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ABSTRACT 

The Mardia MVN test, Henze Zikler's MVN test, and Royston's MVN test are the most widely used tests to analyze 

multivariate normal (MVN) data, but there have not been many studies explaining the advantages and 

disadvantages of these tests. The research objective was to analyze the difference in test strength and type II (β) 

error in the Mardia MVN test, Henze Zikler's MVN test, and Royston's MVN test. The research data were analyzed 

using three MVN tests, namely the Mardia MVN test, Henze Zikler's MVN test, and Royston's MVN test. The 
results of the analysis in the form of test strength and type II error (β) would be compared at alpha (α) 1%, 5%, 

10%, 15%, 20%, and 25%. The comparison results explained that the Mardia test had the greatest test strength and 

the smallest type II (β) error. The study concluded that the Mardia MVN test was a multivariate normal test better 

than Henze Zikler's MVN test and Royston's MVN test. 
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ABSTRAK 

Uji Mardia MVN, uji Henze Zikler's MVN dan uji Royston's MVN adalah uji yang paling banyak dilakukan untuk 

menganalisis kenormalan data multivariat/multivariate normal (MVN). Namun, belum banyak penelitian yang 
menjelaskan kelebihan dan kekurangan dari uji tersebut. Penelitian ini bertujuan untuk menganalisis perbedaan 

kekuatan uji dan kesalahan tipe II (β) pada uji Mardia MVN, uji Henze Zikler's MVN dan uji Royston's MVN. Data 

penelitian dianalisis menggunakan tiga uji MVN yaitu uji Mardia MVN, uji Henze Zikler's MVN dan uji Royston's 

MVN. Hasil analisis berupa kekuatan uji dan kesalahan tipe II (β) dibandingkan dengan alpha (α) 1%, 5%, 10%, 

15%, 20% dan 25%. Hasil perbandingan menunjukkan bahwa uji Mardia memiliki kekuatan uji terbesar dan 

kesalahan tipe II (β) terkecil. Uji Mardia MVN merupakan uji normal multivariat yang lebih baik dibandingkan 

uji Henze Zikler's MVN dan uji Royston's MVN.  

Kata kunci: uji normal multivariat, uji Mardia MVN, uji Henze Zikler's MVN, uji Royston's MVN 
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INTRODUCTION 

The statistical test is a data analysis 
method  used  to support  quantitative   

research. Multivariate data  must be tested for 

normal multivariate  to  allow  further statistical 
tests to  be  determined  according  to  the  

results of data  normality.  Multivariate  normal 

(MVN) is  one of the most important 
assumptions for multivariate parametric tests. 

The assumption of  normality  explains  that  

the sample group is distributed and  has the 

assumption of variance  from  the  same  
sample  and  is  under the  population (Nahm, 

2016). If the data are not normal, then it cannot 

be tested under multivariate parametrics 
because it does not meet the assumptions. If the 

assumption is ignored, the results of the 

statistical analysis will be invalid or biased, 

especially in small or fewer sample sizes 
(Vogt, 2015). 

The normal distribution is the 
probability distribution of the most important 

continuous random variable because it is most 

often encountered both theoretically and 
practically in statistical analysis. The normal 

distribution is also known as the Gaussian 

distribution. The normal distribution equation is 
initially investigated through residuals or errors 

with repeated measurements of the same 

simulation. 

The sign possessed by normally 
distributed data is that it has the mean parameter 

mailto:wahyul.anis@fk.unair.ac.id


Anis, Kuntoro, and Melaniani, Difference of Power Test and Type II Error (Β) On...  154 
 

 

(µ) and standard deviation (σ) which will 

determine the location and shape of the 

distribution. The image on the curve has one 

peak, the mean is in the middle position of the 
distribution, the total area under the curve 

image is one, and the two tails of the curve will 

be elongated and will not intersect with the 
horizontal axis to depict a bell-like shape. The 

standard deviation will determine the width of 

the curve in the data distribution. 
The multivariate normality test has four 

techniques that underlie the formation of the 

multivariate data normality test: the goodness of 

fit technique, procedures based on skewness 
and kurtosis, univariate test, graphical 

approach, and correlation. 

