

Volume 9 No. 3, July 2025 Received: 15 April 2025 Revised: 13 May 2025 Accepted: 18 June 2025 Published: 28 July 2025 Available online at: http://e-journal.unair.ac.id/index.php/IMHSJ

THE EFFECT OF KUNDALINI ON MUAC AND BODY WEIGHT IN 1ST TRIMESTER WITH EMESIS GRAVIDARUM

Herdian Fitria Widyanto Putri ¹, Atik Farokah ¹, Qatrunnada Naqiyyah Khusmitha³

Department Midwifery, Bhakti Wiyata Health Science Institute, Kediri, Indonesia
²Department Midwifery, University State of Surabaya, Surabaya, Indonesia

Correspondence address: KH Wachid Hasyim Street No.65, Bandar Lor, Kediri Email : herdian.putri@iik.ac.id

Abstract

Background: Emesis gravidarum is a discomfort that occurs in mothers during early pregnancy. If emesis gravidarum is not adequately managed, children are more likely to experience stunting. There may be negative impact on health from stunting. Stunting is a health problem that is still the government's current focus. Kundalini yoga is a physical activity that focuses on breathing, so it is hoped that it can divert nausea. When the nausea disappears it will be increase appetite so it can impact to a person's nutritional intake, which can be seen from an increase in MUAC and body weight. The purpose of this study is to evaluate whether kundalini yoga is associated with increased MUAC and body weight in women who have emesis gravidarum. Method: This study used a pretest and post-test control group design as a quasi-experiment that provided kundalini yoga intervention for 15 minutes every day for 30 days. The study population comprised 20-35 year old pregnant women experiencing mild-moderate nausea and vomiting throughout the 1st trimester of their pregnancy. Using the total sampling technique, samples were collected. In this study, body weight gain (BW) and upper arm circumference (MUAC) were the dependent variables, whereas kundalini yoga was the independent variable. The tools used are body measuring tape and body scales. The independent t-test used to examine variations in body weight and upper arm circumference. Result: In the intervention group, the MUAC addition was 0.096 cm, while in the control group, it was 0.012 cm (p = 0.08). Weight gain was 0.512 kg in the control group and 0.952 kg in the intervention group (p = 0.096). Conclusion: Kundalini yoga was not significant in increasing MUAC and body weight.

keyword: kundalini, yoga, MUAC, body weight

INTRODUCTION

Stunting is the condition of a child who has a lower body length or height than the average age, namely < -2 standard deviation based on the WHO chart (WHO, 2024). Stunting is a nutritional problem that is still often found in Indonesia. Based on SSGI 2022 data, the incidence of stunting in Indonesia is 21.6%. Compared to 2021, this percentage is lower—24.4%. However, this figure is still far from the 2024 RPJMN target of 14%. Apart from stunting, the incidence of wasting and underweight is also found in Indonesia at 7.7% and 17.1% (Kemenkes, e-ISSN 2656-7806 ©Authors.2025

@ **① ②**

Published by <u>Universitas Airlangga</u>. This is an **Open Access (OA)** article distributed under the terms of the Creative Commons Attribution Share-Alike 4.0 International License (https://creativecommons.org/licenses/by-sa/4.0/).

DOI: 10.20473/imhsj.v9i3.2025.310-322

Commented [1]: Isi dengan hyperlink, OrcidID anda

2022). Children with stunting get sick easily, experience developmental delays and are at high risk of suffering from chronic diseases (WHO, 2015; Mustakim *et al.*, 2022). Maternal factors that can contribute to stunting include inadequate nutrition in pregnant women and uncontrolled emesis gravidarum (WHO, 2015).

