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ABSTRACT 

 

Malaria remains a significant global health challenge, particularly in tropical regions. Accurate analysis of 

patient survival data is essential for understanding disease progression and evaluating the effectiveness of 

interventions. However, traditional survival analysis often overlooks clustering effects from factors like 

location, healthcare or family relationship. This study examines how unshared heterogeneity in treatment 

regimens and reporting time affect malaria patient survival analysis. A simulated dataset, following a 

Weibull distribution for typical malaria treatment duration (3-7days) was generated to assess the extended 

Cox model's ability to handle clustering. Three cluster sizes (20, 10, 5 observations) and varying total clusters 

(25, 50, 100) were used to mimic a 500-patient malaria dataset from Keffi General Hospital, Nigeria, 

considering shared treatment similarities within clusters. Cluster effects were introduced through a normally 

distributed random variable. Model 2, with 10 observations per cluster, performed best based on constant 

hazard, low AIC, and BIC. This suggests that 50 clusters of 10 observations each effectively capture the 

malaria data's underlying structure. The analysis of simulated covariates revealed that male patients had 15% 

higher risk of death compared to females. Additionally, younger patients (0-5years), patients with blood 

types A, B, or AB (particularly type A), and those with increasing body temperatures were identified as high-

risk groups. This study underscores the importance of considering clustering effects in analyzing malaria 

time-to-event data, especially for clustered datasets; a sample size of 500, divided into 50 clusters of 10 

patients each, seems optimal for analyzing real-world malaria datasets using the extended Cox model. 

 

 

ABSTRAK 

 

Malaria masih menjadi tantangan kesehatan global yang signifikan, khususnya di wilayah tropis. Analisis 

yang akurat terhadap data kelangsungan hidup pasien sangat penting untuk memahami perkembangan 

penyakit dan mengevaluasi efektivitas intervensi. Namun, analisis kelangsungan hidup tradisional sering 

mengabaikan dampak pengelompokan dari faktor-faktor seperti lokasi, layanan kesehatan, atau hubungan 

keluarga. Studi ini mengkaji bagaimana heterogenitas yang tidak terbagi dalam rejimen pengobatan dan 

waktu pelaporan mempengaruhi analisis kelangsungan hidup pasien malaria. Kumpulan data simulasi, 

mengikuti distribusi Weibull untuk durasi pengobatan malaria pada umumnya (3-7 hari) dihasilkan untuk 

menilai kemampuan model Cox yang diperluas dalam menangani pengelompokan. Tiga ukuran cluster (20, 

10, 5 observasi) dan total cluster yang bervariasi (25, 50, 100) digunakan untuk meniru kumpulan data 500 

pasien malaria di Rumah Sakit Umum Keffi, Nigeria, dengan mempertimbangkan kesamaan pengobatan 

dalam cluster. Efek cluster diperkenalkan melalui variabel acak yang terdistribusi normal. Model 2, dengan 

10 observasi per cluster, memiliki kinerja terbaik berdasarkan bahaya konstan, AIC rendah, dan BIC. Hal 

ini menunjukkan bahwa 50 cluster yang masing-masing terdiri dari 10 observasi secara efektif menangkap 

struktur dasar data malaria. Analisis kovariat yang disimulasikan menunjukkan bahwa pasien laki-laki 

memiliki risiko kematian 15% lebih tinggi dibandingkan pasien perempuan. Selain itu, pasien yang lebih 

muda (0-5 tahun), pasien dengan golongan darah A, B, atau AB (terutama tipe A), dan mereka yang suhu 

tubuhnya meningkat diidentifikasi sebagai kelompok risiko tinggi. Studi ini menggarisbawahi pentingnya 

mempertimbangkan efek pengelompokan dalam menganalisis data time-to-event malaria, terutama untuk 

kumpulan data yang mengelompok; ukuran sampel sebesar 500, dibagi menjadi 50 kelompok yang masing-

masing terdiri dari 10 pasien lebih optimal untuk menganalisis kumpulan data malaria (real-world) 

menggunakan model Cox yang diperluas.  
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INTRODUCTION 