Currently, there are many kinds of 
MVN  to  test  the normality of multivariate 

data, namely  graphical approaches (Chi-

square,  QQ, and plot approaches) and 
numerical approaches such as the Mardia MVN 

test, Henze Zikler's MVN test, and Royston's 

MVN test. 

Mardia MVN test, Henze Zikler's MVN 
test, and Royston's MVN test are the most 

widely used tests to analyze normality in 

multivariate data. Mardia MVN test, Henze 
Zikler's MVN test, and Royston's MVN test are 

data normality tests that have similarities. 

Namely, the test results are not in the form of 

images, but are in the form of probability 
values. 

Each MVN test has advantages and 

disadvantages. The advantage of the Mardia 
MVN test is that it can be used for sample sizes 

of less than 20, but has the disadvantage that it 

requires correction when the sample size is less 
than 20 to control type I error (α). Henze-

Zikles's MVN test has the advantage that it has 

good test strength, especially for large sample 

sizes (n>100), but has the disadvantage that it 
requires logs from the normal distribution when 

calculating. 

Royston's MVN test has the advantage 
that it  is effective  for  detecting deviations 

from  multivariate  normality and can be used 

for small and large sample sizes (3≤ n ≤2000). 
It has the  disadvantage  that  there  is a 

provision if the kurtosis  in the data is greater 

than three, then the Shapiro Franchia test needs 

to be used for leptokurtic distribution while the 
Shapiro Wilk test is used for platykurtic 

distribution. 

 Test power is defined as the probability 
or probability that the test results will reject the 

false null hypothesis. The strength of the test is 

the complement of type I error (α), which is an 

error for rejecting the null hypothesis (H0), 

even though the null hypothesis is true (Zhou 
and Shao, 2015). Type II error (β) is an error 

because it rejects the alternative hypothesis 

(Ha), even though the alternative hypothesis is 
true. These errors will greatly affect the actual 

interpretation of the data. The important thing 

in performing statistical hypothesis analysis is 
to have the smallest possible error values of 

type I (α) and II (β). Health research is 

recommended to minimize type I (α) and II (β) 

error values. 

Based on the similarities, advantages, 

and disadvantages of MVN, the Mardia MVN 

test, Henze Zikler's MVN test,, and Royston's 
MVN test need to be investigated further to 

determine the best multivariate normality test 

based  on the strength of the test and type II 
error (β). This study aimed to analyze the 

difference in test power and type II error (β) in 

the Mardia MVN test, Henze Zikler's MVN, 

and Royston's MVN tests at 1%, 5%, 10%, 
15%, 20%, and 25%. 

METHOD 

This study used secondary data on the 

achievement of maternal health services from 

the annual report of the East Java Province 
Health Office. The achievement data included 

the  percentage  of  pregnant  women's  first  

visit  (K1),  the  achievement  of  complete  

visits to  pregnant  women  (K4),  the 
achievement of high-risk early detection by 

health workers (DN), the achievement of 

delivery assistance by health workers (PN), the 
achievement of delivery assistance in facilities 

health (PF), the achievement of handling 

maternal complications (PK), and the 

achievement of postpartum maternal visits (KF) 
in East Java. 

The data obtained were descriptions of 

the achievements of 38 regencies or cities in 
East Java and the sample size used was 38. 

Multivariate data were analyzed using three 

tests  for  normality  of multivariate data, 
namely the Mardia MVN test, Henze Zikler's 

MVN test, and Royston's MVN test. An 

advanced  statistical  application  was  used  

with the  principle  of  unit  accountability that 
is  the  data file  that will be used in line with 

how  the  data  was created, who compiled it, 

and the computational results that could be 
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verified (Gelfond et al., 2018). Each test had 

their p-value, test power, and type II error (β) at 

1%, 5%, 10%, 15%, 20%, and 25%, then the 

results of  the  test  analyses  were  compared  
with   each other. 

