aged 65 or over from Spain: the elderly EXERNET multi-centre study. Obes. Rev. 12, 583-592. https://doi.org/10.1111/j.1467-789X.2011.00878.x
- Hall, J.E., Carmo, J.M. do, Alexandre, da S.A., Wang, Z., Hall, M.E., 2015. Obesity-Induced Hyertension: Interaction of Neurohumoral and Renal Mechanisms. Circ. Res. 116, 991-1006. https://doi.org/10.1161/CIRCRESA
 - HA.116.305697
- Hung, W.W., Ross, J.S., Boockvar, K.S., Siu, A.L., 2011. Recent trends in chronic disease, impairment and disability among older adults in the United States. BMC Geriatr. 11, 47. https://doi.org/10.1186/1471-2318-11-47
- Iaccarino Idelson, P., D'Elia, L., Cairella, G., Sabino, P., Scalfi, L., Fabbri, A., Galletti, F., Garbagnati, F., Lionetti, L., Paolella, G., Simonetti, P., Strazzullo, P., Group, O.B.O.T.S.-G.W., 2020. Salt and Health: Survey on Knowledge and Salt Intake Related Behaviour in Italy. Nutriens 12. https://doi.org/10.3390/nu1202027
- Ismail, R. et al. (2023). Prevalence and Associated Factors Prehypertension and Hypertension Among Adults: Baseline Findings of PURE Malaysia Cohort Study', American Journal of Medicine Open. 10(March), 100049. p. https://doi.org/10.1016/j.ajmo.2023 .100049
- Kang, S.M., Yoon, J.W., Ahn, H.Y., Kim, S.Y., Lee, K.H., Shin, H., Choi, S.H., Park, K.S., Jang, H.C., Lim, S., 2011. Android Fat Depot Is More Closely Associated with Metabolic Syndrome than

- Abdominal Visceral Fat in Elderly People. PLOS ONE 6, e27694. https://doi.org/10.1371/journal.pon e.0027694
- Karaca, Ü., Schram, M.T., Houben, A.J.H.M., Muris, D.M.J., Stehouwer. C.D.A.. 2014. Microvascular dysfunction as a link between obesity, insulin resistance and hypertension. Diabetes Res. 382-387. Pract. 103. https://doi.org/10.1016/j.diabres.20 13.12.012
- Karastergiou, K., Smith, S.R., Greenberg, A.S., Fried, S.K., 2012. Sex differences in human adipose tissues the biology of pear shape. Biol. Sex Differ. 3, 13. https://doi.org/10.1186/2042-6410-3-13
- Kaur, J., Singh, M., Batra, A.P.S., Garg,
 R., Kaur, M., Punia, N., 2013.
 Blood Pressure and Obesity
 Variation Among Population of
 Amritsar District. Int. J. Basic
 Appl. Med. Sci. 3, 113–121.
- Kim, H. Il, Kim, J.T., Yu, S.H., Kwak, S.H., Jang, H.C., Park, K.S., Kim, S.Y., Lee, H.K., Cho, Y.M., 2011. Gender differences in diagnostic values of visceral fat area and waist circumference for predicting metabolic syndrome in Koreans. J. Korean Med. Sci. 26, 906. https://doi.org/10.3346/jkms.2011.2 6.7.906
- Kirchengast, S., 2010. Gender Differences in Body Composition from Childhood to Old Age: An Evolutionary Point of View. J. Life Sci. 2, 1–10. https://doi.org/10.1080/09751270.2 010.11885146
- Kjeldsen, S.E., 2018. Hypertension and cardiovascular risk: General aspects. Pharmacol. Res. 129, 95–99. https://doi.org/10.1016/j.phrs.2017.

