Original Article

IJTID

(INDONESIAN JOURNAL OF TROPICAL AND INFECTIOUS DISEASE)

Scientific Journal of Tropical and Infectious Disease

Resistance Pattern of Anti-TB Drugs in Drug-Resistant TB of Pulmonary Tuberculosis Patients in Dr. Soetomo Academic Hospital, Surabaya, Indonesia

Olivia Marsha Maritsa¹, Ni Made Mertaniasih^{2,3*}, Ariani Permatasari^{4,5}, Tutik Kusmiati^{4,5}

¹Medical Study Program, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

²Departement of Clinical Microbiology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

³Clinical Microbiology Department, Dr. Soetomo Academic Hospital, Surabaya, Indonesia

⁴Department of Pulmonology and Medical Respirology, Faculty of Medicine, Airlangga University, Surabaya, Indonesia

⁵Pulmonology Department, Dr. Soetomo Academic Hospital, Surabaya, Indonesia

ARTICLE INFO

Received: December 08, 2024 Accepted: December 13, 2024 Published: August 31, 2025 Available online: August 31, 2025

*) Corresponding author: E-mail: ni-made-m@fk.unair.ac.id

Keywords:

Pulmonary Tuberculosis Drug-Resistant TB Resistance Pattern Anti-TB Drugs

This is an open access article un- der the CC BY-NC-SA license

(https://creativecommons.org/l i- censes/by-nc-sa/4.0/)

Abstract

Pulmonary tuberculosis is an infectious disease that can be transmitted through the air due to infection with Mycobacterium tuberculosis bacteria. According to the WHO, TB is the second-highest cause of death in infectious diseases in the world. This study aims to determine patterns of anti-TB drug resistance in drugresistant TB patients in Dr. Soetomo Academic Hospital from January 2022 to December 2023. This was a descriptive retrospective using patient medical record data in Dr. Soetomo Academic Hospital for the period January 2022 -December 2023. This study included 261 drug-resistant pulmonary TB patients, the majority of whom were new TB patients (61.3%). Anti-TB drug resistance was most prevalent in RR-TB (43.7%), with the highest number of new cases (28.4%). Drug susceptibility test showed High-dose Isoniazid (INHHD) had a high resistance rate (56%). Isoniazid (H) had a high resistance rate (66%). Pyrazinamide (Z) showed high sensitivity (66%). Levofloxacin (Lfx) showed high sensitivity (89%). High-dose Moxifloxacin (Mfx^{HD}) high sensitivity level (94%). Moxifloxacin (Mfx) high sensitivity level (92%). Bedaquiline (Bdq) high sensitivity level (98%). Linezolid (Lzd) high sensitivity level (99%). Clofazimine (Cfz) high sensitivity level (97%). Amikacin (Amk) high sensitivity level (100%). Drug-resistant pulmonary TB patients recently show a high drug sensitivity pattern to the second-line anti-TB drugs. MTB has become resistant to Isoniazid. However, it is still sensitive to Pyrazinamide by 66% and Levofloxacin by 89%. Moxifloxacin, Bedaquilin, Linezolid, Clofazimine, and Amikacin have high sensitivity >90%.

Cite this as: Maritsa, O.M., Mertaniasih, N.M., Permatasari, A., Kusmiati, T. (2025). Resistance Pattern of Anti-TB Drugs in Drug-Resistant TB of Pulmonary Tuberculosis Patients in Dr.Soetomo Academic Hospital Surabaya Indonesia. *Indonesian Journal of Tropical and Infectious Disease*, 13(2): 143-154. https://doi.org/10.20473/ijtid.v13i2.66525

INTRODUCTION

Pulmonary tuberculosis (TB) is an airborne infectious disease caused by infection with Mycobacterium tuberculosis bacteria.¹ According to the World Health Organization (WHO), TB is still a global public health problem today.² TB is the second-highest cause of death in infectious diseases in the world.³ The estimated number of people diagnosed with TB worldwide is 10.6 million cases. Up from the previous 2021 of 10.3 million people.⁴ Based on the latest data from the WHO Tuberculosis Report 2023, Indonesia currently ranks second with the highest TB caseload after India, with 724 thousand cases and an increase in 2023 of 820 thousand cases.^{2,5} Globally in 2022, it is estimated that 410,000 people will experience drug resistance. In Indonesia in 2022, the number of deaths reached 93 thousand, and as many as 12 thousand people were recorded with drug-resistant TB cases. The success rate of drugsensitive TB treatment is 85% and drugresistant TB treatment is 55%. This figure has not yet reached the target, indicating that the urgency of commitment needs to be increased and the national elimination strategy to achieve the 90% target strengthened by 2024.6