RESULTS 

The data were analyzed using the 

univariate normality test before the data were 

analyzed using the multivariate normality test. 
This is because the data that had been declared 

normally distributed in the univariate normality 

test would have a greater chance of having a 

normal distribution in the multivariate 
normality test. 

Univariate normality test results are 

presented through numerical and graphical 
descriptive statistics. Numerical statistical 

descriptions are presented through mean, mode, 

standard deviation, variance, range, lowest 
value, and highest value. Univariate normality 

analysis is descriptive by looking at the average 

value, median value, and mode, in addition to 

looking for the coefficient of variance. Data 
were also presented in graphical form using 

histograms. The data were then analyzed using 

three MVN tests to compare their p-value, test 
power, and type II error (β). The results of the 

univariate and multivariate normality tests were 

compared with each other to see if there were 
differences in the results of the normality test.  

Table. 1 is the result of a descriptive 

analysis of the data. The analysis results 

obtained include the average, mean, mode, 
standard deviation, variance, range, lowest 

value, and highest value. The average, mean, 

and mode are often referred to as measures of 
central tendency. If the average, the mean, and 

the mode have the same value, it will form a 

symmetrical frequency distribution curve and 

can be interpreted as a normal distribution. 

Table 1 shows that each variable does not have 

the same average, mean, and mode. It can be 

interpreted that each variable is not normally 

distributed. 
Other parameters  that  can  be used as 

a reference in determining  the normal 

distribution are the average value (mean) and 
standard  deviation. The average value is used 

as  the  center of the distribution. The standard 

deviation  is  used to determine the possibility 
of  the  data  having a curve area that exceeds 

the  center  of  the  curve  or  a  curve  wider 

than a normally  distributed curve. The values 

in the results  of  a descriptive analysis that can 
be used to determine normality are the 

coefficient of  variance,  the  ratio of  skewness, 

and the ratio of  kurtosis. Table 1 obtained the 
results of the  coefficient  of  variance using the 

formula: 
 

Standard Deviation     x    100% 
Average value 

Data are normally distributed if a 

variance coefficient is less than 30%. The 
results of the calculation of the coefficient of 

variance in Table 1 explain that each variable 

tested had a coefficient of variance of less than 
30%. It can be concluded that based on the 

analysis of the coefficient of variance, all 

variables were normally distributed. 

The next univariate normality test was 
a graphical approach, namely a histogram. The 
histogram is popular and often used because it 

has eased in reading the results or interpretation. 

However, several important things must be 
considered in interpreting the results of the 

analysis, namely seeing the slant and sharpness 

of the image. The results of the analysis using 
histograms have a high possibility of 

subjectivity. Some sources recommend to also 

look at the value of the skewness ratio and the 

kurtosis ratio. 

Table 1. Description of maternal health service statistics in East Java Province 

Criteria K1 K4 DN PK PN PF KF 

Average value 98.07 90.45 24.35 19.38 95.05 94.03 91.00 
Middle value 

Mode 

98.46 

100.00 

91.23 

91.83 

22.07 

21.48 

19.41 

- 

94.97 

- 

93.80 

98.64 

91.00 

93.30 

Standard deviation 2.80 4.30 6.49 2.89 3.85 3.84 2.39 
Variance 8.07 18.49 42.22 8.33 14.83 14.79 5.71 

Range 13.88 17.15 30.02 13.19 14.50 16.45 10.29 

Lowest value 90.47 81.26 15.41 13.55 86.15 84.01 85.86 
The highest score 104.35 98.41 45.43 26.74 100.65 100.46 96.15 

Coefficient of variance 2.85 4.75 26.65 14.81 4.05 4.08 2.62 
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The histogram for each variable to explain univariate normality can be described as follows: 

 
Figure 1. The histogram on each variable (univariate) 

 

Figure.  1  shows  that  all  variables 
have  skewness  while  judging  from the 

kurtosis  or   sharpness. It  can  be  explained  

that all variables are more pointed than the 

standard normal  distribution.  It can be 
concluded that all  variables  are  not  normally 

distributed. Data that are normally distributed 

will have a slope  (skewness) of 0 (zero) and a 
kurtosis of 3. 

