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ABSTRACT 

Failure to account for the underreporting of infectious disease cases distorts the understanding 

of infectious disease dynamics. Underreporting creates a false sense of security, allowing the 

disease to persist or resurge and undermining the effectiveness of public health interventions. 

This study aims to address underreporting and identify the underlying distribution that best 

describes the Coronavirus disease 2019 (COVID-19) cases in Nigeria. A Time Series 

Regression Susceptible-Infected-Recovered (TSIR) model, incorporating Poisson, Gaussian, 

and Quasi-Poisson distributions with various link functions, was applied to weekly cumulative 

COVID-19 case data. This dataset spans from February 28, 2020, to July 3, 2022, and includes 

110 weekly records. It was sourced from the Nigerian Centre for Disease Control (NCDC) 

through publicly available weekly epidemiological reports. Microsoft Office Excel 2016 was 

utilized to collate the database, and the NCDC’s online platform served as the 

primary data source. The data were divided into two sets: training data from February 28, 2020, 

to March 20, 2022, comprising 100 cases for modeling TSIR, and testing data from March 27, 

2022, to July 3, 2022, encompassing 10 weekly cases for model performance evaluation. These 

research findings revealed that the reporting rate of COVID-19 data under study is about 35%, 

indicating underreporting. When accounting for underreporting, the transmission rate was 

reduced by approximately 0.15. The quasi-Poisson distribution with the log function was the 

best at describing the distribution of the incidence cases. The study established that the COVID-

19 incidence cases in Nigeria are underreported and follow a quasi-Poisson distribution.  

Keywords: COVID-19, Infectious diseases, Quasi-Poisson distribution, SIR model, Time 

series regression 

 

 

INTRODUCTION 

The SIR (Susceptible-Infected-

Recovered) model is one of the most widely 

used techniques for modelling infectious 

disease dynamics. This compartmental 

model employs ordinary differential 

equations to represent the time-based 

changes in the populations of susceptible 

(S), infected (I), and recovered (R) 

individuals. (1,2). The susceptible (S) 

compartment consists of individuals prone 

to contracting the disease at the initial stage 

of the outbreak and who are not yet 

exposed. The infected (I) compartment 

consists of individuals who are already 

infected with the infection and can pass 

it on to the susceptible individuals in one 

way or another. The recovered (R) 

compartment comprises individuals who 

have recovered, developed immunity, and 

are no longer vulnerable. 

The Susceptible-Infected-

Recovered (SIR) model is based on several 

assumptions: it considers a large, closed 

population with a short-lived outbreak, 

excludes natural births and deaths, assumes 
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that individuals become infectious 

immediately upon infection (no latent 

period), grants lifetime immunity after 

recovery, and relies on a mass-action 

mixing of individuals within the population 

(3–6). The assumptions underlying the SIR 

model also apply to its variants, including 

the SEIR  

(Susceptible-Exposed-Infected-

Recovered) model, the SIRD (Susceptible-

Infected-Recovered-Deceased) model, the 

SIRV (Susceptible-Infected-Recovered-

Vaccinated) model, and the SEIS 

(Susceptible-Exposed-Infected-

Susceptible) model (3,4). Different studies 

have successfully applied the SIR model to 

study infectious diseases, as evident in the 

literature. Few such studies include (7–16).    

Despite the successes recorded by 

the SIR model and its variants, the SIR 

model is still deficient in addressing issues 

bordering on the scarcity of data, 

quantifying the uncertainty in the model 

parameter, underreporting, and over-

reporting (4,17). Therefore, adopting a 

model that can integrate observed data to 

estimate parameter values based on 

available information is essential. One 

model suited for this purpose is the Time 

Series Regression Susceptible-Infected-

Recovered (TSIR) model. 

The Time Series Regression 

Susceptible-Infected-Recovered (TSIR) 

model is a modified version of the SIR 

model that incorporates a time-varying 

parameter to enhance its ability to capture 

changes in disease transmission rates over 

time, based on historical data. TSIR 

combines the time series regression model 

and the SIR model, and it can perform 

better than either of the component models. 

However, the application of TSIR receives 

very little attention and lacks wider 

coverage from researchers globally in 

modeling infectious diseases. The studies 

of (1,18–22) provide successes in the 

application of the TSIR model in infectious 

disease modelling. 