Emesis gravidarum is a condition that commonly occurs in mothers early in pregnancy (more than 6 weeks). The cause of emesis gravidarum is currently unclear. There are several theories that are thought to be the cause of emesis gravidarum, such as hormonal changes, genetics, gastrointestinal factors, and psychological factors (Fitria *et al.*, 2023). An increased level in the hormone chorionic gonadotropin (hCG) has been associated with severe emesis gravidarum (Lowe *et al.*, 2019). Chorionic gonadotropin hormone is a hormone used to detect pregnancy. hCG is secreted by the placental syncytiotrophoblast which stimulates progesterone production (Kaňková *et al.*, 2023). The increase in estrogen and progesterone during pregnancy has an impact on reducing gastrointestinal motility, so that gastric emptying becomes slow. Apart from that, an increase in progesterone also causes the esophageal sphincter to relax. This causes an increase in gastroesophageal reflux and increased stomach acid (Varsa *et al.*, 2021).

The predicted peak of emesis gravidarum occurs between weeks 10 and 16 of gestation, while the decrease occurs around week 20 (Liu *et al.*, 2022). Emesis gravidarum actually does not harm the fetus if it is balanced with appropriate lifestyle changes such as eating small but frequent portions, avoiding foods high in fat, managing stress and so on (ACOG, 2020). However, if the mother is reluctant to eat, the mother is at risk of experiencing nutritional deficiencies. A person's upper arm circumference and body weight provide information about their nutritional health. A fetus that is malnourished may not grow and develop to full potential, which increases the risk of intrauterine growth retardation, low birth weight, abnormalities, and other problems (Macias, 2024). Emesis gravidarum becomes more severe and prolonged if the mother is primigravida and under 20 years during pregnancy, obesity, and using oral contraceptives before pregnancy (Liu *et al.*, 2022). Other risk factors, such as mothers who do not work, sitting too much before pregnancy, frequently drinking cold drinks, having a history of gastrointestinal tract

disease and lack of exercise can also worsen emesis gravidarum (Zhang et al., 2020).

Physical activity is defined as any movement of the body requiring the expenditure of energy and made possible by the skeletal muscles. A minimum of 150 minutes a week of physical activity is required for pregnant women (WHO, 2022). People who work or stand for more than twenty hours a week are linked to a decreased incidence of emesis gravidarum, according to previous study (Connolly, Mudd and Pivarnik, 2019). One of the physical activity that pregnant women can do is yoga.

With origins in Indian philosophy, yoga is a profound, ancient practice. Although yoga was once practiced as a spiritual discipline, it is today widely used to enhance both mental and physical health (NIH, 2024). Kundalini yoga is a type of yoga that focuses on breathing. The incidence of emesis gravidarum in women who did kundalini yoga for 15 minutes every day decreased when compared with controls (Khusmitha *et al.*, 2023). Reducing emesis gravidarum can increase maternal food intake. Adequate food intake can increase maternal weight during pregnancy (Dolatian *et al.*, 2020).

Based on the background above, researchers want to examine the relationship between kundalini yoga and increased body weight and upper arm circumference in pregnant women with emesis gravidarum.

METHOD

This study uses a pre-test and post-test control group design and is quasi-experimental. The control group was the group that received routine ANC, while the treatment group was the group that received routine ANC and kundalini yoga independently. The study population comprised 20–35 year old pregnant women experiencing mild-moderate nausea and vomiting throughout the 1st trimester of their pregnancy. Using the total sampling technique, samples were collected. In this study, body weight gain (BW) and upper arm circumference (MUAC) were the dependent variables, whereas kundalini yoga was the independent variable. The Wilangan Community Health Center's operating area served as the research site, Nganjuk for 4 weeks. Kundalini yoga is done for 15 minutes every day for 4 weeks

with the help of videos from a certified yoga instructor. The procedures for practicing Kundalini yoga are as follows: two minutes of deep, prolonged breathing; two minutes of basic spinal flexion; and eleven minutes of pregnant meditation. The tools used are body measuring tape and body scales. The independent t-test used to examine variations in body weight and upper arm circumference. This research has received ethical approval number 110/fkes/EP/2023.