The results of the univariate normality 

test using the average, median, and mode 

approach give the same results as the histogram. 
All variables were not normally distributed, but 

based on the coefficient of variance, it was 

found that the distribution of all variables was 
normal. This can happen because each 

statistical test has advantages and 

disadvantages; therefore, that the selection of 
the statistical test used is important. 

Univariate data analysis was followed 

by multivariate normality analysis using Mardia 

MVN, Henze Zikler's MVN, and Royston's 
MVN tests. Based on the results of the 

univariate normality test, the results of the 

multivariate normality test can be predicted to 
have abnormal distributions. 

The results of the Mardia MVN test, 

Henze Zikler's MVN, and Royston's MVN test 
were presented in the form of p values, test 

strength, and type II error (β). Test power and 

type II error (β) were compared at alpha (α) 1%, 

5%, 10%, 20%, and 25%. The Mardia MVN test 
had a p-value of skewness and kurtosis while 

Henze Zikler's MVN test and Royston's MVN 

test had p-values only. The test power value was 
obtained by first finding the effect size value on 

the sample size. The type II error (β) was 

obtained through the calculation results of the 

formula: 1-value of the test strength. 
The results of the Mardia MVN test 

analysis on the "R" application were the p-value 

of skewness 2.2x10-8, while the Mardia 
estimated value was 28.80. The p-value of 

kurtosis was 46.2x10-5, while the estimated 

value of the Mardia multivariate kurtosis was 

78.65. The results of the comparison of the p-
value with Mardia's estimated value concluded 

that the multivariate data were not normally 

distributed because the p-value was lower than 
the estimated value. 

 Henze Zikler's MVN test analysis 

results on the R application showed a Hanze 
value of 1.33, while the p-value was 0 (zero). It 

can be interpreted that the multivariate data did 

not have a normal distribution in alpha (α) equal 

to 5% (0.05).  
The results of Royston's MVN test 

analysis on the R application were a Royston 

value of 23.85 and a p-value of 0.0006. It can 
be  interpreted  that  the multivariate data did 

not have a normal distribution at 5% alpha 

(0.05). The results of the analysis of the strength 
of the test were obtained by first finding the 

value of the effect size on the sample size of 38. 

The effect size of the Mardia MVN test was 

0.20. The effect size in the Henze Zikler MVN 
test was 0.0. The effect size in Royston's MVN 

was  0.04.  Effect size  is  a value  that  describes  
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Table 2. Value comparison p, test strength, and type II error (️β) on the Mardia MVN test, Henze 

Zikler's MVN test, and Royston's MVN test on 1%, 5%, 10%, 20%, and 25% 
 
 

MVN Test p-value Type I Error (α) Test Strength Type II Error (β) 

MVN Mardia Test 

2.2x10-8 

 
(Skewness) 

46.2x10-5 

(Kurtosis) 