As outlined in (4), the TSIR model 

is based on two key assumptions: 1) the 

infectious period aligns with the data’s 

sampling interval and remains consistent 

over a sufficiently long period, and 2) the 

sum of births and cases should be roughly 

equivalent owing to the significant 

contagiousness of pathogens before 

vaccines were widely available. This 

second assumption enables regression 

analysis between cumulative cases and 

cumulative births. The TSIR model offers a 

practical advantage over the SIR model due 

to its analytical tractability, making it 

particularly useful for examining infectious 

disease dynamics and incorporating 

variations in reporting rates. 

The COVID-19 pandemic 

exemplifies an infectious disease that 

presents significant challenges to the global 

public health system (23). The post-

COVID-19 era is characterized by the 

availability of data whose significance and 

usefulness cannot be undermined. For the 

TSIR model to work effectively, it needs 

reliable data on infection numbers over 

time, ideally broken down into consistent 

intervals. The COVID-19 used in this study 

is complete, well-structured, and consistent, 

all of which are essential for applying the 

TSIR model. With reliable weekly case 

counts from a trusted source, the 

assumption of data availability is fulfilled. 

Therefore, modeling post-COVID-

19 data is essential for diverse reasons; 

from extracting information that could aid 

public health planning, policy-making, 

vaccination strategies, and preparation for 

future public health emergencies to 

providing a foundation for ongoing 

research. However, understanding and 

controlling infectious diseases could be 

significantly hampered by underreporting. 

Underreporting comes into play when cases 

of an infection are not correctly recorded or 

not reported at all. The danger of 

underreporting could be seen as the 
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resultant effect of uncertainty, leading to 

significant deviations in predicting the true 

prevalence and spread of the infection.The 

fact that accurate reporting of infectious 

diseases is one essential way for effective 

disease control and prevention, this study 

seeks to apply the TSIR model to account 

for the under-reporting of COVID-19 cases 

in Nigeria and at the same time, identify the 

distribution that best describes the reported 

cases in which no prior studies have 

attempted. The choice of COVID-19 

reporting data in this study was motivated 

by the availability of COVID-19 data and 

aimed to demonstrate that the TSIR model 

can effectively capture the complex 

dynamics of COVID-19. 

 

METHODS 

Research Design 

This retrospective study utilized 

secondary surveillance data obtained from 

the Nigeria Centre for Disease Control 

(NCDC), covering the period from 

February 28, 2020, to July 3, 2022. The 

dataset comprised 110 weekly reported 

COVID-19 cases. For model development, 

the dataset was split into two subsets: the 

training dataset included 100 weekly 

observations spanning February 28, 2020, 

to March 20, 2022, which were used to 

calibrate the Time Series Susceptible-

Infectious-Recovered (TSIR) model. The 

remaining 10 weekly observations, from 

March 27, 2022, to July 3, 2022, were used 

as the testing dataset for evaluating the 

model’s predictive performance. 

Demographic data, including 

annual birth rates and total population size, 

were obtained from the Nigerian Population 

Commission. These figures were 

interpolated to weekly values based on a 

COVID-19 infectious period of seven days. 

The analysis used a constant birth rate of 

36.026 per 1,000 population and an 

estimated national population size of 

approximately 200 million. 

One key limitation of this study is 

the exclusion of genomic surveillance data, 

particularly information on circulating 

SARS-CoV-2 variants. Since different 

variants may have varying levels of 

transmissibility, virulence, and immune 

evasion, their absence could influence the 

accuracy of the model's predictions. 

Furthermore, the dataset did not account for 

non-pharmaceutical interventions (NPIs) or 

vaccination coverage during the study 

period. The lack of these variables restricts 

the ability to assess the impact of control 

measures on disease dynamics and may 

contribute to unexplained variability in case 

counts.  