RESULT AND DISCUSSION

Table 1. Distribution of the increase in arm circumference in pregnant women in the 1st trimester

	Group	N	Average increase (cm)
MUAC	Treatment	25	0,096
	Control	25	0,012

According to Table 1, there was an average $0.096~\rm cm$ increase in lilac in the treatment group and $0.012~\rm cm$ in the control group.

Table 2. Results of the independent t-test for increase in arm circumference in pregnant women in the 1st trimester

	N	t	Sig (2- tailed)	Mean Difference	95% Confidence Interval of the Difference	
					Lower	Upper
MUAC	50	2.766	0.08	0.184	0.05	0.318

Table 2 shows there was no significant difference (p = 0.08, p > 0.05) in the rise in upper arm circumference between the treatment group and the control group.

Table 3. Distribution of weight gain in 1st trimester pregnant women

	Group	N	Average increase (kg)
Weight gain	Treatment	25	0,952
	Control	25	0,512

Based on Table 3, there was an average 0.952 kg rise in body weight in the treatment group and 0.512 kg in the control group.

Table 4. Results of the independent t-test pre-post-test level of change in weight of pregnant women in the first trimester in the control and treatment groups

or pregnant	women	m me i	irst trimester	III tile	control	anu treatin	ent groups
	N	t	Sig	(2-	Mean	95%	Confidence
			tailed)		Difference	Interval	of the
						Differen	ce
						Lower	Upper
Weight gain	50	-0.096	0.924		-0.04	-0.8803	0.8003

A 2-tailed test indicated no significant difference between the weight gains of the groups (p > 0.05). The t value of -0.096 shows that the control group's weight gain was lower than the treatment groups.

Between 35 and 91% of pregnant women feel uncomfortable sensations that early-pregnant women experience, such as nausea and vomiting. Pregnant women with emesis gravidarum generally experience a decrease in appetite (Muchtar and Rasyid, 2023). Appetite is the desire to obtain certain foods. Appetite is related to the aroma, taste, appearance and attractiveness of food which can be considered a metaphor for feelings of wanting or liking valuable things in life. An improved appetite will increase a person's food intake, both energy intake and protein intake (p=0.008; p= 0.004) (Meylina Djafar and Heny Sulistyowati, 2016). A low appetite will reduce energy, protein, fiber, solid food, fruit and vegetable intake (van der Meij $et\ al.$, 2017).

Prolonged emesis gravidarum can result in poor nutrition. Pregnant women with poor nutrition are at risk of increasing the incidence of anemia, preeclampsia, postpartum hemorrhage, infectious diseases and maternal death (WHO, 2011; UNICEF, 2024). A low nutritional index causes a high incidence of preeclampsia (Wei *et al.*, 2022).

Poor nutrition during pregnancy can cause stillbirth, low birth weight, wasting, malformations, mental retardation and delayed child development (delays in language, motor, and cognitive development) in children under 24 months (Neves *et al.*, 2020). The newborn's birth weight decreases with the mother's anthropometric status (Woldeamanuel *et al.*, 2019). MUAC research conducted on pregnant women in Cambodia had a significant correlation with the prevalence of

stunting in children born, pregnant women with low MUAC values had a high risk (>10%) of having stunted children (p=0.032) (Kpewou *et al.*, 2020). Stunting has negative effects in the short or long term, affecting children's health and development.

This issue is still a concern, given the high percentage—50%—of pregnant women in Indonesia who have dietary problems. Pregnant women's nutritional status can be assessed by measuring or weighing their body weight, height, and MUAC and by examining their mother's hemoglobin (Hb) levels. The mother gained weight during her pregnancy; her normal BMI was 10–12 kg, her normal MUAC was 23.5 cm, and her normal Hb level was 11–13 grams/dL (Budiono, Dewi and Dewi, 2022).