1% 0.09 0.91 

5% 0.25 0.75 

10% 0.36 0.64 

15% 0.44 0.56 

20% 0.50 0.50 

25% 0.56 0.44 

Henze Zikler's MVN Uji 

test 
0.00 

1% 0.01 0.99 

5% 0.05 0.95 

10% 0.10 0.90 

15% 0.15 0.85 

20% 0.20 0.80 

25% 0.25 0.75 

Royston's MVN test 6x10-4 

1% 0.01 0.99 

5% 0.06 0.94 

10% 0.10 0.90 

15% 0.17 0.83 

20% 0.22 0.88 

25% 0.27 0.73 

the size of the influence of a variable on other 
variables. The effect size calculated before the 

analysis or test has the aim of determining the 

size of the sample to be used to obtain 
meaningful test results. The effect size value is 

opposite to the sample size, meaning that the 

smaller the effect size value, the larger sample 
size required for meaningful test results. The 

results of the comparison of effect sizes in the 

three tests show that the largest effect size is in 

the Mardia MVN test. It can be explained that 
the Henze Zikler MVN test and Royston's MVN 

test require a larger sample size in order to get 

an effect akin to the Mardia MVN test. 
Table 2 shows that at alpha (α) 1%, 5%, 

10%, 15%, 20%, and 25%, the power of the 

Mardia MVN test was greater than Henze 
Zikler's MVN test and Royston's MVN test. 

Type II error (β) at alpha 1%, 5%, 10%, 15%, 

20%, and 25% obtained the smallest value in the 

Mardia MVN test. 

 DISCUSSION  

Normality of data can be assessed 
visually (graphic) and through normality tests 

(numeric). Visual normality tests can use PP 

and QQ plots, but some studies state that the 
results are very subjective and it is better to use 

normality tests through p-value (Mishra et al., 

2019). The graphic plot that is the easiest and 

simplest method for determining univariate 
normality is a histogram. The normal 

distribution is observed through the shape of a 

bell in terms of slant and taper (Rani, 2016). 
It can be concluded that all variables 

were not normally distributed from the results 

of the analysis of the univariate normality test 
on each variable using descriptive numerical 

analysis using the average, median, and mode in 

Table 1 and descriptive graphic using the 

histogram in Figure 1,  
The first step to see the distribution of 

multivariate normal data is to check the 

normality  of  each variable using the univariate 
normality method  on all variables (Cain, 

Zhang, and Yuan, 2017). Data that has been 

declared  normally   distributed  in the first stage 
has a high  probability  of  being normally 

distributed in the multivariate normality test 

(Ellis et al., 2017).  

The results of the multivariate 
normality test for the p-value of the Mardia 

MVN test, Royston's MVN, and Henze Zikler's 

MVN test at 5% alpha obtained the same 

conclusion that the multivariate data were not 
normally distributed. Some cases where the data 

are not normally distributed can be caused by 

outliers and a lack of sample size. 

The normal distribution is the 

probability distribution of the most important 

continuous random variable because it is most 
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often encountered both theoretically and 

applied in statistical analysis. The normal 

distribution is also known as the Gaussian 

distribution. The normal distribution equation is 
initially investigated through residuals or errors 

with repeated measurements of the same 

simulation. 
The normal distribution describes the 

situation quantitatively in both the natural and 

social  sciences.  Various kinds of statistical 
tests can be determined  by following the 

normal distribution approach. The normal 

distribution is the test that is most often 

performed in statistics because some statistical 
test methods require requirements for normality 

of the data to allow further analysis to be carried 

out, for example, in parametric statistics 
(Kestin, 2018). 

The central limit theorem explains that 

in random sampling from a population 
distribution (regardless of the type of 

distribution), the distribution of the sample 

obtained is close to a normal distribution. The 

larger the sample, the closer the distribution to 
the normal distribution, or the closer to the 

population distribution. 

The size of the sample distribution that 
is close to the normal distribution is influenced 

by the distribution of the population. If the 

population is normally distributed, the 

distribution of each sample size is not always 
normal, especially if the sample size is small. If 

the population has a distribution that is very far 

from normal (abnormal), then a larger sample 
size is needed to get a sample distribution that 

is close to normal. 