 

Susceptible-Infectious-Recovered (SIR) 

Model 

The mathematical representation of the SIR 

model is wrapped up in equations 2.1-2.3 as 

follows: 
𝑑𝑆

𝑑𝑡
=  − 𝛽 𝑆(𝑡)𝐼(𝑡),                           2.1 

𝑑𝐼

𝑑𝑡
=  𝛽 𝑆(𝑡)𝐼(𝑡) −  𝛾𝐼(𝑡),      2.2 

𝑑𝑅

𝑑𝑡
=  𝛾𝐼(𝑡),       2.3 

The initial conditions are 𝑆(𝑡)  ≥ 0, 𝐼(𝑡) ≥

0, and 𝑅(𝑡) and where 𝑆(𝑡) represents the 

number of susceptible individuals, 𝐼(𝑡) 

represents the number of infected 

individuals, 𝛽 denotes the transmission 

rate, and 𝛾 signifies the recovery rate [see 

also (8,13,20)]. 

 

Estimation of Basic Reproduction 

Number (𝑹𝟎), Transmission Rate (𝜷) and 

Recovery Rate (𝜸)   
𝐴𝑡𝑡𝑎𝑐𝑘 𝑟𝑎𝑡𝑒 (𝐴𝑅) = 
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑒𝑤 𝑐𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛
 × 100%.         2.4 

The attack rate (AR, which represents the 

percentage of the population that eventually 
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becomes infected) is connected to the basic 

reproduction number by 

Basic Reproduction Number,  

𝑅0 =  
− ln((1−𝐴𝑅)/𝑆0)

(𝐴𝑅−(1− 𝑆0)) 
,                             2.5 

and 𝑆0 is the proportio n of susceptible 

individuals (24,25). 

The recovery rate, 𝛾 =  
1

𝑇𝑖
 ,       2.6 

where 𝑇𝑖 is the infection period. 

The transmission rate, 𝛽 =  𝛾𝑅0,      2.7 

 [see (26,27) for further details. 

 

Time Series Regression-SIR Model 

The SIR model is modified as below to 

account for underreporting or 

overreporting,  

𝑆𝑡 = 𝑆𝑡−1  + 𝐵𝑡−1  −  𝐼𝑡  +  𝑎𝑡,     2.8 

𝐸[𝐼𝑡+1] = 𝛽𝑡𝐼𝛼
𝑡  𝑆𝑡,      2.9 

where 𝐵𝑡−1 represents the number of births 

at the previous time point, 𝑆𝑡denotes the 

number of susceptible hosts and  𝐼𝑡+1 are 

the one-day-ahead forecasted number of 

reported cases, Equation 2.9, is the 

expected number of cases in the next time 

step, indicating the multiplicative 

relationship between susceptible and 

infected individuals. Equation 2.8 describes 

the relationship for the susceptible, 𝛼 

allows for nonlinearities in the transmission 

rates. Similarly, the transmission rate, 

denoted by  𝛽𝑡, is determined by the TSIR 

model. 

Assuming that the actual number of cases, 

𝐼𝑡 is related to the reported cases, 𝐶𝑡, by the 

equation  

𝐼𝑡 =  𝜌𝑡𝐶𝑡,     2.10 

where 𝜌𝑡 represents the reporting rate at 

time, 𝑡. When 𝜌𝑡 < 1 , this indicates that the 

true number of cases is under-reported (20). 

We assume that 𝜌𝑡 follows a probability 

function with an expected value 𝐸(𝜌𝑡) =

 𝜌.  Putting equation 2.10 into 2.8 generates 

equation 2.11: 

𝑆𝑡 =  𝐵𝑡−1 +  𝑆𝑡−1 −  𝜌𝑡𝐶𝑡  + 𝑎𝑡,       2.11 

Taking the expectation of equation 2.11, we 

have  𝐸(𝑆𝑡) =  𝑆̅  so that 𝑆𝑡 =  𝑆̅ + 𝑍𝑡    with  

𝐸(𝑍𝑡) = 0. The deviations 𝑍𝑡 from their 

mean adhere to the same recursive 

relationship as 𝑆𝑡, 

𝑍𝑡 =  𝐵𝑡−1 +  𝑍𝑡−1 −  𝜌𝑡𝐶𝑡  +  𝑎𝑡.      2.12 

Repeatedly iterating Equation 2.12 starting 

from the initial condition, 𝑍0 produces 

𝑍𝑡 =  𝑍0 +  ∑ 𝐵𝑖−1
𝑡
𝑖=1 −  ∑ 𝜌𝑖𝐶𝑖

𝑡
𝑖=1 +

 ∑ 𝑎.𝑡
𝑖=1                    2.13 

Equation 2.13 demonstrates that the 

susceptible group reflects the balance over 

time between new births entering and 

infected individuals exiting the 

compartment. Furthermore, without 

adjusting cases for the reporting rate, 𝑍𝑡 

would not remain stable, as the gap between 

cumulative births and reported cases would 

increase indefinitely due to under-

reporting. 