4.1 Kundalini yoga on changes in upper arm circumference

An easy-to-measure indicator of nutritional status is upper arm circumference, particularly in pregnant women. A person's upper arm circumference is a good measure of their protein and energy intake (Ververs et al., 2013). Upper arm circumference is strongly related to a person's body mass index (Miele et al., 2021). Upper arm circumference aims to measure muscle and fat in the arms (Jeyakumar, Ghugre and Gadhave, 2013). The MUAC cut-off point varies in each country, in Indonesia the MUAC cut-off is >23.5 cm. So when someone has a MUAC <23.5 cm, it means that the person has a chronic energy deficiency. The increase in a person's upper arm circumference is influenced by body mass index, anemia status, pregnancy spacing, parity and the mother's education level (Kurniawati, 2022). Maternal characteristics, including body mass index (BMI) and socioeconomic status, have impacted maternal MUAC. Low MUAC is linked to working moms, mothers with low levels of education, and mothers who are underweight, all of which may affect maternal health. In Indonesia, the danger of chronic energy deficiency (CED) is indicated by a MUAC limit of less than 23.5 cm. Low birth weight is associated with pregnant women with low MUAC (Yosefinata, Zuhairini and Luftimas, 2022).

MUAC measurements for both groups showed no significant difference (p=0.08, p>0.05). Nonetheless, the treatment group had an average increase in upper arm circumference that was greater than that of the control group (treatment:

0.096 cm, control: 0.012 cm). This most likely occurs as a result of kundalini yoga's ability to decrease pregnancy-related nausea and increase the mother's appetite (Khusmitha *et al.*, 2023).

Consuming a variety of foods and consuming sufficient protein will improve a person's nutritional status. The food consumed will be stored regularly and continuously as glycogen, protein, and fat (Harna *et al.*, 2024). Consuming foods high in protein can improve absorption to the best possible level to preserve and grow muscle mass. Based on previous research, it is stated that nutritional monitoring includes knowing nutritional status, recommending daily menus, monitoring food consumption, nutritional counseling and health education related to maternal nutrition during pregnancy can increase a person's arm circumference (Abadi and Putri, 2020).

4.2 Body Weight

Any change in any of the body's tissues will result in a change in body weight. The most reliable measure of nutritional status, growth, and development is body weight (Mardliyana, 2022). Gaining weight when pregnant is typical for the fetus's growth and development. Weight gain during pregnancy is divided into two parts, namely the results of conception and the increase in maternal tissue. The products of conception in question are the fetus, placenta and amniotic fluid. The placenta adds 5%, the amniotic fluid adds 6%, and the fetus increases body weight by 25% on average. The increase in maternal tissue is two-thirds of the total increase in body weight. The increase includes uterine weight, mammary tissue weight, maternal blood volume, extracellular fluid, fat and tissue reserves (Suitor, 1991; Abrams and Selvin, 1995).

Weight gain during pregnancy varies greatly. Recommendations for weight gain are adjusted to the mother's body mass index (BMI) before pregnancy. In Indonesia, mothers with a BMI <18.5 are 12.5-18kg, a BMI 18.5-24.9 is 11.5-16kg, a BMI 25-29.9 is 7-11.5kg and a BMI ≤ 30 is 5-9kg (Kemenkes RI, 2021).

Maternal and neonatal problems are linked to weight gain that is below recommended limits. Lack of weight increase will result in SGA, preterm, LBW, and neonatal death. While excessive weight growth is linked to preterm birth, a higher chance of cesarean birth, macrosomia, or large for gestational age (LGA),

Putri, et al.: The Effect of Kundalini on MUAC. Indonesian Midwifery and Health Sciences Journal, 2025, 9 (3), 310-322

childhood obesity, hypertensive pregnancy syndrome, gestational diabetes, and

postpartum weight retention (which can lead to maternal obesity).

Body weight did not significantly change between the control and research groups' pre- and post-research results (p=0.254; p=0.289). Food security, strong social support, and more prenatal care all affect how much weight pregnant women

gain (p=0.008, p=0.007, p<0.001) (Dolatian et al., 2020). Previous research also

stated that yoga did not affect body weight in children or adults (Lauche et al.,

2016).

