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Abstract— Nanobubbles (NB) have attracted considerable attention 

from researchers due to their unique characteristics, one of which is 

their ability to increase the amount of dissolved oxygen (DO) in 

liquids, making them a promising technology for various 

applications, such as water treatment and aquaculture. This study 

investigates the generation of NBs using a custom-designed 

cartridge nozzle and evaluates their effectiveness in maintaining 

elevated DO concentrations. Experiments were conducted under a 

controlled gas pressure of 400 N/m², comprising a 30-minute active 

phase with the generator turned on, followed by a 30-minute passive 

phase with the generator off, to assess NB formation and stability. 

Particle size analysis revealed the production of uniformly 

distributed NBs averaging approximately 600 nm, which remained 

structurally stable even after gas input ceased. During the active 

phase, DO levels increased sharply, peaking at 28.51 mg/L by the 

10th minute. Although a gradual decline was observed after 

pressurization stopped, DO levels remained significantly higher 

than the baseline, indicating the prolonged oxygen retention 

capability of NBs. This performance is attributed to the unique 

properties of nanobubbles (<1 µm) that exhibit higher stability, slow 

dissolution kinetics, high zeta potential, and favorable interfacial 

interactions compared to conventional bubbles (>1 mm). Overall, 

the cartridge nozzle-based method demonstrates strong potential 

for applications in water treatment, aquaculture, and other 

processes requiring efficient and sustained oxygen delivery. 

Keywords— Nanobubbles, Dissolved Oxygen, Bubble Stability, 

Cartridge Nozzle. 

I. INTRODUCTION 

Nanotechnology has attracted much attention from 

researchers in recent years. Among the many emerging 

nanotechnologies, nanobubble technology has received much 

attention due to its usefulness in various applications, such as 

water treatment [1], [2], medicine [3], [4], and aquaculture 

[5][6]. Nanobubbles exhibit several remarkable characteristics 

in aqueous solutions, including higher solubility, high zeta 

potential, free radical generation, exceptional stability against 

coalescence, large surface area, and high energy release through 

bubble disintegration [7]. 

Nanobubbles (NBs) are nanometer-sized gas bubbles in a 

liquid, with a diameter not exceeding 1 µm [5], [8], [9]. This is 

in contrast to regular microbubbles (less than 50 µm in 

diameter) or larger conventional bubbles (more than 1 mm in 

diameter) [10]. NBs have high stability and can be suspended 

in liquids for a long time, compared to larger gas bubbles [11]. 

The stability of NBs is due to the surface charge that prevents 

them from coalescing with other bubbles. The high pressure in 

NBs is due to their small size, which affects their physical and 

chemical interactions with the surrounding environment [12]. 

The smaller the bubble size, the higher the oxygen pressure 

value in water, indicating that NBs increase the oxygen value 

in water to a higher level compared to microbubbles (10-50 mm 

diameter)  [11], [13], [14]. 

Several previous studies have used pressure cartridge nozzles 

to create friction and turbulent flow within the liquid. These 

conditions help the formation of very small air bubbles, known 

as nanobubbles, and have stable properties [15], [16]. This 

preliminary study focuses on the generation of NBs using a 

homemade nanobubble generator, aiming to investigate the 

correlation between NB size and the enhancement of dissolved 

oxygen (DO) levels. By analyzing the formation mechanism 

and stability of the generated NBs, this work aspires to 

contribute foundational insights toward the optimization of 

aeration technologies for applications in environmental 

engineering, agriculture, aquaculture, medical therapy, and 

other oxygen-dependent processes. A summary of our study is 

depicted in Figure 1. 

Figure 1. The ability of nanobubble to increase DO. 
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II. EXPERIMENTAL METHOD 

The homemade nanobubble generator was employed to produce 

NBs in water, using similar principles to our previous studies 

[17], [18]. The experiment was carried out under an input gas 

pressure of 400 N/m² over a total duration of 60 minutes. 

During the initial 30 minutes, the generator was actively 

operated to facilitate NB formation. Subsequently, the system 

was turned off for the remaining 30 minutes to observe the 

stability and evolution of NB size over time in the absence of 

active generation. The size distribution of the generated 

nanobubbles was measured using a Malvern Zetasizer Pro 

(ZSU 3200) particle size analyzer. Meanwhile, the DO 

concentration in water was monitored using a YSI Professional 

Series DO meter. The initial DO concentration in the water 

prior to nanobubble generation was recorded as 2.42 mg/L. The 

collected data were analyzed to evaluate the relationship 

between NB and the enhancement of DO concentration, as well 

as to assess the stability of the NBs over time. The procedure 

was repeated several times (more than 10 times) for reliability 

and accuracy in measurement. The error in DO measurement 

and average bubble size was calculated to be ± 0.5 mg//L and ± 

20 nm. 