To simplify notation, let 

𝑋𝑡 =  ∑ 𝐶𝑖,
𝑡
𝑖=1        2.14 

𝑌𝑡 =  ∑ 𝐵𝑖−1,𝑡
𝑖=1      2.15 

𝐴𝑡 =  ∑ 𝑎𝑖,
𝑡
𝑖=1      2.16 

𝑅𝑡 =  ∑ (𝜌𝑡 −  𝜌) 𝐶𝑖,
𝑡
𝑖=1    2.17 

for 𝑡 =  1, … , 𝑛. Then 

𝑅𝑡 =  𝑅𝑡−1 + (𝜌𝑡 −  𝜌) 𝐶𝑖  and 𝐴𝑡 = 𝐴𝑡−1 

+ 𝑎𝑖 are random walk processes, as their 

conditional mean depends on the preceding 

value, that is,  

𝐸(𝑅𝑡|𝑅𝑡−1) =  𝑅𝑡−1  and 𝐸(𝐴𝑡|𝐴𝑡−1) =

 𝐴𝑡−1,  these processes may show extended 

periods of deviation from a mean of zero.  

So far, equation 2.13 can be rearranged as 

𝑌𝑡 =  −𝑍0 +  𝜌𝑋𝑡 + 𝑅𝑡 +   𝑍𝑡 −  𝐴𝑡 .                                                          

2.18   

  𝐴𝑡  ≈ 0 for the case with minimal noise 

and a constant reporting rate 𝑅𝑡  ≈ 0 

(22).Thus, equation 2.14 represents a 

straightforward linear regression 

relationship between cumulative births 𝑌𝑡 

and cumulative cases  𝑋𝑡 with a constant 

slope, 𝜌. The unobserved susceptible 

dynamics 𝑍𝑡 are then precisely derived as 

the residual of the regression. 

Also, given equation 2.8, one can obtain 

equation 2.19 as follows: 
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𝑙𝑜𝑔(𝐼𝑡+1) = 𝑙𝑜𝑔(𝛽𝑡+1) + log((𝑍𝑡 +  𝑆̅ ) +

 𝛼𝑙𝑜𝑔(𝐼𝑡)                                    2.19 

The unknown parameters, 𝛽, 𝛼 and 𝑆̅   can 

be estimated by an equivalent generalized 

linear model with identity-link and log-link. 

The normal and Poisson distributions are 

considered in this study. The relationship 

between the link functions for an 𝑖𝑡ℎ case 

and the distributions are given as follows: 

The identity Link: 

𝜇𝑖 =  𝑋𝑖
′𝜑,     2.20 

which is used when the error follows a 

normal distribution. 

The Log-Link: 

log (𝜇𝑖) =  𝑋𝑖
′𝜑    2.21 

which is applied when the error follows a 

Poisson distribution. 𝜑 is a vector of 

unknown parameters [See (28)for more 

details]. 

 

Measurement of Prediction Performance 

The performance of the TSIR model 

is assessed by analyzing the error 

distributions and their associated link 

functions using multiple evaluation 

metrics: Mean Absolute Error (MAE), 

Mean Absolute Percentage Error (MAPE), 

and Root Mean Square Error (RMSE), as 

defined in Equations 2.22–2.24. The 

distribution yielding the lowest error across 

these metrics is considered the most 

suitable. 

𝑀𝐴𝐸 =  
1

𝑛
∑ |𝑒𝑖 − �̂�𝑖|,𝑛

𝑖=1     2.22 

𝑀𝐴𝑃𝐸 =  
1

𝑛
∑

|𝑒𝑖− �̂�𝑖|

𝑒𝑖

𝑛
𝑖=1  × 100%,   2.23 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑒𝑖− �̂�𝑖)2𝑛

𝑖=1

𝑛
 ,  2.24 

where: 

𝑛 is the number of observations in the 

training dataset. 

𝑒𝑖 represents the observed case for the 𝑖𝑡ℎ 

observation. 

�̂�𝑖 represents the predicted case for the 𝑖𝑡ℎ 

observation. 