Malaria remains a serious public health 

problem and is endemic in Nigeria. Africa 

accounted for 94% (213 million cases) of all 

malaria cases and 94% (386,000 deaths) of all 

malaria deaths worldwide in 2019, according to 

data published by the World Health Organization 

(WHO) (1). Nigeria accounted for 27% (61.8 

million cases) of the global malaria burden and 

23% (94,070 deaths) of global malaria deaths in 

2019, despite the fact that malaria is preventable, 

treatable and curable. Also, Nigeria is one of six 

countries accounting for 51% of all malaria cases 

worldwide in 2019 (1). The most vulnerable 

groups in Nigeria are children under five and 

pregnant women. In Nigeria, malaria accounts for 

30% of hospital admissions and 60% of 

outpatient visits. About 11% of maternal deaths 

and 30% of under-five deaths are caused by 

malaria (2). This paper will attempt to find the 

prevalence of malaria disease for a wider range of 

age categories, with children under the age of 5 

years in one category.  Malaria exacerbates the 

country's already fragile health system and places 

a heavy socio-economic burden on the country, 

reducing Gross Domestic Product (GDP) by 40% 

annually and resulting in direct and indirect 

medical costs of approximately 480 billion Naira 

(3).  

Time of survival or failure time is a 

measure of how long it takes for an event to occur 

from a given starting point. The event is often 

referred to as a "failure event," although in the 

context of survival analysis, "failure" is a general 

term that does not always imply physical failure. 

Failure times can include things like waiting to 

accept a job offer, paying off a house loan, 

returning to criminal activity after being found 

guilty of a previous crime, being punished, 

reformed and released from prison, and moving 

from single to married life (4). Survival time can 

refer to the duration of illness remission in 

medicine, the time between diagnosis and death, 

or the time between onset and recovery. Survival 

data cannot be analyzed using standard statistical 

approaches because the underlying distribution is 

rarely normal (4). 

Standard linear regression methods 

cannot be used to analyze the relationship 

between survival time and certain biological, 

socioeconomic and demographic parameters that 

may affect a patient's survival status because of 

the concept of censoring (5). If an individual's 

failure event occurs at an unknown time, that 

individual's survival time is said to be censored. 

This may be the case because some study 

participants were still alive at the time of data 

collection. More so, a person's survival time was 

unclear at the time of analysis if they were lost to 

follow-up; all we know about people who are 

censored is that it takes longer for them to fail 

than for them to be censored (6).  Time to failure 

is often the response (dependent) variable in 

survival data, and the hazard function is often 

used to model survival data. The median is used 

as a measure of center position rather than the 

arithmetic mean, which can be influenced by 

extreme values, because survival time is often 

skewed (non-normal).  

An important area of interest in the 

analysis of survival data is how prognostic factors 

affect the hazard function. Semi-parametric 

models such as the Cox proportional model and 

parametric models such as the Weibull model are 

often used (6). The shape of the baseline risks is 

one of the main factors influencing the choice of 

technique for modeling survival data. Parametric 

models can provide some insight into the shape 

of the baseline hazard if the empirical data are 

adequate (7). Likewise, it is possible to 

extrapolate survival functions, which, although 

theoretical, may be useful in some applications 

(8). Most often in medical research, the 

assumptions underlying parametric models may 

not apply to the data set because the true hazard 

is either unknown or complex. Say, for example, 

a parametric Weibull model may produce 

estimates that are biased and inefficient when 

used to analyze data from a population that do not 

fit a Weibull survival distribution. The Cox 

model provides a robust alternative and performs 

better than parametric Weibull model analysis in 

this scenario (9). 

Nigeria as a developing country, data 

collected from health facilities for survival 

analysis often lack relevant variables to 

efficiently describe the effects of risk factors, a 

research challenge that can be addressed by 

simulating some characteristics, one of which is 

the effect of clustering. When observations are 

grouped according to a common feature or 
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characteristic - for example, patients belonging to 

the same hospital, family or region - this is 

referred to as clustering (10). Observations that 

are clustered may not be completely independent 

of each other because they have similar 

characteristics or exposures (11). Other authors 

suggested that if people in the same cluster have 

comparable survival times or event risks, this 

could lead to within-cluster correlation, because 

it can affect the assumptions and conclusions of 

the study, clustering is an important concept in 

survival analysis (12).  Under the proportional 

hazards assumption, the value of the hazard ratio 

is assumed to be constant over time. The hazard 

ratio is an influence that can be observed when 

comparing two things with different conditions. 

