HEPATITIS B SEROLOGY PROFILES ON CHILDREN AGED 1–13 YEARS OLD IN SUMENEPR, MADURA

Edward M. Putera¹, Dian Marcia¹, Itja Firdarini¹, Mochamad Amin³,⁴, Juniastuti²,³,⁴, Priyo B. Purwono²,³, Takako Utsumi³,⁵, Maria I. Lusida²,³,⁴,*

¹ Dr. H. Moh. Anwar General Hospital, Sumenep, Madura
² Department of Microbiology, Medical Faculty, Universitas Airlangga, Surabaya
³ Indonesia-Japan Collaborative Research Center for Emerging and Re-emerging Infectious Diseases
⁴ Institute of Tropical Disease, Universitas Airlangga, Surabaya, Indonesia
⁵ Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Japan

ABSTRACT

Background: Hepatitis B virus (HBV) which was acquired during perinatal or childhood would promote hepatocellular carcinoma with even higher percentage than that which was acquired during adult age. That is why HBV represents a serious public health threat for children. HBV vaccination has been integrated into national expanded programme on immunization (EPI) since 1997. The aim of this study is to investigate the prevalence of HBV among children who were born after 1997 in Sumenep. Material and Methods: a total of 102 children who were born after 1997 were enrolled in this study. All children were admitted in the Emergency Room and Pediatric Ward of dr. H. Moh Anwar General Hospital for some reasons. Written informed consents were obtained from parents/guardians of all the children. Study protocol was reviewed and approved by the Ethics Committees. All of these cases were examined for hepatitis B surface antigen (HBsAg), antibody to HBsAg (Anti-HBs), and antibody to hepatitis B core antigen (Anti-HBc).

Result and Discussion: Overall, 6 (5.88%) of 102 samples were positive for HBsAg, 51 (50.00%) of 102 samples were positive for anti-HBs, and 49 (48.04%) of 102 samples were positive for anti-HBc. All the children were born after 1997. Conclusion: HBsAg rate is still high even after universal vaccination program, acquired protective antibodies against hepatitis B surface antigen were sufficient, but there is a suspicion for occult hepatitis B infections (OBI). A further study to confirm OBI is needed.

Keywords: HBV, HBsAg, Anti-HBs, Anti-HBc, immunization

ABSTRAK


Kata kunci: HBV, HBsAg, Anti-HBs, Anti-HBc, imunisasi.

* Corresponding author. Mailing address: Maria Inge Lusida, Institute of Tropical Disease, Universitas Airlangga, Campus C Mulyorejo, Surabaya 60115, Indonesia. E-mail: ingelusida@yahoo.com
INTRODUCTION

Hepatitis B is an infectious disease caused by hepatitis B virus (HBV) that affects more than 400 million people worldwide, and 1.3 million die of decompensated cirrhosis and/or hepatocellular carcinoma (HCC) annually. HBV variants are currently classified into the human genotypes A to H. Up to 90% of infected newborns develop chronic HBV infection, which gives a higher risk of HCC later in their adulthood, while 24% of adults chronically infected during childhood had either HCC or cirrhosis.

A safe and effective vaccine against hepatitis B has been available since 1982. The introduction of a childhood immunization program in many countries has dramatically reduced the carrier rate of HBV and significantly decreased the incidence of HCC. In Indonesia, HBV vaccination had been introduced since 1987, and has been integrated into national expanded programme on immunization (EPI) since 1997. WHO recommends HBV vaccination to all infants, first at birth, then followed by two subsequent vaccinations with each minimum interval of 1 and 2 months respectively.

However, the current serologic status of HBV in children has not been fully investigated in Indonesia. The aim of this study was to investigate the prevalence of HBV among the children who were born after the national immunization program in Sumenep, an area in East Java, Indonesia, which was with medium-to-high endemicity for HBV.

MATERIALS AND METHODS

Study subjects

Three ml of blood samples were taken from all the patients aged 1–13 who admitted in the Emergency Room (IGD) and Pediatric Ward (Zaal Anak) of dr. H. Moh Anwar General Hospital for some reasons. A hundred and two samples were collected in this study. Serum samples were obtained during January–March 2012 and were stored at -20°C until further usage. Written informed consents were obtained from parents/guardians of all the children. No individual hepatitis B vaccination records remained. The study protocol was reviewed and approved by the Ethics Committees of dr. H. Moh. Anwar General Hospital.

Serological markers of HBV infection

All refrigerated samples were tested for HBsAg with enzyme-linked immunosorbent assay (ELISA) (Hepalisa HBsAg) and for anti-HBs by enzyme-linked immunosorbent assay (ELISA) (Zhongsan Anti-HBS ELISA). In order to differentiate vaccine-induced antibody from naturally acquired antibody (and to identify the suspects of occult HBV infections), the prevalence of antibody to hepatitis B core antigen (anti-HBc) was assessed by enzyme-linked immunosorbent assay (ELISA) (Hepalisa Anti HBc).

RESULTS AND DISCUSSION

A total of 102 children were screened for serological markers of HBV infection. Overall, positivity rates for HBsAg and anti-HBs were 5.88% (6 out of 102) and 50.00% (51 out of 102), respectively, with the mean age of 5.76 years old. All the children (1–13 y.o.) were born after the introduction of the universal vaccination program. Anti-HBc rates were 48.04% (49 out of 102). Of 51 anti-HBs positive children, 23 were negative for anti-HBc. All six HBsAg-positive children were negative for anti-HBs.