Elsewhere, the Lyapunov exponent will be 

used to quantify the impact of 

underreporting on the dynamics of COVID-

19 reported cases [see (29–31)for details]. 

 

RESULTS  

The SIR was estimated using 

EpiDynamics, TSIR by runtsir function of 

the TSIR package, and 𝑅0 by R0 package. 

Figure 1 presents the trend of weekly 

COVID-19 cases. 

 

 
Figure 1: Plot of Weekly COVID-19 Cases 
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The development of the SIR model 

for COVID-19 data depends on the 

parameter estimates shown in Table 1. The 

attack rate was estimated using equation 

(2.4) from the data, AR = 0.13, 𝑅0 =  1.08 

based on the attack rate obtained in 

equation (2.5),  𝛾 = 0.143, which is the 

inverse of the infection period taken to be 7 

days, and 𝛽 = 0.15, which is the product of  

𝛾 𝑎𝑛𝑑 𝑅0. Figure 2 shows the development 

of S, I, and R over time. The drastic decline 

of the black line indicates that individuals 

who are not yet infected are rapidly 

becoming infected by week 1.05. The red 

line represents the number of infected 

individuals, reaching a maximum of 1.8 

million people in week 1.05 before slowly 

declining until about week 10, a period that 

signifies nearly every individual has 

recovered. The green line depicts the 

number of individuals recovering. It 

increases steadily and levels off at week 10, 

marking the time when more individuals 

recover than are susceptible. 

Table 1. SIR Parameters 

Parameters Values 

𝑅0 1.08 

      

AR 

0.13 

𝛽 0.15 

𝛾 0.143 

𝑆(𝑡) 199999999 

𝐼(𝑡) 1 

  

 
Figure 2: Plot of SIR Model Simulation 
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Building Time Series Regression SIR 

(TSIR) Model 

Analyzing the dynamics of COVID-

19 incidence in Nigeria using the TSIR 

model, we applied a straightforward linear 

regression, treating cumulative births as the 

dependent variable and weekly cumulative 

COVID-19 cases as the independent 

variable. This approach was tested under 

Poisson, Gaussian, and Quasi-Poisson 

distributions, each with different link 

functions. The parameter estimates for the 

fitted TSIR model using the Poisson 

distribution with a log function, the 

Gaussian distribution with a log function, 

the quasi-Poisson with a log function, and 

the Gaussian distribution with an identity 

function are shown in Table 2. The 

parameter of interest, the reporting rate, is 

estimated to be 0.35 across the different 

distributions. The reporting rate less than 1 

indicates possible underreporting of 

COVID-19 cases. �̅� is the mean 

Transmission rate: 4.65e-08, 9.68e-08, 

6.82e-08, and 3.85e-08 under Poisson 

distribution with log function, Gaussian 

distribution with log function, Quasi-

Poisson distribution with log function, and 

Gaussian distribution with identity 

function, respectively, indicating that each 

infected individual infects less than one 

other individual on average. 𝑆0 is the initial 

proportion of susceptible: 1.06e-01, 5.07e-

02, 4.45e-02, and 4.45e-02under Poisson 

distribution with log function, Gaussian 

distribution with log function, Quasi-

Poisson distribution with log function and 

Gaussian distribution with identity 

function, respectively, indicating the 

average number of individuals in the 

population who are susceptible to infection. 

𝐼0  is the initial proportion of infected 

individuals: 3.52e-03, 3.52e-03, 3.52e-03, 

and 3.52e-03 under Poisson distribution 

with log function, Gaussian distribution 

with log function, Quasi-Poisson 

distribution with log function, and Gaussian 

distribution with identity function, 

respectively, indicating the fraction of the 

population initially infected. 𝛼 = 1 is the 

correction factor allowing for the mixing of 

the contact process, indicating that 

individuals have an equal chance of 

interacting with every other individual in 

the population. 