Resistance of Mycobacterium tuberculosis to anti-TB drugs is a condition where the bacteria cannot be destroyed with anti-TB drugs.7 Anti-TB drug resistance can be caused by gene mutation or selective pressure. The mechanism of drug resistance is influenced several factors, including by compliance of TB patients in taking drugs regularly or not completing the treatment program. 8 The cause of anti-TB drug resistance is due to inadequate use of drugs, which occurs when the treatment given is not in the right way in terms of drug dosage, treatment duration, and is not

suitable for the patient's condition. Also, inappropriate treatment regimens can lead to treatment failure of TB patients.9 Gene mutation is the main mechanism that causes drug resistance to MTB, mutations in certain genes can change the target of drug action, reduce effectiveness, and the bacteria can still survive in extreme conditions. 10 Selective pressure on MTB causes phenotypes to become more favorable in certain environments due to antibiotics. 11 resistance to bacterial Resistance in new patients is patients who have never received treatment before or received anti-TB drugs for less than 1 month. This patient is infected from a previously treated patient. 12 Differences in the characteristics of TB patients mean that drug-resistant TB transmission is more often transmitted from patients who are not on treatment or whose treatment is ineffective. Effective treatment and patient management are important in reducing the transmission of resistant strains to other individuals. 13 TB patients infected by drug-resistant patients have worse clinical outcomes and longer cure times, especially if infected with untreated patients.¹⁴ DR-TB pulmonary TB patients reported include RR-TB, MDR-TB, Pre-XDR-TB, and XDR-TB. 15 RR-TB is determined from the results of the Xpert MTB/RIF examination, in RR-TB patients, followed by MGIT 960 culture examination. The MGIT 960 system is an efficient and rapid TB diagnosis method used for anti-TB drug susceptibility testing. 16 This test records and reports the sensitivity of firstline and second-line anti-TB drugs such as fluoroquinolones (Levofloxacin, Ofloxacin), Moxifloxacin, and aminoglycosides (Amikacin, Kanamycin, and Capreomycin), Bedaquilin, and Clofazimine. 17,18 Linezolid. and purpose of this study was to determine the pattern of anti-TB drug resistance among DR-TB pulmonary TB patients in Dr.

Soetomo Academic Hospital, Surabaya, from January 2022 to December 2023.

MATERIALS AND METHODS

Materials

The data used in this research were secondary data, obtained from medical records of drug-resistant pulmonary TB patients in new and re-treatment cases, and adult age criteria of 18-65 years. The variables in this study were drug-resistant pulmonary TB patients, age, gender, drug-resistance TB classification, culture MGIT, and Drug-Susceptibility Testing (DST). The sample size was 261 patients who met the inclusion criteria.

Methods

This study used a retrospective descriptive observational design. DR-TB data on RR-TB using Xpert® MTB/RIF and anti-TB drugs sensitivity using BACTECTM MGITTM 960 system obtained from sputum of pulmonary TB patients and reported drugs Isoniazid, Pyrazinamide, Levofloxacin, Moxifloxacin, Bedaquilin, Linezolid, Clofazimine, and Amikacin were obtained from pulmonary TB patients' medical records at the Dr. Soetomo Academic Hospital for the period January 1, 2022, to December 31, 2023.

RESULTS AND DISCUSSION

Patient Demographics

Drug-resistant pulmonary TB patients recorded in medical record data at the Dr. Soetomo Academic Hospital from January 1, 2022, to December 31, 2023, totaled 261 patients (Table 1). Demographic characteristics of patients based on gender: 149 patients (57.1%) were male, while 112 patients (42.9%) were female. This is related to the level of physical activity and greater

workload in men. Frequent social activities that involve interaction with many people, as well as unhealthy lifestyles such as smoking and drinking alcohol, lead to decreased immunity and increased risk of TB. Men, therefore, tend to be more susceptible to TB infection. ^{19,20}

Age distribution was grouped based on the age range of 18-24 years as many as 27 patients (10.3%), age 25-34 years as many as 38 patients (14.6%), age 35-44 years as many as 52 patients (19.9%), age 45-54 years as many as 89 patients (34.1%), and age 55-65 years as many as 55 patients (21.1%). Old age is thought to increase the risk of TB disease. This may be due to factors such as the causative agent, individual conditions in the level of immunity, and an unhealthy environment.⁷ Mature age is related to productive working age, and activities related to many people are risk factors for increased transmission from surrounding TB patients. 19,20

Table 1. Demographics of Drug-Resistant Pulmonary TB Patients with TB Treatment History in Dr. Soetomo Academic Hospital, January 2022 - December 2023