Imperatively, proportional hazards assumption 

should be evaluated because time can often lead 

to changes in the hazard ratio. If these 

assumptions are not met, an additional technique 

- the extended Cox regression proposed in this 

paper from the Cox proportional hazard model - 

is required to estimate the probability of the 

resistance test (13). 

This paper considered time clustering, where 

patients reporting to hospital at around the same 

time appear to have similar symptoms, to be on 

the same treatment regimen, or to be from the 

same household. Basically, clusters based on time 

periods can capture changes in malaria incidence 

and treatment over time, as well as the impact of 

interventions. The aim of this paper was to assess 

the Cox (ignoring clusters) and several classes of 

extended Cox models (with cluster specific frailty 

or random effect) on a partially simulated malaria 

data set obtained from Keffi General Hospital, 

time was generated from the Weibull distribution 

for between 3 and 7 days when one is expected to 

complete malaria treatment and three  conditions 

of clustering effects that follow the normal 

distribution, other risk factors include; death 

indicator (status), age, malaria type, sex, weight, 

temperature and blood group which also adds as 

a new investigation in the context of studying this 

endemic diseases using the extended Cox model. 

This paper further assesses the impact of this 

disease by considering some of the risk factors 

using survival analysis. 

METHODS 

Simulation Recipe 

 A partial simulation was performed on 

the malaria data collected from the Keffi General 

Hospital registry, Nasarawa State, Nigeria. The 

Head Officer of the Registry Department of Keffi 

General Hospital registry, Nasarawa State, 

Nigeria provided informed verbal consent for the 

research to be conducted and the findings to be 

published. Failure times followed a Weibull 

distribution when testing the dataset for goodness 

of fit, and were simulated for between 3 and 7 

days when treatment for malaria is expected to be 

completed. These times were obtained for shape 

and scale parameters assumed to be 2 and 4 

respectively. The number of observations 

generated per cluster are 20, 10 and 5 using 25, 

50, 100 clusters, respectively, resulting in a 

sample size of 500 in each situation of the total 

number of inpatients and outpatients treated for 

Malaria between January, 2022- April, 2024, this 

is done to under study the unshared heterogeneity 

in treatment regimes and reporting time amongst 

patients who visited the facility within the study 

period. The cluster effect (v) follows a normal 

distribution with mean zero and variance 0.5, 

i.e. 𝑣~𝑁(0,0.5). 

 The reminder of the data frame 

consists of some categorical variables: Status; 

coded "1" for patients who died of malaria 

disease and zero for those who recovered or are 

lost to follow-up, malaria type coded "1" for 

patients with severe malaria and "0" for those not 

severe, sex was coded "1" for male patients and 

"0" for female patients, blood groups O, A, B, AB 

were coded 0,1,2,3, respectively. Metric 

covariates were age, weight and temperature. Age 

was categorized as 1 for 1 to 5 years, 2 for ≤18 

years and 0 for >18 years (reference category). 

The summary statistics for data set on malaria are 

displayed in Table 1. 
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The Cox Model  

The hazard rate of the model is 

represented as a product, that is; 

𝜆𝑖(𝑡, 𝑋) = λ0(𝑡) exp. (∑ 𝛽𝑗𝑋𝑗

𝑝

𝑗=1

) = λ exp(𝑋′𝛾)  (1) 

where the covariates 𝑋𝑗 are measured at study 

entry (t =0). A key attribute of the model is that 

the hazard ratio 
𝜆(𝑡,𝑋=𝑥)

 𝜆(𝑡,𝑋=0)
= 𝑒𝑥𝑝(𝛽𝑥)  depends on 

the covariates 𝑥1, … , 𝑥𝑝 but not on time t. The 

baseline hazard rate is unnamed and with the 

exponentially associated function, covariates 𝑥 =
(𝑥1, . . . , 𝑥𝑝) act in a multiplicatively manner on 

the hazard rates,  is a vector of regression effects 

which is only estimable through partial likelihood 

estimation procedure (14).  