CONCLUSION AND SUGGESTION

Kundalini yoga was shown to be ineffective in increasing MUAC and weight gain in the 1st trimester with emesis gravidarum. Future research can observe mothers

recalling nutrition every day.

DECLARATION

Conflict of Interest

This research contains no conflicts of interest. This ensures transparency and

integrity in the research process.

Authors' Contribution

All of the authors contribute in every stage of the research, from the initial concept

to the drafting of the article.

Ethical Approval

Ethical approval number: 110/fkes/EP/2023.

Funding Source

Under Grant Agreement No. 45/R/PN/VII/2023, the Ministry of Education,

Culture, Research, and Technology, the Directorate of Research, Technology, and

317

Community Service, and the Directorate General of Higher Education, Research and Technology provided money for a Beginner Lecturer Research Grant.

Data Availability

Data is retrieved as needed.

Acknowledgements

Thank you to all respondents, health workers in the Wilangan Community Health Center area

REFERENCE

- Abadi, E. and Putri, L.A.R. (2020) 'Nutrition Assistance Increases the Size of Middle-Upper Arm Circumference of Pregnant Women With Chronic Energy Deficiency', *Public Health of Indonesia*, 6(4), pp. 157–162. Available at: https://doi.org/10.36685/phi.v6i4.354.
- Abrams, B. and Selvin, S. (1995) 'Maternal weight gain pattern and birth weight', *Obstetrics & Gynecology*, 86(2), pp. 163–169. Available at: https://doi.org/https://doi.org/10.1016/0029-7844(95)00118-B.
- ACOG (2020) Morning Sickness: Nausea and Vomiting of Pregnancy, ACOG.

 Available at: https://www.acog.org/womens-health/faqs/morning-sickness-nausea-and-vomiting-of-pregnancy.
- Budiono, N.M., Dewi, D. al and Dewi, S. (2022) 'ASSOCIATION BETWEEN THIRD TRIMESTER MID-UPPER ARM CIRCUMFERENCE (MUAC) AND ANEMIA IN NEONATUS', *Journal of Widya Medika Junior*, 4(3), p. 3.
- Connolly, C.P., Mudd, L.M. and Pivarnik, J.M. (2019) 'Associations Among Work-Related and Leisure-Time Physical Activity With Level of Nausea During Pregnancy.', *American journal of lifestyle medicine*, 13(4), pp. 424–431. Available at: https://doi.org/10.1177/1559827617695783.
- Dolatian, M. et al. (2020) 'Weight gain during pregnancy and its associated factors:

- A Path analysis', *Nursing Open*, 7(5), pp. 1568–1577. Available at: https://doi.org/10.1002/nop2.539.
- Fitria, H. *et al.* (2023) 'Lemon aromatherapy for emesis gravidarum: A systematic review', 2(1), pp. 8–16.
- Harna, H. *et al.* (2024) 'Prevalence and determinant factors of Chronic Energy Deficiency (CED) in pregnant women', *AcTion: Aceh Nutrition Journal*, 9(1), p. 65. Available at: https://doi.org/10.30867/action.v9i1.1443.
- Jeyakumar, A., Ghugre, P. and Gadhave, S. (2013) 'Mid-Upper-Arm Circumference (MUAC) as a Simple Measure to Assess the Nutritional Status of Adolescent Girls as Compared With BMI', *Infant, Child, and Adolescent Nutrition*, 5(1), pp. 22–25. Available at: https://doi.org/10.1177/1941406412471848.
- Kaňková, Š. *et al.* (2023) 'Associations between nausea and vomiting in pregnancy, disgust sensitivity, and first-trimester maternal serum free β-hCG and PAPP-A', *Hormones and Behavior*, 152, p. 105360. Available at: https://doi.org/https://doi.org/10.1016/j.yhbeh.2023.105360.
- Kemenkes (2022) 'Hasil Survei Status Gizi Indonesia (SSGI) 2022', *Kemenkes*, pp. 1–150.
- Kemenkes RI (2021) Buku Kesehatan Ibu dan Anak. Jakarta: Kemenkes RI.
- Khusmitha, Q.N. *et al.* (2023) 'Efficacy of the Kundalini Method in Alleviating Emesis Gravidarum during the First Trimester', pp. 1598–1606. Available at: https://scholar.google.co.id/citations?hl=id&user=WGrKDtUAAAAJ.
- Kpewou, D.E. *et al.* (2020) 'Maternal mid-upper arm circumference during pregnancy and linear growth among Cambodian infants during the first months of life.', *Maternal & child nutrition*, 16 Suppl 2(Suppl 2), p. e12951. Available at: https://doi.org/10.1111/mcn.12951.
- Kurniawati, R.N. (2022) FAKTOR-FAKTOR YANG BERHUBUNGAN DENGAN KEJADIAN KEKURANGAN ENERGI KRONIS PADA IBU HAMIL DI UPT PUSKESMAS WINONG TAHUN 2021. Poltekes Kemenkes Yogyakarta. Available at: http://eprints.poltekkesjogja.ac.id/9933/.
- Lauche, R. et al. (2016) 'A systematic review and meta-analysis on the effects of

- yoga on weight-related outcomes', *Preventive Medicine*, 87, pp. 213–232. Available at: https://doi.org/https://doi.org/10.1016/j.ypmed.2016.03.013.
- Liu, C. *et al.* (2022) 'Emerging Progress in Nausea and Vomiting of Pregnancy and Hyperemesis Gravidarum: Challenges and Opportunities', *Frontiers in Medicine*, 8. Available at: https://doi.org/10.3389/fmed.2021.809270.
- Lowe, S. et al. (2019) Guideline For The Management Of Nausea and Vomiting In Pregnancy and Hyperemesis Gravidarum, Society Of Obstetric Medicine Of Australia And New Zealand.
- Macias, L. (2024) Evolution of Morning Sickness and How it Relates to Maternal Nutrition and Fetal Development.
- Mardliyana, N.E. (2022) 'Peningkatan Pengetahuan Ibu Hamil Tentang Penanganan Keluhan Fisiologis Dengan Media Video Pakbuto (Penanganan Keluhan Ibu Hamil Tanpa Obat) Di Kelurahan Sutorejo Kecamatan Mulyorejo Surabaya', *Jurnal Pengabdian Masyarakat Kebidanan*, 4(1), p. 11. Available at: https://doi.org/10.26714/jpmk.v4i1.8894.
- van der Meij, B.S. *et al.* (2017) 'Poor Appetite and Dietary Intake in Community-Dwelling Older Adults.', *Journal of the American Geriatrics Society*, 65(10), pp. 2190–2197. Available at: https://doi.org/10.1111/jgs.15017.
- Meylina Djafar and Heny Sulistyowati (2016) 'HUBUNGAN NAFSU MAKAN, PENGETAHUAN GIZI DENGAN ASUPAN ENERGI, PROTEIN DAN STATUS GIZI DI RUMKITAL Dr. MINTOHARDJO', *STIKes Binawan*, 2, pp. 1–9.
- Miele, M.J. *et al.* (2021) 'Proposal of MUAC as a fast tool to monitor pregnancy nutritional status: Results from a cohort study in Brazil', *BMJ Open*, 11(5), pp. 1–11. Available at: https://doi.org/10.1136/bmjopen-2020-047463.
- Muchtar, A.S. and Rasyid, I.N. (2023) 'Manajemen Asuhan Kebidanan Antepartum Ny "R" Gestasi 7 Minggu 2 Hari Dengan Emesis Gravidarum Di UPT Puskesmas Bajoe Kabupaten Bone', *Jurnal Midwifery*, 5(1), pp. 1–10. Available at: https://doi.org/10.24252/jmw.v5i1.35174.