Patient	,					
Demogr aphics	New Cases	Relapse	Loss to follow up	Treat ment Failure	Total n=261	
Gender						
Male	90	37	8	14	149	
	34.5%	14.2%	3.2%	5.3%	57.1%	
Female	70	21	7	14	112	
	26.8%	8%	2.7%	5.3%	42.9%	
Age						
18-24	24	2	0	1	27	
	9.2%	0.8%	0%	0.4%	10.3%	
25-34	20	10	4	4	38	
	7.7%	3.9%	1.5%	1.5%	14.6%	
35-44	28	11	5	8	52	
	10.7%	4.2%	2%	3%	19.9%	
45-54	58 22.2%	18 6.9%	2 0.8%	11 4.2%	89 34.1%	
55-65	30	17	4	4	55	
	11.5%	6.5%	1.5%	1.5%	21.1%	

Drug Susceptibility Test Examination

Sensitivity of anti-TB drugs in patients with drug-resistant pulmonary TB (Table 2) showed that High-dose Isoniazid (INH^{HD}) had a high level of resistance in 135/239 patients (56%). Isoniazid (H) showed high resistance in 100/151 patients (66%). Pyrazinamide (Z)showed sensitivity in 86/131 patients (66%). Levofloxacin (Lfx) showed sensitivity in 213/238 patients (89%). Moxifloxacin (Mfx) showed sensitivity in 11/12 patients (92%). High-dose Moxifloxacin (Mfx^{HD}) showed sensitivity in 215/228 patients (94%). Bedaquilin (Bdq) showed sensitivity in 235/239 patients (98%). Linezolid (Lzd) showed sensitivity in 237/239 patients (99%). Clofazimine (Cfz) showed sensitivity in 232/239 patients (97%). Amikacin (Amk) showed sensitivity in 86/86 patients (100%).

This study revealed that most patients were resistant to Isoniazid of 66%. Isoniazid is the first-line anti-TB drug given to patients diagnosed with TB, is often resistant; and unsupervised and incomplete treatment can increase drug resistance.²¹ In addition, they are still sensitive pyrazinamide to (66%). Pyrazinamide has a different mechanism of action from other TB drugs; bacteria are less prone to resistance to Pyrazinamide Isoniazid and Rifampicin, Pyrazinamide regimens generally do not require frequent dosing, reducing the potential for resistance.²² The high sensitivity rates of Levofloxacin, Moxifloxacin, Bedaquilin, Linezolid, Clofazimine, and Amikacin are likely due to the fact that these drugs are used with appropriate indications and are not drugs that are freely used in the community. This requires further research. Levofloxacin and Moxifloxacin fluoroquinolone class drugs commonly used for drug-resistant TB patients, the sensitivity rate is still high especially in

strains that do not have gyrA or gyrB gene mutations, a high level of sensitivity due to the use of the right dose and combination. Second-line anti-TB drugs such as Levofloxacin, Moxifloxacin, Bedaquilin, Linezolid, Clofazimine, and Amikacin have high sensitivity because they have different and more specific mechanisms of action compared to the first-line anti-TB drugs.

WHO

recommends

The

individualized DR-TB treatment based on DST results for first-line and second-line drugs. Nearly a quarter of cases are resistant to at least one first-line drug, so second-line drugs are more widely used in TB treatment, with more side effects and higher costs.²⁵ DST plays a role in TB management and control, especially in the context of increasing drug resistance. DST enables rapid identification of MTB strains that are resistant to drugs such as isoniazid and rifampicin as first-line drugs, and is important in preventing the spread of DR-TB, thereby facilitating the provision of effective treatment therapy based on specific resistance profiles. First-line anti-TB drugs have a high incidence of drug resistance, possibly because first-line anti-TB drugs are the main TB treatment given to patients who are first diagnosed with TB. The causative factor of this resistance is due to treatment non-compliance and is related to the long duration of treatment, so that the chance of resistance increases. Meanwhile, second-line anti-TB drugs are currently still sensitive and effective as a treatment for TB patients. **Factors** determining the effectiveness of TB drugs ability of bactericidal are bacteriostatic activity that can kill and inhibit the development of bacteria, the ability of drugs to reach the concentration of infection sites, side effects, the ability to overcome drug resistance, and the duration of treatment.26 TB patients should receive the correct dose. The standard dose for

drugs is Rifampicin 10 mg/kg, maximum 600 mg; Isoniazid 5 mg/kg, maximum 300 mg; Ethambutol 15 mg/kg, and Pyrazinamide 25 mg/kg. Levofloxacin 750-1000mg, Moxifloxacin 400-800mg, Linezolid 600 mg, Bedaquiline 400mg once daily for 2 weeks, followed by 200mg 3 times a week for 24 weeks, Clofazimine the

first 2 months 200-300mg then reduced to 100mg, and Amikacin 12-15mg/kg.²⁷ An indicator of successful TB treatment is if the TB patient completes therapy with symptoms resolved or cured as measured by a negative BTA at the end of treatment and at least one follow-up examination.²⁸