11.003

- Koster, A., Stenholm, S., Alley, D.E., Kim, L.J., Simonsick, E.M., Kanaya, A.M., Visser, M., Nicklas, Tylavsky, D.K.H.B.J., F.A., Satterfield, S., Goodpaster, B.H., Ferrucci, L., Harris, T.B., 2010. Fat Distribution Body and Inflammation Among Obese Older Adults With and Without Metabolic Syndrome. Obesity 18, 2354-2361. https://doi.org/10.1038/oby.2010.8
- Kotchen, T.A., 2010. Obesity-related hypertension: Epidemiology, pathophysiology, and clinical management. Am. J. Hypertens. 23, 1170–1178. https://doi.org/10.1038/ajh.2010.17
- Leggio, M., Lombardi, M., Caldarone, E., Severi, P., D'Emidio, S., Armeni, M., Bravi, V., Bendini, M.G., Mazza, A., 2017. The relationship between obesity and hypertension: an updated comprehensive overview vicious twins. on Hypertens. Res. 40. 947-963. https://doi.org/10.1038/hr.2017.75
- Liu, M.-Y., Li, N., Li, W.A., Khan, H., 2017. Association between psychosocial stress and hypertension: a systematic review and meta-analysis. Neurol. Res. 39, 573–580. https://doi.org/10.1080/01616412.2
- Lochner, S., Kirch, W., Schindler, C., 2012. Managing hypertension among nursing-home residents and community-dwelling elderly in

017.1317904

Germany: a comparative pharmacoepidemiological study. Eur. J. Clin. Pharmacol. 68, 867– 875.

https://doi.org/10.1007/s00228-011-1195-0

Maskarinec, G., Namatame, L.A., Kang, M., Buchthal, S.D., Ernst, T., Monroe, K.R., Shepherd, J.A., Wilkens, L.R., Boushey, Marchand, L. Le, Lim, U., 2020. Differences in the association of quality with body distribution between men and women. Eur. J. Clin. Nutr. 74, 1434–141.

https://doi.org/10.1038/s41430-020-0563-1

- Mendes, T. de A.B., Goldbaum, M., Segri, N.J., Barros, M.B. de A., CÃ\copyrightsar, C.L.G., Carandina, L., 2013. **Factors** associated with the prevalence of hypertension and control practices among elderly residents SÃ\poundso Paulo city, Brazil. SaÃtextordmasculinede PÃtextordmasculineblica 29, 2275– 2286. https://doi.org/10.1590/0102-311x00151312
- Ministry of Health of Indonesia, 2018. National report on basic health research 2018. Jakarta: Ministry of Health of Indonesia.
- Momtaz, Y.A., Hamid, T.A., Yusoff, S., Ibrahim, R., Chai, S.T., Yahaya, N., Abdullah, S.S., 2012. Loneliness as a risk factor for hypertension in later life. J. Aging Health 24, 696-

https://doi.org/10.1177/089826431 1431305

Moore, K.L., Boscardin, W.J., Steinman, M.A., Schwartz, J.B., 2012. Age and Sex Variation in Prevalence of Chronic Medical Conditions in Older Residents of U.S. Nursing Homes. J. Am. Geriatr. Soc. 60, 756-764.

https://doi.org/10.1111/j.1532-5415.2012.03909.x

- Oladovinbo, C.A., Ekerette, N.N.. Ogunubi, T.I., 2015. Obesity and hypertension amongst traders in Ijebu Ode, Nigeria. Afr. J. Biomed. Res. 18, 23–27.
- Park, E., Kim, J., 2016. The Impact of a Nurse-Led Home Visitation Program Hypertension on Self-Management among Older Community-Dwelling Koreans. Public Health Nurs. 33, 42-52. https://doi.org/10.1111/phn.12220
- Petrosino. J.M., DiSilvestro, D., Ziouzenkova, O., 2014. Aldehyde Dehydrogenase 1A1: Friend or Foe to Female Metabolism? Nutrients. https://doi.org/10.3390/nu6030950
- Pinto de Souza Fernandes, D., Duarte, M.S.L., Pessoa, M.C.. Franceschini, S. do C.C., Ribeiro, A.Q., 2017. Evaluation of diet quality of the elderly and associated factors. Arch. Gerontol. Geriatr. 72, 174-180.

https://doi.org/10.1016/j.archger.20 17.05.006

- Pramesona, B.A., Taneepanichskul, S., 2018. Prevalence and risk factors of depression among Indonesian elderly: A nursing home-based cross-sectional study. Neurol. Psychiatry Brain Res. 30, 22-27. https://doi.org/10.1016/j.npbr.2018. 04.004
- Oin, L., Yang, Z., Gu, H., Lu, S., Shi, O., Xing, Y., Li, X., Li, R., Ning, G., Su, Q., 2014. Association between serum uric acid levels cardiovascular disease in middleand elderly Chinese aged individuals. **BMC** Cardiovasc. Disord. 14, 26. https://doi.org/10.1186/1471-2261-14-26
- Rosano, G.M.C., Vitale, C., Marazzi, G., Volterrani, M., 2007. Menopause and cardiovascular disease: the evidence. Climacteric 10, 19-24.