The  difficulty  of determining the 

shape of the distribution  of  the  population  can 
be overcome by making one important sign, 

namely  to  apply  the 'central limit  theorem', it 

must have a large sample. The 'central limit 
theorem'  also  explains that, in general, a 

sample  size  of  more than 30  can  be  explained 

as having  sufficient  numbers  to  fulfill the 

'central  limit  theorem'.  It  can  be concluded 
that  a  larger  sample  size  or a minimum of 30 

samples  is  needed to  get  a  distribution that is 

close to normal. The principle of the 'central 
limit  theorem'   is  that  if  the  research wants 

to get  more  information  from  the  sample  

taken,  the  size  of  the sample that is 
determined should  be  as large as possible 

because the larger  the  sample,  the more the 

results obtained will describe the population 

being  studied. 

The Mardia MVN test is a normal 

multivariate test based on the intensity of the 

skewness (𝛾1, p) and kurtosis/curly (𝛾2, p). 

Mardia's test can be used for sample sizes of less 
than 20 samples. Small sample size has strength 

and type I error that can be violated. Mardia 

introduced the term correction into the 
statistical skewness test which is used when the 

sample size is less than twenty (n < 20) to 

control for type I error (α) (Mardia, 1970). 
The equation of the multivariate normal 

Mardia statistical test is as follows: 

 

�̂�𝟏,𝒑 =
𝟏

𝒏𝟐
∑∑[(𝒙𝐢 − �̅�)𝐒−𝟏(𝒙𝐣 − 𝒙)̅̅ ̅]𝟑

𝐧

𝐣=𝟏

𝒏

𝒊=𝟎

 

and 

�̂�𝟐,𝒑 =
𝟏

𝒏𝟐
∑𝐦𝐢𝐢

𝟐

𝒏

𝒊=𝟎

 

i = 0.1,2…,n 

j = 1,2,3,…,n 

Description: 

p is the number of the variable 

Statistical test for skewness (𝛾1,p)is 
about a chi-square distribution with 

p(p+1)(p+2)/6 degrees of freedom. Statistical 

test for kurtosis, (𝛾2,p) is approximately a 

normal distribution with a mean of p(p + 2) and 

a variance of 8p (p + 2)/n. 

The results of the Mardia MVN test can 
also be in the form of p values of skewness and 

kurtosis which will then be compared with the 

estimated values of Mardia skewness and 
kurtosis. If the value of p skewness and kurtosis 

is smaller than the estimated value of Mardia 

skewness and kurtosis, then H0 is rejected. The 

provisions for H0 are multivariate data with 
normal distribution, and H1 is multivariate data 

that are not normally distributed. 

In his article entitled Some Techniques 
for Multivariate Normality Assessment based 

on Shapiro Wilk W, Royston explained that the 

advantage of the Royston test is that it can be 
used on sample sizes of more than 3 and less 

than 100 (3<n<100). Previous research suggests 

choosing Royston's MVN test as a normality 

test on multivariate data with a sample size of 
less than 50 (n<50) (Korkmaz, Goksuluk and 

Zararsiz, 2014). 

Royston's MVN test uses Shapiro 
Wilk/Shapiro Francia statistics for the 

multivariate normality test. If the kurtosis in the 

data is greater than 3, then the Shapiro Franchia 
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test is used for the leptokurtic distribution, 

while the Shapiro Wilk test is used for the 

platykurtic distribution.  

Royston's MVN test equation is as follows: 

𝑯 =
𝒆∑ 𝝍𝒋

𝒑
𝒋=𝟏

𝒑
~𝒙𝒆

𝟐 

Information: 

e is the equivalent degree of freedom 
H is Royston's statistical test. 

Royston's MVN test results can also be 
in the form of a p-value and then analyzed by 

comparing it with the alpha value (α). If the 

obtained p-value is smaller than the 

predetermined alpha (α) value, then H0 is 
rejected. The provisions for H0 are multivariate 

data with normal distribution and H1 is 

multivariate data that are not normally 
distributed. 