Table 2 Drug-Resistant Pulmonary TB based on the Treatment History with Drug Susceptibility Testing (DST) in Dr. Soetomo Academic Hospital, January 2022 - December 2023

	Drug Susceptibility Test Results										
TB Treatment History	Sensitivity Pattem	INH HD	Н	Lfx	Mfx HD	Mfx	Bdq	Lzd	Cfz	Z	Amk
New Cases	S	67	34	128	131	6	145	143	143	49	49
	R	78	62	16	9	0	0	2	2	30	0
	Total	145	96	144	140	6	145	145	145	79	49
Relapse	S	21	10	48	47	3	53	53	53	22	22
	R	32	21	5	3	0	0	0	0	11	0
	Total	53	31	53	50	3	53	53	53	33	22
Loss to follow up	S	6	3	13	13	1	14	15	13	7	7
	R	9	4	2	1	0	1	0	2	1	0
	Total	15	7	15	14	1	15	15	15	8	7
Treatment Failure	S	10	4	24	24	1	23	26	23	8	8
	R	16	13	2	0	1	3	0	3	3	0
	Total	26	17	26	24	2	26	26	26	11	8
Total -	S	104	51	213	215	11	235	237	232	86	86
		44%	34%	89%	94%	92%	98%	99%	97%	66%	100%
	R	135	100	25	13	1	4	2	7	45	0
	ĸ	56%	66%	11%	6%	8%	2%	1%	3%	34%	0%

Note: S = Sensitive; R = Resistant; N = Amount

Research conducted in India revealed that, as a country with the highest MDR-TB rate in the world, DR-TB is one of the main obstacles progress towards to elimination.²⁹ In another study in India, many patients were found to have high resistance to fluoroquinolone class drugs at and resistance to 72.8% Second-Line Injectable Drugs (SLID) at 15.7%. Resistance to fluoroquinolones with SLID 11.5%. Selection of appropriate treatment regimens is needed as a substitute for fluoroquinolones.³⁰ Research conducted in China, as the country with the third highest number of TB cases after India and Indonesia. Drug-resistant TB strains,

especially MDR-TB and XDR-TB, are increasing the dependence on second-line TB drugs. Analysis of all TB drugs showed resistance of 56.8%, requiring increased targeted interventions for drug-resistant TB in China. The country accounts for a quarter of global MDR-TB cases.³¹ Research conducted in the Philippines, as the fourth highest TB country, found that patients had SLID resistance of 56%, Fluoroquinolone resistance of 30.7%, MDR-TB patients were found to be 5.3% and XDR-TB as much as 8%. In his study, the addition of the drug Bedaquiline in the treatment regimen against DR-TB assessed its effectiveness, safety, and tolerability. The results of regimens

containing Bedaquiline in MDR/XDR-TB patients were highly effective with good safety and treatment outcomes.³² Previous research conducted in Dr. Soetomo Hospital, Surabaya, Indonesia, said that the use of the drug Bedaquiline can improve recovery and reduce the risk of death of MDR-TB patients, as well as in patients who cannot be followed up and use in combination with drugs Levofloxacin, Clofazimin, and Linezolid increases the efficacy of therapy.³³ DR-TB in different countries can be influenced by health policy factors and TB treatment; the implementation of the DOTS (Directly Short-course) Observed Treatment program is effective in reducing TB drug resistance.34

Classification of Drug-Resistance Patterns

The results of the data analysis of this study showed that the number of drugresistant TB patients with positive MTB culture (Table 3) results came from new cases as many as 160 patients (61.3%), relapse cases as many as 58 patients (22.2%), loss to follow up cases as many as 15 patients (5.7%), and failed cases as many as 28 patients (10.8%). There is a difference with that revealed by the Ministry of Health of the Republic of Indonesia (2020), that cases of DR-TB are usually more prevalent in TB with retreatment cases.³⁵ New cases of drugresistant TB patients may contain MTB strains in newly diagnosed TB patients who have never received TB drugs or a history of anti-TB drugs for less than one month. These patients are infected with MTB that is resistant to TB drugs, which is called primary resistance. New TB patients who develop resistance can occur due to close contact with DR-TB patients.³⁶

This study revealed that drugresistant pulmonary TB patients in new cases were more numerous, possibly due to social and psychological factors. Patients undergoing re-treatment may not visit the referral hospital, and comorbid conditions could also contribute. Dr. Soetomo's a referral hospital may not cover all drug-resistant TB patients in East Java, Indonesia. This highlights the need for an informative communication approach, intersectoral cooperation, and further research.