- Mustakim, M.R.D. *et al.* (2022) 'Impact of Stunting on Development of Children between 1-3 Years of Age.', *Ethiopian journal of health sciences*, 32(3), pp. 569–578. Available at: https://doi.org/10.4314/ejhs.v32i3.13.
- Neves, P.A.R. *et al.* (2020) 'Poor maternal nutritional status before and during pregnancy is associated with suspected child developmental delay in 2-year old Brazilian children', *Scientific Reports*, 10(1), p. 1851. Available at: https://doi.org/10.1038/s41598-020-59034-y.
- NIH (2024) Yoga: What You Need To Know, National center for complementary and integrative health. Available at: https://www.nccih.nih.gov/health/yoga-what-you-need-to-know.
- Suitor, C.W. (1991) Perspectives on nutrition during pregnancy: Part I, weight gain; part II, nutrient supplements, Journal of the American Dietetic Association. Available at: https://doi.org/10.1016/s0002-8223(21)01073-7.
- UNICEF (2024) *Maternal Nutrition*, *UNICEF*. Available at: https://www.unicef.org/nutrition/maternal#:~:text=During pregnancy%2C poor diets lacking,and developmental delays for children.
- Varsa, R.G. *et al.* (2021) 'Gastroesophageal reflux disease in pregnancy', *Romanian Journal of Medical Practice*, 16(July), pp. 28–31. Available at: https://doi.org/10.37897/RJMP.2021.S3.6.
- Ververs, M.-T. *et al.* (2013) 'Which anthropometric indicators identify a pregnant woman as acutely malnourished and predict adverse birth outcomes in the humanitarian context?', *PLoS currents*, 5. Available at: https://doi.org/10.1371/currents.dis.54a8b618c1bc031ea140e3f2934599 c8.
- Wei, S. *et al.* (2022) 'Low Prognostic Nutritional Index Contributes to High Adverse Events in Preeclampsia.', *Disease markers*, 2022, p. 1187742.

 Available at: https://doi.org/10.1155/2022/1187742.
- WHO (2011) Nutrition of women in the preconception period, during pregnancy and the breastfeeding period. Jenewa. Available at: https://apps.who.int/gb/ebwha/pdf_files/EB130/B130_11-en.pdf.

- WHO (2015) Global Nutrition Targets 2025 Stunting Policy Brief, WHO.

 Switzerland. Available at:
 https://doi.org/10.7591/cornell/9781501758898.003.0006.
- WHO (2022) *physical activity*, *WHO*. Available at: https://www.who.int/news-room/fact-sheets/detail/physical-activity (Accessed: 20 June 2024).
- WHO (2024) Child malnutrition: Stunting among children under 5 years of age, WHO. Available at: https://www.who.int/data/gho/indicator-metadata-registry/imr-details/72 (Accessed: 22 February 2024).
- Woldeamanuel, G.G. *et al.* (2019) 'Effect of nutritional status of pregnant women on birth weight of newborns at Butajira Referral Hospital, Butajira, Ethiopia.', *SAGE open medicine*, 7, p. 2050312119827096. Available at: https://doi.org/10.1177/2050312119827096.
- Yosefinata, K., Zuhairini, Y. and Luftimas, D.E. (2022) 'Association Between Maternal Mid-Upper Arm Circumference and Baby's Birth Weight', *Majalah Kedokteran Bandung*, 54(3), pp. 172–176. Available at: https://doi.org/10.15395/mkb.v54n3.2701.
- Zhang, H. *et al.* (2020) 'Risk factors of prolonged nausea and vomiting during pregnancy', *Risk Management and Healthcare Policy*, 13, pp. 2645–2654. Available at: https://doi.org/10.2147/RMHP.S273791.
- Zhu, S. *et al.* (2023) 'Nausea and Vomiting during Early Pregnancy among Chinese', *Nutrients*, 15(933), pp. 1–11.