Similar study in Borno State, Nigeria showed that overall seroprevalence of HBsAg among primary school pupils was 44.7%, while in those 439 children in Moldova (mean age, 5 years), the prevalence of HBsAg and Anti-HBc were 6.8% and 17.1%, respectively.

Successful vaccination programs had been shown by several countries which previously belonged to high prevalence HBV countries, such as in a study in Karachi, Pakistan, among sixty five (1.8%) out of 3533 children (mean age 10±4 years old) were positive for HBsAg.

In Taiwan, after 25 years of nationwide HBV universal vaccination program for infants, HBsAg sero-prevalence sharply declined from 9.8% to 0.6% with HBV vaccination coverage as high as 97.6%.

This study was unable to assess the actual coverage rate because no individual vaccination records remained. For this reason, efficacy of vaccination was not evaluated in this study. However, this study did show that acquired protective antibody against HBV infection was sufficient among children born after the universal vaccination program.

The HBsAg prevalence of 5.88% in this study was still considered high. A high coverage rate for HBV vaccination is crucial for decreasing the prevalence of HBV infection. Program for Appropriate Technology in Health, a non-governmental organization in United States of America, (PATH) stated that Birth dose within seven days of birth was 65%, even though HBV 3 coverage was 80–85%. Some of the first dose of HB vaccine in Indonesia has been administered along with the first dose of DPT, which was generally 6 weeks to 2 months of age. Delay in giving the first dose of HB vaccine would not prevent perinatal transmission.

PATH worked with the Indonesian Ministry of Health since the beginning of 1987 to launch a model immunization program on the island of Lombok. The innovative program introduced a comprehensive system for delivering a vital birth dose of the vaccine and established a system for tracking and monitoring pregnancies and births. On October 2002, the Government began an effort to ensure that every newborn is administered Hepatitis B vaccines with prefilled, single use syringe and needle (Uniject®) during the first seven days of life. HBsAg rates on children who were born before 2002 and after 2002 were 0% (0 out of 17) and 7.05% (6 out of 83) respectively. This concludes that even after PATH Uniject® programs in 2002, there had not been any effect in Sumenep.
On the other hand, there was 0% HBsAg rate in children aged 10–13 y.o., means before PATH Uniject® program was promoted? while it was 7.05% in those born after. Anti-HBc rate in previous groups was as high as 47.06%.

This means that they had ever been infected before.

Our study showed that HBsAg rate in children Sumenep was still considered high. Hepatitis B immunization coverage of 18.1% in Sumenep, data from National Basic References of Ministry of Health 2007, could be one of the factors which supported this fact.9 PATH’s Uniject® program was one of the solutions to increase the Hepatitis B immunization coverage of birth dose, but it had no significant impact in our study in Sumenep. Some other factors which might have played a role in this result should be searched and overcome.

The ACIP, the American College of Obstetrics and Gynecology (ACOG), the American Academy of Family Practice (AAFP), and the American Academy of Pediatrics (AAP) recommend that all pregnant women receive prenatal testing for hepatitis B during each pregnancy by screening serum for the presence of HBsAg, regardless of risk factors or immunization history.10 This routine HBV serological profile screening on pregnant women should be performed before birth and infants should be vaccinated and received HBIg (0.5 ml) on birth.11

Further studies with larger samples in the future will accomodate better reflections of HBV immunology profile in children. HBV DNA detection among those with HBsAg negative, anti HBc positive, and or anti HBs positive or negative should be tested in order to detect occult HBV infections.

In conclusion, HBsAg rate among children born after the Hepatitis B universal vaccination program is still high in Sumenep, acquired protective antibodies against HBV infection were sufficient, and suspects of occult hepatitis B infections were found. Continuation in PATH’s Uniject® program, implementation of immunization programs, and routine HBV serological profile screening on pregnant women should proceed to eradicate HBV infection. Some other aspects which play roles in the high HBsAg rates should be explored, including molecular studies.

Table 1. Seroprevalence of hepatitis B surface antigen (HBsAg), anti-HBs, and anti-HBc among study population

<table>
<thead>
<tr>
<th></th>
<th>No.</th>
<th>No. Positive</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HBsAg</td>
<td>102</td>
<td>6</td>
<td>5.88</td>
</tr>
<tr>
<td>Anti-HBs</td>
<td>102</td>
<td>51</td>
<td>50.00</td>
</tr>
<tr>
<td>Anti-HBc</td>
<td>102</td>
<td>49</td>
<td>48.04</td>
</tr>
</tbody>
</table>

Table 2. Comparison of prevalence of hepatitis B markers in children born before and after PATH’s Uniject® programs.

<table>
<thead>
<tr>
<th>Age (Years)</th>
<th>HBsAg</th>
<th>Anti-HBs</th>
<th>Anti-HBc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1–9</td>
<td>85</td>
<td>6</td>
<td>70.05</td>
</tr>
<tr>
<td>10–13</td>
<td>17</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

We are grateful to The Japan Initiative for Global Research Network on Infectious Diseases (J-GRID), the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan, Head of Badan Kesehatan Bangsa, Politik, dan Perlindungan Masyarakat Kabupaten Sumenep (Kesbanglinmas), Director of Moh. Anwar General Hospital, Head of Ethnic Committee of Moh. Anwar General Hospital, Head of Information and Evaluation Department of Moh. Anwar General Hospital, Head of Medicine Department of Moh. Anwar General Hospital, Head of Emergency Room of Moh. Anwar General Hospital, nurses of Emergency Room (IGD) and Pediatric Ward (Zaal Anak) of Moh. Anwar General Hospital, and medical analysts of Laboratory Moh. Anwar General Hospital for their great help and cooperation.

REFERENCES