Table 3 Classification of Drug Resistance with Pulmonary TB Treatment History in Dr. Soetomo Academic Hospital, January 2022 - December 2023

Drugres istance	New Relaps Cases e		Loss to follo w up	Treat ment Failure	Total	
RR	74	25	5	10	114	
	28.4%	9.5%	1.9%	3.8%	43.7%	
MDR	66	28	6	13	113	
	25.3%	10.7%	2.3%	5%	43.3%	
Pre-	16	5	2	2	25	
XDR	6.1%	1.9%	0.7%	0.7%	9.6%	
XDR	4	0	2	3	9	
	1.5%	0%	0.7%	1.5%	3.4%	
Total	160	58	15	28	261	
1 otai	61.3%	22.2%	5.7%	10.8%	100%	

Note: RR = Rifampicin Resistant; MDR = Multidrug Resistant; Pre-XDR = Pre-Extensively Drug Resistant; XDR = Extensively Drug Resistant

The results of this study are in line with research at Margono Soekarjo Hospital, Indonesia, showing the majority of new TB patients are 7,3 times more likely to develop resistance. Contact transmission of drug-resistant TB causes new TB cases to experience primary resistance, which causes an increase in drug-resistant cases. Furthermore, relapsed TB patients have a 3.7 times higher risk of developing drug resistance than those who have never received previous treatment.³⁶

Diagnosis of TB using the GeneXpert MTB/RIF test to detect drug resistance to rifampicin based on the drug sensitization test. Patients with RR-TB were new cases (43.7%), relapsed cases (9.5%), loss to follow-up cases (1.9%), and

failed cases (3.8%). MDR-TB in new cases (43.3%), relapse cases (10.7%), loss to follow-up cases (2.3%), and failed cases (5%). Pre-XDR-TB in new cases (6.1%), relapse cases (1.9%), loss to follow-up cases and failed cases (0.7%). XDR-TB in new cases (1.5%), loss to follow-up cases (0.7%), and failed cases (1.5%). The highest number of patients with RR-TB was found in the new TB cases group, totaling 74 people (28.4%).

In this study, it was found that the highest number of new cases of pulmonary TB patients experienced RR-TB at the Dr. Soetomo Academic Hospital in 2022-2023. New TB cases are patients who have never received previous treatment or received anti-TB drugs for less than 1 month (<28 doses). RR-TB is rifampicin resistance, without resistance to other anti-TB drugs.¹⁵ The causes of drug-resistant TB are patient noncompliance with treatment regimens, noncompletion of treatment, gene mutations, resistant strains transmitted from infected people, and poor immunity.³⁷ Contact transmission of drug-resistant TB causes new case patients to develop primary resistance, leading to an increase in RR-TB cases.

This study is in line with Wahidah et al. (2024), it was found that the majority of anti-TB drug-resistant categories were in RR-TB as many as 85 patients (53.8%). MDR-TB was 59 patients (37.3%), Pre-XDR-TB was 11 patients (7%), and XDR-TB was 3 patients (1.9%). The drugs Rifampicin and Isoniazid are experiencing significant resistance in patients because these drugs are used as first-line anti-TB drugs and are the most effective in eliminating TB.²⁹ Research conducted at Dr. Mohammad Hoesim Palembang General Hospital found that 52 subjects (56.5%) had RR-TB, 33 subjects (35.8%) had MDR-TB, 6 subjects (6.5%) had Pre-XDR-TB, and 1

subject (1.2%) had XDR-TB.³⁸

All countries must be committed to ending TB globally with the End TB Strategy and SDGs, promptly diagnose TB, record and report TB incidence, and DR-TB cases.³⁹ In addition, implementation is important to intensify education on patient adherence to complete treatment.⁴⁰ Long-term research services are needed to continue to determine anti-TB drug resistance patterns, to determine trends, and diagnostic capabilities.

STRENGTH AND LIMITATION

The strength of this study lies in the use of Drug Susceptibility Testing (DST) for anti-TB drug sensitivity. However, the limitation of this study was that the data were collected over a limited period of time, so it did not include long-term changes in the variables studied and unmeasured variables that might affect the results of the study, such as close contact with DR-TB and comorbidities.

CONCLUSIONS

This study showed that drug-resistant pulmonary TB patients recently show a high drug sensitivity pattern to the second-line anti-TB drugs. MTB has become resistant to Isoniazid. However, it is still sensitive to Pyrazinamide by 66% and Levofloxacin by 89%. Moxifloxacin, Bedaquilin, Linezolid, Clofazimine, and Amikacin have high sensitivity >90%.