Table 2. Estimation of Parameters of Time Series Regression-SIR (TSIR) Model 

Parameters 

TSIR Model with Different Distributions 

Poisson 

Distribution 

with Link = Log 

Gaussian 

Distribution 

with Link = Log 

Quasi-Poisson 

Distribution 

with Link = Log 

Gaussian 

Distribution 

with Link 

= Identity 

�̅� 4.65e-08 9.68e-08 6.82e-08 3.85e-08 

�̅� 0.35 0.35 0.35 0.35 

𝑆̅ 2.15e+07 1.03e+07 9.05e+06 2.94e+07 

𝑆0 1.06e-01 5.07e-02 4.45e-02 1.26e-01 

𝐼0 3.52e-03 3.52e-03 3.52e-03 3.52-03 

𝛼 1.00 1.00 1.00 1.00 

�̅�=mean Transmission rate, �̅�= mean reporting rate, 𝑆̅ = mean susceptible,  𝑆0 = initial proportion of susceptible,  𝐼0  = initial 

proportion of infected and 𝛼 = correction factor allowing for mixing of the contact process. 

 

Gauging the Effect of Underreporting on 

Transmission Rate (𝜷) of COVID-19 

Measuring the effect of 

underreporting of COVID-19 cases on the 

transmission rate (𝛽), we examine the value 

of 𝛽 obtained by fitting the SIR model 

without accounting for underreporting, in 

comparison to those of TSIR with different 



 
 

 

IN PRESS 

IN PRESS 

IN PRESS 

IN PRESS 

 

distributions, where underreporting is 

properly accounted for. The findings from 

Table 3 reveal that when underreporting is 

considered, the transmission rate is 

significantly reduced by 0.1499999535, 

0.1499999032, 0.1499999318, and 

0.1499999615 under the Poisson 

distribution with a log function, the 

Gaussian distribution with a log function, 

the quasi-Poisson distribution with a log 

function, and Gaussian distribution with an 

identity function, respectively.  

  Table 3. Effect of Underreporting on Transmission Rate (𝛽)  

 
Poisson 

Distribution 

with Link = Log 

Gaussian 

Distribution 

with Link = 

Log 

Quasi-Poisson 

Distribution 

with Link = 

Log 

Gaussian 

Distribution 

with Link = 

Identity 

 SIR TSIR SIR TSIR SIR TSIR SIR TSIR 

𝛽 0.15 4.65e-

08 

0.15 9.68e-

08 

0.15 6.82e-

08 

0.15 3.85e-08 

Difference/bias -0.1499999535 -0.1499999032 -0.1499999318 -0.1499999615 

 

The Performance of the TSIR Model 

Using Different Distributions 

Determining the distribution that 

most accurately represents COVID-19 

cases involves analyzing the error criteria 

for 10 weeks of simulated data and 10 

weeks of forecasted cases. Table 4 shows 

that the TSIR model using the quasi-

Poisson distribution with the log function 

outperforms the Poisson distribution with 

the log function and the Gaussian 

distribution with both the log and identity 

functions, as evidenced by the lowest 

MAPE, MAE, and RMSE values for the 

simulated cases. It is important to note that 

the high values of MAPE, MAE, and 

RMSE in this study indicate a significant 

discrepancy between the reported incidence 

cases (which are relatively low) and the 

cases adjusted for the 35% underreporting 

rate. Comparable results are observed for 

the predicted cases, as demonstrated in 

Table 5. 

Figure 3 is a 10-week simulation 

using the quasi-Poisson distribution with a 

log function. The plot shows that the 

number of cases indicated by the brown line 

rises and falls in a wave-like pattern, likely 

due to seasonal changes, public behaviour, 

or shifting policies. Despite the 

fluctuations, the overall average, indicated 

by the blue line, remains fairly steady, 

suggesting no strong upward or downward 

trend in the long run. However, over time, 

the gray shaded area around the line, 

representing uncertainty, gets wider, 

especially after mid-2020. This reflects 

growing uncertainty in future projections 

due to model variability and structural 

noise. Despite the steady average trend, the 

model captures oscillating case patterns, 

which may result from seasonality, 

behavioural changes, or policy shifts. These 

features highlight the model's utility in 

forecasting and the importance of 

incorporating variability and uncertainty 

into public health planning. 