Model Specification (Extended Cox Model) 

𝜆𝑖 = λ0(𝑡) exp.(𝛾1𝑡𝑦𝑝𝑒 + 𝛾2𝑠𝑒𝑥
+ 𝛾3𝑖𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝
+ 𝛾4𝑖𝑏𝑙𝑜𝑜𝑑 𝑔𝑟𝑜𝑢𝑝
+ 𝛽1𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝛽2𝑤𝑒𝑖𝑔ℎ𝑡
+ 𝑣𝑖)         (2) 

where λ0(𝑡)is the unnamed baseline hazard, 𝛾𝑖 

are the categorical covariates, 𝛽𝑖 are metrical in 

nature and 𝑣𝑖 is the random effect associated with 

the 𝑖𝑡ℎ cluster, which allows for modeling the 

unobserved heterogeneity within clusters and 

adjusting for the potential correlation. 

Proportional Hazard Assumption (PHA) 

 Testing the statement that the 

proportionate hazard condition is valid, the 

following hypothesis stated as cited in (15,16) is 

made. 

𝐻0: 𝛿1 = 𝛿2 = ⋯ = 𝛿𝑝 = 0 (Statement is valid) 

𝐻1: 𝑎𝑡 𝑙𝑒𝑎𝑠𝑡 𝑜𝑛𝑒 𝑝𝑎𝑖𝑟 𝑜𝑓 𝑡ℎ𝑒 𝛿𝑖
′𝑠 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑞𝑢𝑎𝑙  

        𝑡𝑜 𝑧𝑒𝑟𝑜 (Statement violated) 

Decision rule: Reject 𝐻0 if 𝑝 − 𝑣𝑎𝑙𝑢𝑒 ≤  𝛼. 

 Schoenfeld residual measures are used 

to examine the violation of the constant hazard 

assumption. The technique is classically 

computed at each failure time under the 

comparative hazard postulate, and is typically not 

defined for non-informative observations (17). 

The general significance test is called the global 

test. The criteria used to select the best modeling 

strategy for the malaria data were; p-value, i.e, the 

higher the value above the threshold of 0.05 the 

better, Akiake Information Criteria (AIC) and 

Bayesian Information Criteria (BIC);  in both 

cases, the smaller the values, the better the model. 

Models 

𝜆𝐼𝐶𝐸 = λ0(𝑡) exp.(𝛾1𝑡𝑦𝑝𝑒 + 𝛾2𝑠𝑒𝑥
+ 𝛾3𝑖𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝
+ 𝛾4𝑖𝑏𝑙𝑜𝑜𝑑 𝑔𝑟𝑜𝑢𝑝
+ 𝛽1𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
+ 𝛽2𝑤𝑒𝑖𝑔ℎ𝑡)                           (3) 

𝜆𝑊𝐶𝐸𝑖
= λ0(𝑡) exp.(𝛾1𝑡𝑦𝑝𝑒 + 𝛾2𝑠𝑒𝑥

+ 𝛾3𝑖𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝
+ 𝛾4𝑖𝑏𝑙𝑜𝑜𝑑 𝑔𝑟𝑜𝑢𝑝
+ 𝛽1𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 + 𝛽2𝑤𝑒𝑖𝑔ℎ𝑡
+ 𝑣𝑖)                                          (4) 

𝑊𝐶𝐸𝑖 = 1 ,2, 3 𝑓𝑜𝑟 25, 50, 100 Clusters 

respectively 

where ICE = Ignoring Cluster  and WCE = with 

cluster effects for 25, 50 and 100 cluster numbers.  

Model 1 = model with 20 patients within a 

cluster, with total clusters of 25 

Model 2 = model with 10 patients within a 

cluster, with total clusters of 50 

Model 3= model with 5 patients within a cluster, 

with total clusters of 100 

RESULTS 

The study made use of statistical 

software (R4.3.) to generate the results as 

presented in Table 1 and 2. 
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Table 1: Descriptive Statistics for Categorical and Metrical covariates 

Variables Covariate level 
Condition 

Alive Dead 

Malaria Type 0 222 (93.3%) 16 (6.7%) 

 1 241(90.8%) 21(9.2%) 

Sex 0 258 (92.7 %) 21 (7.5 %) 

 1 202(91.4%) 19(8.6%) 

Age group 0 125(94.7%) 7(5.3%) 

 1 184(88.9%) 23(11.1%) 

 2 151(93.8%) 10 (6.2 %) 

Blood group 0 116(98.3%) 2(1.7%) 

 1 120(88.9 %) 15(11.1%) 

 2 150(91.5%) 14 (8.5%) 

 3 74(89.2%) 9(10.8%) 

Temperature Min/Max 32/39 32/39 

Weight Min/Max 3/80 7/78 

 

Table 2: Table of hazard ratios (with reference category “0” as in table 1) and model selection criteria  

Covariates 

(Reference “0”) 
ICE Model 1 Model 2 Model 3 Model2 coeff. 