ACKNOWLEDGEMENT

The authors would like to express their gratitude to all participants who participated in this study and to all staff at Dr. Soetomo Academic Hospital, Surabaya, Indonesia.

ETHICAL CLEARANCE

All the protocols and the use of medical records for the data on this research are approved by Dr. Soetomo Surabaya General Hospital ethics committee (Ref. No.1477/LOE/301.4.2/X/2023).

FUNDING

This study did not receive any funding.

CONFLICT OF INTEREST

All of the authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTION

Every author has equally contributed to this research, from the design, data analysis, and interpretation, critically revising it, and giving their final approval of the article.

REFERENCES

- 1. Siregar PA, Farashati JI, Syafira AC, et al. Konsep Epidemiologi Terjadinya Penyakit Tuberkulosis. Zahra: Journal of Health and Medical Research [Internet]. 2023 Jul 5 [cited 2025 Jan 27];3(3):462-70. Available from: https://adisampublisher.org/index.php/aisha/article/view/468
- 2. World Health Organization (WHO). Global Tuberculosis Report 2023 [Internet]. 2023. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2023

- 3. World Health Organizaation (WHO). TB Day 2022 Fact Sheet [Internet]. 2022. Available from: https://www.who.int/indonesia/ne ws/campaign/tb-day-2022/fact-sheets#:~:text=TB%20adalah%20 penyebab%20kematian%20terbes ar,di%20atas%20HIV%2FAIDS
- 4. World Health Organizaation (WHO). Health Data Overview for Republic of Indonesia. [Internet]. 2021. Available from: https://data.who.int/countries/360
- 5. Kementerian Kesehatan Republik Indonesia. Program Penanggulangan Tuberkulosis Tahun 2022. 2023. Available from:
 https://www.tbindonesia.or.id/wp-content/uploads/2023/09/Laporan-Tahunan-Program-TBC-2022.pdf (2023)
- 6. Sudirman S, Kolupe V, Assa AA, Purwiningsih S, Susianawati D. Implementation of the Pulmonary TB Control Program: Qualitative Study Parigi **Primary** at Healthcare. JPP [Internet]. 2024 9 [cited Aug 2025 Jan 27];7(4):694-03. Available from: https://journal.unpacti.ac.id/index. php/JPP/article/view/1427
- 7. Siregar SR. Extensively Drug Resistant Tuberculosis (XDR TB). Averrous: Jurnal Kedokteran dan Kesehatan Malikussaleh [Internet]. 2019;5(2):26–43. Available from: https://ojs.unimal.ac.id/index.php/averrous/article/view/2079/1184
- 8. Ritonga IL, Manurung AP. Faktor-Faktor Penyebab Kegagalan Pengobatan TBC Pada Penderita TBC Di RSU Imelda Pekerja Indonesia. JIKI [Internet]. 2022;8(2):107-112. Available from:https://jurnal.uimedan.ac.id/i

- ndex.php/jurnalkeperawatan/article/view/1043
- 9. HL, Yulendasari Saputra R. Kusumaningsih D. Faktor-faktor dengan yang berhubungan Multidrug Resistant Tuberculosis (MDR-TB) pasien pada tuberkulosis paru. Holistik Jurnal Kesehatan [Internet]. 2022 Oct 20 [cited 2025 Jan 27];16(6):516-28. Available from: https://ejurnalmalahayati.ac.id/inde x.php/holistik/article/view/8161/pdf
- 10. Swain SS, Sharma D, Hussain T, Pati S. Molecular mechanisms of genetic factors and underlying associated mutations for drug resistance in Mycobacterium tuberculosis. Emerging Microbes & Infections [Internet]. 2020 Apr 4;9(1):1651–63. Available from: https://www.tandfonline.com/doi/ci tedby/10.1080/22221751.2020.178 5334?scroll=top&needAccess=true
- 11. DeCooman D, Metzler K. Selective Pressure: Definition, Types & Example. Science Courses [Internet]. 2022 [cited 2023 Nov 21]. Available from: https://academy/course/introduction-to-biology.html
- 12. Kementerian Kesehatan Republik Indonesia. Lampiran Keputusan Menteri Kesehatan Republik Indonesia : Pedoman Nasional Pelayanan Kedokteran Tata Laksana Tuberkulosis. 2019. Available from: https://yankes.kemkes.go.id/unduha n/fileunduhan_1610422577_80190 4.pdf
- 13. Koh WJ, Lee H, Jeon D, et al. Drug-resistant tuberculosis: Challenges and advances. Lancet Infect Dis. 2021;21(3):301-308.