Hanze Zikler's MVN test is a data 

normality test based on the distance between 
two distribution functions. If the data are 

multivariate normal distribution, the statistical 

test is the log-normal distribution. The mean, 

variance, and parameters are calculated first, 
followed by log-normal and the p-value (Henze 

and Zirkler, 1990). The calculation of the Henze 

Zikler MVN statistical test takes into account 
the number of variables, the distance of 

Mahalanobis, and the sample size. 

The result of Henze Zikler's MVN test 

is the p-value analyzed by comparing it with the 
alpha value (α). If the p-value is smaller than the 

predetermined alpha (α) value, then H0 is 

rejected. The condition for H0 is multivariate 
data with normal distribution and H1 is 

multivariate data that are not normally 

distributed. 

The Henze Zikler MVN statistical test equation 

is as follows:  

𝐇𝐙 =
𝟏

𝒏
∑∑𝐞

−𝛃𝟐

𝟐
𝐃𝐢𝐣−𝟐(𝟏−𝛃

𝟐)

𝐧

𝐣=𝟏

𝒏

𝒊=𝟏

∑𝐞
−𝛃𝟐

𝟐(𝟏+𝛃𝟐)
𝐃𝐢

𝐧

𝐢=𝟏

+ 𝐧(𝟏 + 𝟐𝛃𝟐)
−𝐩
𝟐  

𝜷 =
𝟏

√𝟐
(
𝒏(𝟐𝒑+ 𝟏)

𝟒
)

𝟏
𝒑+𝟒 

𝑫𝒊𝒋 = (𝒙𝒊 − 𝒙𝒋)′𝑺
−𝟏(𝒙𝒊 − 𝒙𝒋) 

𝑫𝒊 = (𝒙𝒊 − �̅� )𝑺−𝟏(𝒙𝒊 − �̅� ) = 𝒎𝒊𝒋  

Information: 

HZ is Henze Zikler statistical test 
p is the number of variables 

Dij is the Mahalanobis distance between i and j 

(observation) 

n is the sample size 

Table 2 shows the results of the 

comparison of p-value with alpha (α) 5% from 

each test. In Henze Zikler's MVN test, it is more 
difficult to conclude that the multivariate data 

are normally distributed compared to the 

Mardia MVN test and Royston's MVN test. 
This is because Henze Zikler's test MVN has a 

lower p-value than the Mardia MVN test and 

Royston's MVN test. Henze Zirkler's MVN test 
is one of the MVN tests that best maintains the 

nominal level of significance (Hanusz et al., 

2018). In Royston's MVN test, it is easier to 

conclude that the multivariate data is normally 
distributed compared to the Mardia MVN test 

and Henze Zikler's MVN test. This is because 

the p-value in Royston's MVN test is greater 
than the other tests. 

The results of the comparison of test 

strengths show that the Mardia MVN test has 
the greatest test power value compared to Henze 

Zikler's MVN and Royston's MVN. The Mardia 

MVN test can be used for a sample size of fewer 

than twenty samples. The small sample size has 
strength and type I error that can be violated. 

This means that the sensitivity of the Mardia 

MVN test to type 1 error is still not good 
(Korkmaz, Goksuluk, and Zararsiz, 2014). 

The results of research by Mecklin and 

Mundrom recommend using the Mardia MVN 

test because the test is based on skewness and 
kurtosis, meaning that it can be used to 

determine deviations from normal multivariate. 

Other studies have also shown that the Mardia 
MVN test is sensitive to specific symmetric 

violations (Mecklin and Mundfrom, 2005). 

Many previous studies have concluded 
that the multivariate normality test, namely 

Henze Zirkler's MVN and Royston's MVN 

tests, are good multivariate normality tests. This 

is because they have type I error control (α), 
they are strong, and they can be used to find the 

cause of deviations from the normal 

multivariate. The Mardia test MVN can 
calculate the skewness coefficient correction 

for a small sample size of fewer than 20 samples 

(n < 20) (Farrell, Salibian-Barrera, and Naczk, 
2007). 