Malaria type 1.006804 1.006230 1.040947 0.99486 0.040131 

Sex  1.063870 1.063555 1.155101 1.06236 0.144187 

Age group1 3.637784 3.641018 3.736388 3.73486 1.318119 

Age group 2 1.213944 1.215251 1.185672 1.22542 0.170310 

Blood group1 5.033967 5.030504 5.726482 5.04158 1.745101 

Blood group2 3.385701 3.385575 3.809125 3.36940 1.337400 

Blood group3 2.994272 2.994760 2.990308 2.97338 1.095376 

Temperature  2.627788 2.628384 2.649645 2.63650 0.974426 

Weight  0.989088 0.989106 0.995148 0.98963 -0.004864 

p value for PHA 0.0490 0.0477 0.0553 0.0729  

AIC 410.6053 412.6052 406.3768 412.555  

BIC 425.8052 429.494 423.2656 429.4438  

 

DISCUSSIONS 

The constant hazard assumption holds 

for model 2 and model 3, while it fails for ICE 

and model 1 as can be seen in Table 1. 

Apparently, it can be inferred that in trying to 

solve the problem of non-constant hazard as 

suggested by a research findings in 2020 (13) in 

Cox ICE, the model only got worse in model 1, 

which may be due to misspecification of the 

cluster numbers - too many subjects within the 

clusters. When the models were further evaluated 

using the AIC and BIC values, it was seen that 

model 2 outperformed the others with the lowest 

values for both selection criteria which reflects 

the submission of a case study in 2024 (12) on 

Cluster Analysis Integration Model with Survival 

Analysis for Late Payment of House Ownership 

Loan. Model 3 may appear to be better in terms 

of proportional hazard, but failed to capture the 

model effects within clusters with too few 

members. 

The best model (model 2) fitted is shown below: 

𝜆𝑊𝐶𝐸=50
= λ0(𝑡) exp.(0.040131. 𝑡𝑦𝑝𝑒 + 0.144187. 𝑠𝑒𝑥

+ 1.318119. 𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝1
+ 0.170310. 𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝2
+ 1.745101. 𝑏𝑙𝑜𝑜𝑑𝑔𝑟𝑜𝑢𝑝1
+ 1.337400. 𝑏𝑙𝑜𝑜𝑑𝑔𝑟𝑜𝑢𝑝2
+ 1.095376. 𝑏𝑙𝑜𝑜𝑑𝑔𝑟𝑜𝑢𝑝3
+ 𝛾4𝑖𝑏𝑙𝑜𝑜𝑑 𝑔𝑟𝑜𝑢𝑝
+ 0.974426. 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒
− 0.004864. 𝑤𝑒𝑖𝑔ℎ𝑡 + 0.404537. 𝑣𝑖) 



Omaku PE, Braimah JO, Correa FM. Evaluating Cluster Effects in Malaria Survival Analysis...  216 
 

 

Malaria type has an increasing effect of 

0.040131 and a hazard ratio of 1.041 for patients 

with the effect of cluster-specific frailty, 

suggesting that patients with severe malaria have 

a slightly 4% higher risk of dying from malaria 

compared to non-severe cases. Sex has an 

increasing effect of 0.144 and the hazard ratio of 

1.155, for patients with the effect of cluster-

specific frailty, suggesting that male patients are 

15% at risk of death from malaria compared to 

their female counterparts. 

Age group 1 has an increasing effect of 

1.32 and the hazard ratio of 3.74 for patients with 

the effect of cluster specific frailty, suggesting 

that patients within the age group 0-5 years are 

3.74 times more likely to die from malaria than 

those within the age group over 18 years. Age 

group 2 has an increasing effect of 0.17 and the 

hazard ratio is 1.19, for patients with the effect of 

cluster specific frailty, suggesting that patients in 

the age group 6-19 years are 1.19 times or 19% 

more at risk of dying from malaria than those in 

the age group over 19 years, this is consistent 

with the findings of national malaria elimination 

program organized by the National Population 

Commission, National Bureau of Statistics and 

ICF International on Nigeria Malaria Indicator 

Survey held in  Abuja, Nigeria (2).  