- 14. Vasquez JM, Lee M, Kwon Y, et al. Outcomes and predictors of multidrug-resistant tuberculosis treatment: A 5-year cohort study. J Clin Tuberc Other Respir. 2023;31:100320.
- 15. World Health Organizaation (WHO). Global Tuberculosis Report 2024. [Internet]. 2024. Available from: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2024
- 16. Subramanyam B, Sivaramakrishnan G, Sangamithrai D, et al. Reprocessing of Contaminated MGIT 960 Cultures to Improve Availability of Valid Results for Mycobacteria. International Journal of Microbiology [Internet]. 2020 Jul 18;2020(1):1–3. Available from:
 - https://onlinelibrary.wiley.com/doi/ 10.1155/2020/1721020
- 17. Maningi NE. Malinga LA. Antiabong JF, Lekalakala RM, Mbelle NM. Comparison of line probe assay to BACTEC MGIT 960 system for susceptibility testing of first and second-line antituberculosis drugs in a referral laboratory in South Africa. BMC Infectious Diseases [Internet]. 2017 Dec;17(1). Available from: https://pmc.ncbi.nlm.nih.gov/article s/PMC5745758/
- 18. Tekin K, Albay A, Simsek H, Sig AK, Guney M. Evaluation of the BACTEC MGIT 960 SL DST Kit and the GenoType MTBDRsl Test for Detecting Extensively Drugresistant Tuberculosis Cases. The Eurasian Journal of Medicine [Internet]. 2017 Oct 25;49(3):183–

- 7. Available from: https://pmc.ncbi.nlm.nih.gov/artic les/PMC5665627/#t1-eajm-49-3-183
- 19. Janah AN, Najmah N, Setiawan Y, Idrus M, Fajri R, Murniati H, Aprina, F. Hubungan Status Pengobatan dan Riwayat Pengobatan Sebelumnya Terhadap Keberhasilan Pengobatan Pasien TBC Usia Produktif di Kota Palembang. Manuju. 2023 Dec 1;5(12):4472-4484. Available from: https://ejurnalmalahayati.ac.id/ind ex.php/manuju/article/view/12780
- 20. Nurmala QP, Habib I, Nugroho H. Relationship between Tuberculosis Treatment History and the Incidence of Multidrugs Resistant Tuberculosis (MDR TB). 2024 Nov 20. Available from: http://repository.umy.ac.id/handle /123456789/33711
- 21. Seddon JA, Donald PR, du Toit E, et al. Emergence and epidemiology of drug-resistant tuberculosis. Lancet Respir Med. 2022;10(7):587-600.
- 22. Xu H, Li Q, Wang F, et al. Isoniazid resistance mechanisms in *Mycobacterium tuberculosis* and their role in clinical resistance. Front Microbiol. 2022:13:789345.
- 23. Vidal L, Pavan E, Soni S, et al. Fluoroquinolone resistance in *Mycobacterium tuberculosis*: Mechanisms, clinical consequences, and implications for treatment. Clin Microbiol Rev. 2022;35(4):e0019821.
- 24. Ginsburg AS, Gupta R, Steingart KR, et al. Global epidemiology of tuberculosis and progress toward ending the tuberculosis epidemic.

- Lancet. 2023;401(10382):1112-1124.
- 25. World Health Organization (WHO). Technical manual for drug susceptibility testing of medicines used in the treatment of tuberculosis. [Internet]. 2018. Available from: https://www.who.int/publications/i/item/9789241514842
- 26. Dartois VA, Rubin EJ. Antituberculosis treatment strategies and drug development: Challenges and priorities. Nature Reviews Microbiology [Internet]. 2022 Apr 27;20:685–701. Available from: https://pubmed.ncbi.nlm.nih.gov/35478222/
- 27. Alffenaar JWC, Stocker Forsman LD, Garcia-Prats A, Heysell SK, Aarnoutse RE, et al. Clinical standards for the dosing and management of TB drugs. The International Journal Tuberculosis and Lung Disease: The Official Journal of the International Union Against Tuberculosis and Lung Disease [Internet]. 2022 Jun 1 [cited 2023 May 21;26(6):483-99. Available from: https://pubmed.ncbi.nlm.nih.gov/ 35650702/
- 28. Limenh LW, Kasahun AE, Sendekie AK, Seid AM, Mitku ML, Fenta ET, et al. Tuberculosis treatment outcomes and associated factors among tuberculosis patients treated at healthcare facilities of Motta Town, Northwest Ethiopia: a fiveyear retrospective study. Scientific reports [Internet]. 2024 Apr 2;14(1). Available from: https://pubmed.ncbi.nlm.nih.gov/ 38565912/