 Figure 4 presents predictions for 10 

weeks ahead using the quasi-Poisson 

distribution with a log function. The plot 

shows two significant epidemic waves, one 

around mid-2020 and another around mid-

2021. Both peaks are sharp and intense, 

with predicted cases spiking above 6 

million, indicating very rapid and severe 

outbreaks. The narrow nature of these peaks 

highlights how cases surge quickly and then 

decline just as fast, pointing to short-lived 
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but intense transmission periods. This 

pattern likely reflects sudden shifts, such as 

the virus spreading rapidly through a 

susceptible population or swift changes in 

public behaviour or policy. Between the 

waves, predicted case numbers drop close 

to zero, resembling the natural dynamics of 

an epidemic: surge, decline, pause. The use 

of a quasi-Poisson model addresses the 

irregular and bursty nature of epidemic 

data, where events seldom follow smooth 

patterns. These sudden waves could be due 

to herd immunity, policy interventions, 

environmental changes, or behavioural 

shifts that temporarily suppress 

transmission.

 

Table 4.  Measurement of 10 Weeks Ahead Simulation Performance using Different 

Distributions 

Simulation 

Performance 

Criteria 

Poisson 

Distribution 

with Link = 

Log 

Gaussian 

Distribution 

with Link = 

Log 

Quasi-Poisson 

Distribution 

with Link = 

Log 

Gaussian 

Distribution with 

Link = Identity 

MAPE 274.094 274.172 74.676 274.115 

MAE 259.441 259.528 73.956 259.478 

RMSE 146.441 214.840 103.833 214.840 

 

  Table 5.  Measurement of 10 Weeks Ahead Prediction Performance using Different 

Distributions 

Prediction 

Performance 

Criteria 

Poisson 

Distribution 

with Link = Log 

Gaussian 

Distribution 

with Link = Log 

Quasi-Poisson 

Distribution 

with Link = Log 

Gaussian 

Distribution 

with Link = 

Identity 

MAPE 127.428 250.854 60.143 251.203 

MAE 162.992 268.217 62.59 271.183 

RMSE 173.237 277.794 82.647 281.698 

 

 

Figure 3. Plots of 10 Weeks Simulation 

based on fitted TSIR Model using Quasi 

Poisson with 

Link = Log 

 

Figure 4. Plots of 10 Weeks ahead 

Prediction based on fitted TSIR Model 

using Quasi 

Poisson with Link = Log 
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Measuring the Impact of 

Underreporting on COVID-17 Disease 

Dynamics 

The effect of underreporting was 

measured using the Lyapunov exponent for 

both simulated and predicted cases, as 

shown in Table 6. Given that the TSIR 

model with a quasi-Poisson distribution and 

log function best captures the underlying 

dynamics of the reported data, the 

Lyapunov exponent for this model is 

considered. The Lyapunov exponent value 

is 0.014 for both simulation and prediction.  

 

Table 6. Impact of Underreporting on COVID-19 Disease Dynamics 

 

 

Lyapunov 

Exponent 

 

 

Data 

Poisson 

Distribution 

with Link = 

Log 

Gaussian 

Distribution 

with Link = 

Log 

Quasi-

Poisson 

Distribution 

with Link = 

Log 

Gaussian 

Distribution 

with Link = 

Identity 

Simulation 0.069 -0.00008 0.014 -0.0009 

Prediction 0.032 0.0026 0.014 -0.0019 

 

DISCUSSION 

Going forward, we have simulated 

the traditional SIR model based on initial 

parameters as shown in Table 1, where the 

basic reproduction number, R0 =  1.08. 

However, the SIR model is often useful at 

the outbreak stage of the infection, but it 

loses its potency with the availability of 

data and its inability to account for 

underreporting. According to the data, the 

estimated basic reproduction number, R0  

>1, indicates the likelihood of the 

infection's spread (25). Sufficing the study's 

aim, the TSIR model was applied to the 

data, yielding a reporting rate of 0.35, 

below 1, indicating that the data used are 

underreported [see Table 2]. The 

transmission rate decreases when 

accounting for underreporting in the TSIR 

model compared to the SIR model due to 

underreporting. That is, from 𝛽 = 0.15 to 

4.65e-08, 9.68e-08, 6.82e-08, and 3.85e-08 

under Poisson distribution with log 

function, Gaussian distribution with log 

function, quasi-Poisson distribution with 

log function, and Gaussian distribution with 

identity function, respectively. Contrary to 

the findings of (20), which suggests that 

failing to account for underreporting results 

in an underestimation of the transmission 

rate, 𝛽, and that directly applying an SIR 

model to raw underreported incidence leads 

to an underestimated contact rate. Our study 

shows that, due to significant 

underreporting, the transmission rate is 

substantially underestimated when 

compared to directly fitting the SIR model 

to the raw, underreported cases. This means 

that underreporting could introduce bias 

and result in misrepresenting the disease 

spread. 