Blood group 1 has an increasing effect of 

1.75 and a hazard ratio of 5.73 for patients with 

the effect of cluster specific frailty, suggesting 

that patients with blood group A are 5.73 times 

more likely to die from malaria than those with 

blood group O. Blood group 2 has an increasing 

effect of 1.34 and a hazard ratio of 3.81 for 

patients with cluster specific frailty, suggesting 

that patients with blood group B are 3.81 times 

more likely to die from malaria than those with 

blood group O. Blood group 3 has an increasing 

effect of 1.0954 and the hazard ratio of 2.99, for 

patients with the effect of cluster specific frailty, 

suggesting that patients with blood group "AB" 

are 2.99 times more at risk of dying from malaria 

than those with blood group "O". Although 

empirical study comparing the hazard or risk 

posed by specific blood group as considered in 

this study are rarely seen in literature. However, 

the assessment of blood groups in this study 

mirrors the laboratory research of Bertrand et al. 

(18) which suggested that the severity of malaria 

is partly determined by the presence of blood 

group A. Temperature has an increasing effect of 

0.97 and a hazard rate of 2.65 for patients with the 

effect of cluster-specific frailty, suggesting that 

for a unit change in patient temperature, the 

baseline is associated with 2.65 times the risk of 

death from the disease. Weight has a decreasing 

effect of -0.0049 and a hazard rate of 0.995 for 

patients with the effect of cluster-specific frailty, 

suggesting that for a unit change in patient 

weight, the baseline as a result of this slight 

reduction in weight is associated with 0.995 times 

the risk of death from the diseases. This finding 

aligns with Oldenburg et al. (19), who reported 

weight gain after days of treatment. 

Advantages of the Study 

This study enhances the relevance of the 

research to the local context by leveraging data 

from General Hospital Keffi. This improved 

accuracy leads to more precise estimates of 

malaria risk factors and a deeper understanding of 

the factors influencing malaria survival. 

Additionally, the inclusion of blood group as a 

covariate provides valuable insights into the 

varying degrees of vulnerability among different 

blood groups. The study ensures correct resource 

allocation to the hospital facility by appropriately 

clustering datasets. Ultimately, this research 

contributes to the development of more targeted 

and effective treatment and control strategies for 

similar settings and populations. 

Limitations of the Study 

Potential inaccuracies in record-keeping 

and data collection may have introduced some 

degree of error into the study. Additionally, the 

reliance on simulated data may limit the extent to 

which the findings can be directly applied to real-

world scenarios. 

CONCLUSIONS AND SUGGESTIONS 

Conclusions 

The study reveals that not only is it 

problematic to fit Cox regression to the data 

structure in most cases due to non-constant 

hazards, but misspecifying the number of cluster 

random effects and the correct number of 

homogeneous sets within each group in the 
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hazard structure also has a detrimental effect. 

Here, the malaria data is best represented by 10 

patients with similar conditions and treatment 

regimens being treated by their doctors at a given 

time among the 50 blocks of clusters in a sample 

of 500 patients in the health facility. Patients with 

the covariate set; age group 1; (0-5 years), blood 

groups A, B and AB, especially those of group 

"A," coupled with an increasing temperature were 

seen to be the most vulnerable and at great risk of 

death from malaria - which is consistent with the 

submissions of (1, 2 and 3). Owing to modeling; 

it is clearly observed that data cleaning by making 

up for the inadequacy of data structures obtained 

from record rooms in this part of the world is 

paramount to effectively capture the effects of the 

model. 

Suggestions 

 Adequate time should be allowed to 

collect all relevant information from patients to 

allow effective measurement of risk trends over 

time, which may help to advise patients 

appropriately and review treatment strategy over 

time. Due to model effects, preventive and 

proactive measures should be taken to reduce the 

number of deaths from this endemic disease, 

especially for children under five  years of age. 

Some of these could be: the use of mosquito nets, 

promoting and maintaining a clean and healthy 

environment, seeking medical attention in case of 

rising temperature, and knowing the blood group 

to have a good idea of the risk of malaria disease 

if the child is exposed. 