- 29. Vishwakarma D, Gaidhane A, Sahu S, Rathod AS. Multi-Drug Resistance Tuberculosis (MDR-TB) Challenges in India: A Review. Cureus. 2023 Dec 9;15(12):e50222. Available from: https://pubmed.ncbi.nlm.nih.gov/38 192967/
- R, 30. Gopalaswamy Palani N. Viswanathan D, et al. Resistance **Profiles** to Second-Line Anti-Tuberculosis Drugs and Their Treatment Outcomes: A Three-Year Retrospective Analysis from South India. Medicina [Internet]. 23;59(6):1005-5. 2023 May Available from: https://pubmed.ncbi.nlm.nih.gov/37 374209/
- 31. Jin C, Wu Y, Chen J, Liu J, Zhang H, Qian Q, et al. Prevalence and of **Drug-Resistant** Patterns Mycobacterium tuberculosis in Newly Diagnosed **Patients** in China: A Systematic Review and Meta-Analysis. Journal of Global Antimicrobial Resistance [Internet]. 2024 May 1; 38:292-301. Available from: https://pubmed.ncbi.nlm.nih.gov/38 825149/
- 32. Balanag VMJ, Lofranco VS, Mantala MJ, Santigo MRT, Cabasis PJE, Araneta AG, et al. The Introduction of Bedaquiline Regimen for **Drug-Resistant** Tuberculosis in the Philippines: An Operational Study. Journal of **Tuberculosis** Report [Internet]. 2022 Jan 1;10(4):205-219. Available from: https://www.scirp.org/journal/paper information?paperid=121738
- 33. Setyawan MF, Mertaniasih NM, Soedarsono S. The Profile of

- Multidrug Tuberculosis Regimen Treatment Outcomes Pulmonary MDR-TB Patients at the Tertiary Referral Hospital Dr. Soetomo, East Java, Indonesia: A Seven-Year Retrospective Study on Bedaquiline. Acta Medica Indonesiana [Internet]. 2023 [cited 2025 Jan 27];55(4):430-439. Available from: https://www.actamedindones.org/in dex.php/ijim/article/view/2285/pdf
- 34. Sazali MF. Rahim SSSA. Mohammad AH, Kadir F, Payus AO, Avoi R, et al. Improving tuberculosis medication adherence: The potential of integrating digital technology and health belief model. **Tuberculosis** and Respiratory Diseases 2022 Dec [Internet]. Available 23;86(2). from: https://pmc.ncbi.nlm.nih.gov/article s/PMC10073608/
- 35. Kementerian Kesehatan Republik Indonesia. Petunjuk Tenis Penatalaksaan Tuberkulosis Resistan Obat di Indonesia. 2019. Available from: https://www.tbindonesia.or.id/wp-content/uploads/2021/06/TBRO_B uku-Juknis-Tuberkulosis-2020-Website.pdf
- 36. Kusumandari VP, Sunarti S, Nawangsari D. Pengaruh Riwayat Pengobatan Pasien TB Terhadap Kejadian TB MDR di RSUD Prof. Dr. Margono Soekarjo. Pharmgen. 2023; 2(3):176-88.
- 37. Mancuso G, Midiri A, De Gaetano S, Ponzo E, Biondo C. Tackling Drug-Resistant Tuberculosis: New Challenges from the Old Pathogen Mycobacterium tuberculosis. Microorganisms [Internet]. 2023 Sep 1;11(9):2277. Available from:

- https://www.mdpi.com/2076-2607/11/9/2277/html
- 38. Wahidah I. Arwi KM, Norcahvanti I, et al. Determinan pola resistensi pasien Multi-Drug Resistant Tuberculosis (MDR TB): Studi Multi-Center Jember. Indonesia. Indonesian Journal of Pharmaceutical Education [Internet]. 2024 Mar 16;4(1):56-Available https://ejurnal.ung.ac.id/index.php /ijpe/article/view/24636
- 39. Chalik MN, Fathurrachman A, Andriani L, Rouly Pasaribu, Rasyid A. Resistance Patterns in Drug-Resistant Pulmonary **Tuberculosis Patients** at Dr. Mohammad Hoesin Palembang Hospital. Jurnal **RSMH** Palembang [Internet]. 2024 Jun 21;5(1):358-63. Available from: https://www.jurnalrsmh.com/inde x.php/JRP/article/view/64
- 40. Dilas D, Flores R, Morales-García WC, Calizaya-Milla YE, Morales-García M, Sairitupa-Sanchez L, et al. Social Support, Quality of Care, and Patient Adherence to **Tuberculosis** Treatment in Peru: The Mediating Role of Nurse Health Education. Patient Preference and Adherence. 2023 Jan;17:175-86. Available https://pubmed.ncbi.nlm.nih.gov/ 36704124/