 Table 2 also shows the multivariate 

normality test based on the type II error value 

(β) at different alphas. The Mardia test had a 
value of type II error smaller than Henze 

Zikler's MVN and Royston's MVN. It can be 

concluded that the Mardia MVN test has a 
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smaller chance of type II error (β) than Henze 

Zikler's MVN and Royston's MVN test. 

 The results of the comparative analysis 

of power and type II errors in the three MVN 
tests also explain that the larger the type I error 

(α), the smaller the type II error (β). The results 

of several studies prove that type I (α) and II (β) 
errors are opposite to each other. This analysis 

aimed to minimize errors of type I and II, but its 

implementation is difficult. 
The final result of the study found that 

the Mardia MVN test was better at controlling 

type II errors (β). This differs from the results 

of research conducted by Mecklin and 
Mundrom, which analyzed several tests of 

normality of multivariate data through a 

comprehensive simulation study on type I (α) 
and II (β) errors. They found that there was no 

best normality test for all types of data, but also 

highly recommended Henze Zikler's MVN and 
Royston's MVN test for normality testing of 

multivariate data because they have good 

control on type I (α) and II (β) errors. 

The strength of the statistical test 
depends on the level of significance set by the 

researcher, the sample size and effect size, or 

the extent to which the group differs based on 
the treatment. The power of statistical tests is 

critical for healthcare providers to decide how 

many patients to enroll in clinical studies. The 

strength of the test is closely related to the 
sample size, when the sample size is large, there 

is no problem with the strength of the test. 

However, if the sample size used is small, the 
power of the test will be low, and researchers 

must be aware of the possibility of type II errors 

(β). The larger the sample size in a study, the 
more likely it is that a researcher will reject the 

null hypothesis (Shreffler and Huecker, 2020; 

Kim, 2015). Research in the health sector, in 

addition to considering the p-value (type I 
error), must also pay attention to the strength of 

statistical tests when interpreting study results 

(Ueki and Sakaguchi, 2018). The strength of the 
test can be considered by researchers when 

choosing the most appropriate test for the data 

they have (Lee and Lee, 2018). 
It is recommended that multivariate 

normality test assessments use several 

methods/tests because each test has advantages 

and disadvantages. The most widely used 
multivariate normality test is Royston's MVN 

test and the Mardia MVN test. Many alternative 

methods can be used when the assumption of 
normality cannot be maintained to allow using 

non-parametric tests or changing the data to 

approach or become normal (Oppong and 

Agbedra, 2016). 

This study had a sample size of 38, 
which is included in the category of small 

sample size. The results of the study indicate 

that the Mardia test was the most appropriate 
test used for this data, but different sample sizes 

may produce different analytical conclusions. 

Future research can develop research using 
different sample sizes. 

The limitation of this study is that the 

researcher did not use variations in the sample 

size. Sample size can affect the strength of the 
test. Large sample sizes will result in a greater 

sensitivity test than small sample sizes. The 

sample size is required for sensitivity evaluation 
and specificity detection or diagnostic testing 

based on various predefined parameters 

(Bujang and Adnan, 2016). Sample size should 
not depend on the availability of the number of 

respondents. In small sample sizes, it is highly 

recommended to carry out multicentric studies 

to provide good test power in identifying 
clinical differences (Borkowf, Johnson, and 

Albert, 2018). 

CONCLUSIONS AND SUGGESTIONS  

Conclusion 

The Mardia MVN test is a better 
multivariate normality test than Henze Zikler's 

MVN test and Royston's MVN test on data that 

has a sample size of 38 because it has the largest 
test power value and the smallest type II error 

(β). 

Suggestion 

The researcher recommends using a 
varied sample size in the next study to produce 

a more detailed test difference. 
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