ACKNOWLEDGMENT 

The authors are grateful to the Keffi 

General Hospital, particularly the registry, for 

providing the data used in this study. Dr Braimah, 

Joseph Odunayo is grateful to the University of 

the Free State, Bloemfontein for the opportunity 

to conduct this study as a Postdoctoral 

Researcher. 

REFERENCES 

1. World Health Organization (WHO). 

World Malaria Report 2020: 20 Years of 

Global Progress and Challenges 

[Internet]. Geneva: World Health 

Organization; 2020. Available from: 

https://www.who.int/publications/i/item/

9789240015791 

2. National Malaria Elimination Programme 

(NMEP), National Population 

Commission (NPopC), Bureau N, of 

Statistics (NBS), ICF International. 

Nigeria Malaria Indicator Survey 2015 

[Internet]. Abuja, Nigeria, and Rockville, 

Maryland, USA: NMEP, NPopC, and ICF 

International; 2016. Available from: 

https://dhsprogram.com/pubs/pdf/mis20/

mis20.pdf 

3. National Population Commission (NPC) 

[Nigeria], ICF. Nigeria Demographic and 

Health Survey 2018 [Internet]. Abuja, 

Nigeria, and Rockville, Maryland, USA: 

NPC and ICF; 2019. Available from: 

https://dhsprogram.com/pubs/pdf/FR359/

FR359.pdf 

4. Chilot D, Mondelaers A, Alem AZ, Asres 

MS, Yimer MA, Toni AT, et al. Pooled 

Prevalence and Risk Factors of Malaria 

Among Children Aged 6-59 Months in 13 

Sub-saharan African Countries: a 

Multilevel Analysis Using Recent Malaria 

Indicator Surveys. PLoS One [Internet]. 

2023;18(5):e0285265. Available from: 

https://doi.org/10.1371/journal.pone.0285

265 

5. Maji A, Mohan A, Choudhari TP, 

Shailendra SK. Hazard-based Overtaking 

Duration Model for Mixed Traffic. Transp 

Lett [Internet]. 2023;16(7):715–724. 

Available from: 

https://doi.org/10.1080/19427867.2023.2

236409 

6. Cox DR. Regression Models and Life-

Tables. J R Stat Soc Ser B [Internet]. 1972 

Jan 1;34(2):187–202. Available from: 

https://doi.org/10.1111/j.2517-

6161.1972.tb00899.x 

7. Mbona SV, Mwambi H, Ramroop S, 

Chifurira R. Survival Analysis of Patients 

with Multidrug-Resistant Tuberculosis in 

Kwazulu-Natal, South Africa : A 

Comparison of Cox Regression and 

Parametric Models. Int J Sci Math 

Technol Learn [Internet]. 

https://www.who.int/publications/i/item/9789240015791
https://www.who.int/publications/i/item/9789240015791
https://dhsprogram.com/pubs/pdf/mis20/mis20.pdf
https://dhsprogram.com/pubs/pdf/mis20/mis20.pdf
https://dhsprogram.com/pubs/pdf/FR359/FR359.pdf
https://dhsprogram.com/pubs/pdf/FR359/FR359.pdf
https://doi.org/10.1371/journal.pone.0285265
https://doi.org/10.1371/journal.pone.0285265
https://doi.org/10.1080/19427867.2023.2236409
https://doi.org/10.1080/19427867.2023.2236409
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x
https://doi.org/10.1111/j.2517-6161.1972.tb00899.x


Omaku PE, Braimah JO, Correa FM. Evaluating Cluster Effects in Malaria Survival Analysis...  218 
 

 

2024;31(1):571–81. Available from: 

https://hdl.handle.net/10321/5467 

8. Dai R, Ma J, Wu M, Mai Y, He W. A 

Flexible Ensemble Learning Method for 

Survival Extrapolation. Ther Innov Regul 

Sci [Internet]. 2023;57(3):580–8. 

Available from: 

https://doi.org/10.1007/s43441-022-

00490-1 

9. Zuo W, Li Y. A New Stochastic 

Restricted Liu Estimator for the Logistic 

Regression Model. Open J Stat [Internet]. 