III. RESULT AND DISCUSSION 

This research was conducted to evaluate the effect of oxygen 

gas pressure on the size of NBs formed and the effectiveness of 

the homemade cartridge nozzle in maintaining their stability 

after the engine is turned off. The data obtained were analyzed 

to determine the optimal conditions for forming smaller and 

more stable NBs, contributing to an increase in the DO level in 

the water. 

NB formation in this setup is governed by a mechanical 

shearing and chopping mechanism, wherein oxygen gas 

introduced into the water is subjected to high-speed flow 

through a custom-designed cartridge nozzle. This dynamic 

induces the breakup of larger gas bubbles into nanometer-sized 

bubbles, a process driven by fluid turbulence and shear forces. 

This hydrodynamic fragmentation, coupled with pressure-

induced cavitation effects, is central to nanobubble formation. 

The schematic illustration of this mechanism is presented in. 

Figure 2, where the pressure differential and nozzle geometry 

are crucial for the efficient disintegration of macro- and 

microbubbles into NBs.  

 

Figure 2. Nanobubble formation using a cartridge nozzle. 

The application of external pressure during the gas injection 

process has proven to be very influential on the nature of the 

nanobubbles (NB) that form. In the research of Xiaonan Shi 

(2021), gas was injected through a hydrophobic ceramic 

membrane at a pressure of 60-80 psi (about 4.1-5.5 atm), and 

the results showed that the higher the pressure, the smaller the 

NB size—from about 400 nm to 200 nm [19]. In addition, the 

model in the study predicts that the pressure inside the NB can 

reach 120-240 psi (about 8.3-16.6 atm). This shows that higher 

injection pressure not only helps shrink the size of the NB but 

also increases the pressure inside, which directly contributes to 

the stability and mass transfer efficiency in advanced 

applications. The theoretical calculation of flow velocity and 

discharge rate was guided by Bernoulli’s principle and 

pressure-flow relationships, which directly influence the 

resulting bubble size and uniformity [13]. These theoretical 

foundations are key to optimizing flow velocity and discharge 

rate, which in turn dictate bubble size distribution and overall 

NB uniformity.  

To monitor the bubble size, a Malvern Zetasizer Pro (ZSU 

3200) was used at multiple time intervals during both 

operational and non-operational phases. Figure 3 depicts the 

size distribution of generated NBs when the NB generator has 

the gas pressure on and off. The particle size analysis (PSA) 

revealed that the average NB size generated under 400 N/m² gas 

pressure was approximately 600 nm, with a relatively narrow 

size distribution at off time. The stability of the bubbles was 

evident from the minimal change in average size during the off-

cycle, suggesting that the generated nanobubbles maintained 

their structural integrity even without continuous 

pressurization. This stability underscores the effectiveness of 

the cartridge nozzle in producing persistent, well-dispersed 

nanobubbles. Interestingly, a slight reduction in average NB 

size was observed during the non-operational phase. This 

behavior is likely due to the collapse or dissolution of 

marginally larger and less stable bubbles, resulting in a 

population dominated by smaller, more stable NBs. This 

phenomenon, while expected, highlights a crucial aspect of NB 

dynamics: nanobubbles tend to self-purify over time as less 

stable bubbles dissipate while more robust ones persist. 

Furthermore, bubbles are quite small, and the external pressure 

is trying to diminish their stability, which can reduce the size of 

bubbles when the NB generator is off, which is quite an obvious 

and trivial phenomenon. This outcome aligns with prior 

theoretical and experimental studies that challenge classical 

predictions of rapid bubble collapse. The generated NBs can 

maintain their bubble size, both during the time the gas pressure 

is turned on (0 to 30 min) and off (30 to 60 min), as evidenced 

by PSA measurement at different intervals of time (not shown).  

Various theories explain the stability of nanobubbles, as they 

last much longer than predicted by classical thermodynamic 

theory [20]. Impurity Shielding Theory posits that a monolayer 

of surface-active substances or contaminants accumulates at the 

gas-liquid interface, effectively reducing surface tension and 

inhibiting gas diffusion. This interface acts as a stabilizing 

“skin,” thereby extending the life of the nanobubbles [21]. The 

Contact Line Pinning describes the mechanical anchoring of 

nanobubbles at the three-phase (solid-liquid-gas) contact line. 