- https://doi.org/10.1080/136971306 01114917
- Russo, C., Jin, Z., Homma, S., Rundek, T., Elkind, Mitchell, S.V., Sacco, R.L., Di Tullio, M.R., 2011. Effect of Obesity and Overweight on Left Ventricular Diastolic Function. J. Am. Coll. Cardiol. 57, 1368–1374. https://doi.org/10.1016/j.jacc.2010.10.042
- Saragat, B., Buffa, R., Mereu, E., Succa, V., Cabras, S., Mereu, R.M., Viale, D., Putzu, P.F., Marini, E., 2012. Nutritional and psycho-functional status in elderly patients with Alzheimer's disease. J. Nutr. Health Aging 16, 231–236. https://doi.org/10.1007/s12603-011-0347-3
- Sargento, L., Longo, S., Lousada, N., dos Reis, R.P., 2014. The Importance of Assessing Nutritional Status in Elderly Patients with Heart Failure. Curr. Heart Fail. Rep. 11, 220–226. https://doi.org/10.1007/s11897-014-0189-5
- Serrano-Urrea, R., Garcia-Meseguer, M.J., 2013. Malnutrition in an Elderly Population without Cognitive Impairment Living in Nursing Homes Study in Spain: of Prevalence Using the Mini Nutritional Assessment Test. Gerontology 59, 490-498. https://doi.org/10.1159/000351763
- Shariff Ghazali, S. *et al.* (2021) Prevalence and factors associated with multimorbidity among older adults in Malaysia: A population-based cross-sectional study, *BMJ Open*, 11(10), pp. 1–10. Available at: https://doi.org/10.1136/bmjopen-2021-052126
- Sierra, C., 2017. [Hypertension in older adults]. Hipertens. Riesgo Vasc. 34
 Suppl 2, 26–29.
 https://doi.org/10.1016/S1889-1837(18)30072-2
- Slavin, J.L., Lloyd, B., 2012. Health benefits of fruits and vegetables.

- Adv. Nutr. Bethesda Md 3, 506–516. https://doi.org/10.3945/an.112.0021
- Stępień, M., Wlazeł, R.N., Paradowski, M., Banach, M., Rysz, M., Misztal, M., 2012. Rysz, J., Serum concentrations of adiponectin, leptin, resistin, ghrelin and insulin and their association with obesity indices in obese normohypertensive patients - pilot study. Arch. Med. Sci. AMS 8, 431-436. https://doi.org/10.5114/aoms.2012. 29518
- Tao, Z., Zheng, L.D., Smith, C., Luo, J., Robinson, A., Almeida, F.A., Wang, Z., Olumi, A.F., Liu, D., Cheng, Z., 2018. Estradiol signaling mediates gender difference in visceral adiposity via autophagy. Cell Death Dis. 9, 309. https://doi.org/10.1038/s41419-018-0372-9
- Taylor, L.E., Sullivan, J.C., 2016. Sex differences in obesity-induced hypertension and vascular dysfunction: a protective role for estrogen in adipose tissue inflammation? Am. J. Physiol.-Regul. Integr. Comp. Physiol. 311, R714-R720. https://doi.org/10.1152/ajpregu.002 02.2016
- Verbrugghe, M., Beeckman, D., Van Hecke, A., Vanderwee, K., Van Herck, K., Clays, E., Bocquaert, I., Derycke, H., Geurden, B., Verhaeghe, S., 2013. Malnutrition and associated factors in nursing home residents: A cross-sectional, mul i-centre study. Clin. Nutr. 32, 438–443.
 - https://doi.org/10.1016/j.clnu.2012. 09.008
- Wysocki, M., Luo, X., Schmeidler, J., Dahlman, K., Lesser, G.T., Grossman, H., Haroutunian, V., Beeri, M.S., 2012. Hypertension is Associated With Cognitive Decline

in Elderly People at High Risk for Dementia. Am. J. Geriatr. Psychiatry 20, 179–187. https://doi.org/10.1097/JGP.0b013e 31820ee833