The underlying distribution that 

best describes the data is the quasi-Poisson 

distribution. In other words, there are 

elements of over-dispersion in the data that 

imply potential sources of unaccounted 

variation, further supporting the case that 

the data is significantly underreported. This 

study examined the temporal dynamics of 

predicted case counts using a quasi-Poisson 

regression model with a log link function, 

utilizing both 10-week-ahead simulations 

and forecasts. The model was specifically 
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selected to address overdispersed count 

data, a frequent characteristic in 

epidemiological surveillance, while 

allowing for flexible, nonlinear growth 

patterns through the log link 

transformation. In the simulation, we 

observed relatively stable mean case counts 

over time, with consistent fluctuations 

around the central trend. These oscillations 

likely reflect underlying periodic dynamics 

such as seasonality, behavioral changes, or 

intervention effects. The widening 

confidence intervals over time indicate 

increasing prediction uncertainty, a 

common feature in extended forecasting. 

This aligns with the findings of (32,33), 

who emphasized the significance of 

probabilistic forecasts in conveying the 

uncertainty inherent in epidemic 

projections. In contrast, the 10-week-ahead 

prediction revealed two pronounced and 

sharply defined epidemic waves, peaked 

around mid-2020 and mid-2021. The 

predicted case counts exceeded six million 

at the peak of each wave, followed by rapid 

declines to near-zero levels. This pattern 

suggests intense but short-lived outbreaks, 

possibly driven by sudden increases in 

transmission followed by the depletion of 

the susceptible population or rapid 

implementation of control measures. Such 

behaviors have been modeled in previous 

studies of respiratory virus transmission, 

where nonlinearity and intervention timing 

produced wave-like dynamics with narrow 

peaks (34,35). 

 The impact of underreporting is 

well quantified by indicating the Lyapunov 

exponent of 0.014, indicating that 

underreporting leads to irregular and 

volatile dynamics of COVID-19 spread 

(30). The implication is that underreporting, 

if not accounted for, could bias the model 

parameters, distort the accuracy of 

predictions of future outbreaks, lead to a 

false sense of security, allow the disease to 

persist or resurge, and hinder the 

effectiveness of public health interventions 

(19). 

The application of the TSIR model 

in this study shares some similarities with 

the studies of (1,18–22,36) However, it 

differs in identifying that the dynamics of 

COVID-19 in Nigeria can be robustly 

predicted using quasi-Poisson distributions.  

The contribution of this study, in its 

originality, is underpinned by the possible 

combination of the time series regression 

model and the SIR model, with 

probabilistic frameworks incorporated to 

account for the uncertainty in COVID-19 

data. This approach makes the TSIR model 

more robust and tractable than either the 

time series regression model or the SIR 

model alone in capturing the complex 

dynamics of infectious diseases, 

particularly COVID-19 infections.   

 

CONCLUSIONS AND SUGGESTIONS 

Conclusions 

Overall, the dynamics of COVID-

19 in Nigeria appear irregular and volatile, 

largely due to underreporting. These 

patterns can be more appropriately captured 

using a Quasi-Poisson Time Series 

Susceptible-Infectious-Recovered (TSIR) 

model, which accounts for overdispersion 

in the data. The inclusion of post-COVID-

19 data is especially valuable, as it provides 

insight into the fluctuating and often 

unpredictable nature of transmission 

patterns. Neglecting the issue of 

underreporting can introduce significant 

bias in estimating the transmission rate and 

may obscure important signals, leading to 

unreliable predictions of outbreak behavior. 

Therefore, to accurately assess and interpret 

infectious disease dynamics, it is critical to 
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ensure consistent, transparent, and 

comprehensive reporting of cases. 

Suggestions 

 The weaknesses of this study 

include the failure to account for 

vaccination interventions and other forms 

of public health interventions, as well as the 

limitation of examining a single 

homogeneous strain of COVID-19, which 

overlooks the different variants of COVID-

19.  Therefore, it is recommended that 

further studies be conducted to address the 

limitations of this study. 
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