This pinning prevents shrinkage by inhibiting the receding 

motion of the contact line, which is a critical step in bubble 

collapse, thus preventing the bubble from shrinking quickly and 

maintaining its shape for longer [22], [23]. Internal Pressure 

Theory suggests that, contrary to Young–Laplace predictions, 
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which estimate high internal pressures in small-radius bubbles, 

actual experimental measurements show that the internal 

pressure of nanobubbles is often closer to ambient conditions. 

This reduced pressure differential results in slower gas 

dissolution and enhanced long-term stability [20], [24].  

 

Figure 3. NB size when pressure was (a) on and (b) off. 

 

In parallel, DO measurements were taken to evaluate the 

effectiveness of NBs in enhancing oxygen availability in water. 

Figure 4 illustrates the variation in DO levels over time, where 

the system was pressurized with oxygen gas from 0 to 30 

minutes, followed by a non-pressurized phase from 30 to 60 

minutes. The initial measurement of DO value in untreated 

water was 2.42 mg/L.  

Upon initiating NB generation with oxygen gas injection, the 

DO concentration rose rapidly, peaking at 28.51 mg/L within 

the first 10 minutes of operation. This sharp increase highlights 

the superior gas transfer efficiency of nanobubbles, driven by 

their high surface-area-to-volume ratio and the reduced 

buoyancy that allows them to remain suspended and dissolve 

gradually. However, an optimal threshold is observed beyond 

which prolonged operation yields diminishing returns in terms 

of further DO enhancement. This could be due to the saturation 

of oxygen in the water. During the bubbling process, the 

continuous oxygen supply causes the water to become 

supersaturated. Once bubbling is stopped, the DO concentration 

tends to decrease back towards equilibrium conditions, as the 

excess oxygen is gradually released into the air [25]. 

 

Figure 4. DO values when pressure was (a) on and (b) off. 

When the system was turned off after 30 minutes, a 

gradual decline in DO was observed. Despite the cessation of 

gas supply, DO levels remained significantly elevated, 

stabilizing at 12.18 mg/L after 60 minutes, which is nearly 

fivefold higher than the initial concentration (2.42 mg/L). In 

comparison, the use of a microbubble nozzle under similar pond 

conditions, water volume, and aeration duration (60 minutes) 

only increased DO levels from 7.4 mg/L to 9.1 mg/L at a 

pressure of 2 Kgf/cm². These results indicate that the 

nanobubble system is more effective in increasing dissolved 

oxygen levels than the conventional microbubble system 

[26].This demonstrates the lingering effect of nanobubbles on 

oxygen content and underscores their potential for sustained 

water oxygenation even in passive systems. This behaviour can 

be attributed to a combination of physicochemical factors that 

collectively contribute to the stability and effectiveness of NBs 

in sustaining DO levels. Firstly, the slow dissolution kinetics of 

NBs enable them to function as miniature reservoirs of oxygen, 

https://e-journal.unair.ac.id/JATM/issue/view/2930
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gradually releasing gas into the surrounding medium over time. 

Additionally, their high zeta potential prevents bubble 

coalescence, thereby maintaining a uniform dispersion and 

extending their stability [27], [28]. Interfacial interactions, 

including electrostatic repulsion and the reduction of surface 

tension at the gas-liquid interface, further inhibit bubble 

collapse. Moreover, the intrinsic properties of water, such as 

viscosity and ionic composition, also play a crucial role in 

influencing gas solubility and the persistence of NBs within the 

system [29].  

These results collectively affirm that the homemade cartridge 

nozzle NB generator is a viable, low-cost alternative for 

producing stable nanobubbles that are effective in significantly 

enhancing and sustaining DO in aqueous systems. This has 

direct implications for applications in aquaculture, 

hydroponics, wastewater treatment, and medical oxygenation 

technologies, where reliable and efficient oxygen delivery is 

critical. Currently, we are in the process of utilizing these 

bubbles for aquaculture and wastewater treatment. The results 

will be published subsequently. Future work could explore 

parametric optimization, such as the influence of nozzle 

geometry, gas flow rate, and fluid composition, to further 

enhance NB characteristics. Additionally, incorporating real-

time imaging or advanced spectroscopy could provide deeper 

insight into NB behavior at the molecular level, paving the way 

for smart, adaptive NB systems. 

IV. CONCLUSION 

This study demonstrates that a custom-designed nozzle-based 

system effectively generates stable nanobubbles (~600 nm) that 

significantly enhance dissolved oxygen levels, even without 

continuous gas input. With optimization of pressure and nozzle 

design, this method has the potential to be employed as an 

energy-efficient oxygenation process across various 

applications, including water treatment, the aquaculture 

industry, and increasing the efficiency of biochemical reactions 

that require dissolved oxygen. Further research into gas type, 

temperature, and system integration is recommended to 

optimize and expand the technology’s practical use. 
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