2018;8(1):25–37. Available from: 

https://doi.org/10.4236/ojs.2018.81003 

10. Liang J, Chen S, Kochunov P, Hong LE, 

Chen C. Integrative Data Analysis Where 

Partial Covariates Have Complex Non-

linear Effects by Using Summary 

Information from an External Data. Am 

Stat [Internet]. 2024;2:1–22. Available 

from: 

https://doi.org/10.48550/arXiv.2303.0349

7 

11. Rubio FJ, Drikvandi R. MEGH: A 

parametric class of general hazard models 

for clustered survival data. Stat Methods 

Med Res [Internet]. 2022;31(8):1603–

1616. Available from: 

https://doi.org/10.1177/09622802221102

620 

12. Zahra A, A. R. Fernandes A, B. Astuti A. 

Cluster Analysis Integration Model with 

Survival Analysis for Late Payment of 

House Ownership Loan (Case Study: 

House Ownership Loan Bank X 

Customer). J Stat Appl Probab [Internet]. 

2024;13(1):15–26. Available from: 

https://dx.doi.org/10.18576/jsap/130102 

13. Jong VMT de, Moons KGM, Riley RD, 

Smith CT, Marson AG, Eijkemans MJC, 

et al. Individual Participant Data Meta-

analysis of Intervention Studies with 

Time-to-event Outcomes: A review of the 

Methodology and an Applied Example. 

Res Synth Methods [Internet]. 

2020;11(2):148–168. Available from: 

https://doi.org/10.1002/jrsm.1384 

 

 

 

 

14. O.I. A, A.A. A. First Birth Interval: Cox 

Regression Model with Time Varying 

Covariates. Covenant J Phys Life Sci 

[Internet]. 2018 Jun 20;0(0 SE-Articles). 

Available from: 

https://journals.covenantuniversity.edu.n

g/index.php/cjpls/article/view/930 

15. Zhang Z, Reinikainen J, Adeleke KA, 

Pieterse ME, Groothuis-Oudshoorn 

CGM. Time-Varying Covariates and 

Coefficients in Cox regression Models. 

Ann Transl Med [Internet]. 

2018;6(7):121. Available from: 

https://doi.org/10.21037/atm.2018.02.12 

16. Turkson AJ, Addor JA, Ayiah-Mensah F. 

The Cox Proportional Hazard Regression 

Model Vis-à-Vis ITN-Factor Impact on 

Mortality Due to Malaria. Open J Stat 

[Internet]. 2021;11:931–62. Available 

from: 

https://doi.org/10.4236/ojs.2021.116055 

17. Schoenfeld D. Partial residuals for the 

proportional hazards regression model. 

Biometrika [Internet]. 1982 Apr 

1;69(1):239–41. Available from: 

https://doi.org/10.1093/biomet/69.1.239 

18. Lell B, May J, Schmidt-Ott RJ, Lehman 

LG, Luckner D, Greve B, et al. The Role 

of Red Blood Cell Polymorphisms in 

Resistance and Susceptibility to Malaria. 

Clin Infect Dis [Internet]. 1999 Apr 

1;28(4):794–9. Available from: 

https://doi.org/10.1086/515193 

19. Oldenburg CE, Guerin PJ, Berthé F, Grais 

RF, Isanaka S. Malaria and Nutritional 

Status Among Children With Severe 

Acute Malnutrition in Niger: A 

Prospective Cohort Study. Clin Infect Dis 

[Internet]. 2018 Sep 14;67(7):1027–34. 

Available from: 

https://doi.org/10.1093/cid/ciy207 

  

 

 

https://hdl.handle.net/10321/5467
https://doi.org/10.1007/s43441-022-00490-1
https://doi.org/10.1007/s43441-022-00490-1
https://doi.org/10.4236/ojs.2018.81003
https://doi.org/10.48550/arXiv.2303.03497
https://doi.org/10.48550/arXiv.2303.03497
https://doi.org/10.1177/09622802221102620
https://doi.org/10.1177/09622802221102620
https://dx.doi.org/10.18576/jsap/130102
https://doi.org/10.1002/jrsm.1384
https://journals.covenantuniversity.edu.ng/index.php/cjpls/article/view/930
https://journals.covenantuniversity.edu.ng/index.php/cjpls/article/view/930
https://doi.org/10.21037/atm.2018.02.12
https://doi.org/10.4236/ojs.2021.116055
https://doi.org/10.1093/biomet/69.1.239
https://doi.org/10.1086/515193
https://doi.org/10.1093/cid/ciy207

