Aplikasi Autoregressive Integrated Moving Average (ARIMA) untuk Meramalkan Jumlah Demam Berdarah Dengue (DBD) di Puskesmas Mulyorejo

Luluk Nor Kasanah

= http://dx.doi.org/10.20473/jbk.v5i2.2016.177-189
Abstract views = 995 times | views = 1513 times

Abstract


ARIMA was one of a forecasting method of time series if independent variable be ignored, it would use the past and present value as a dependent variable. The accuracy of ARIMA forecasting method was good to produce short-term forecasting. The advantages of ARIMA method than other method was this method didn’t require the data pattern so it could be used for all kinds of data pattern, so it could be applied in cases of dengue hemorrhagic fever (DHF) in Mulyorejo Public Health Center. This study was to determine the best forecasting model as well as to predict and analyze the results of forecasting number of dengue hemorrhagic fever in Mulyorejo Public Health Center. The data was monthly number of dengue hemorrhagic fever patients in Mulyorejo Public Health Center from January 2010 to February 2016 (a total of 74 plots data). The results were the number of dengue hemorrhagic fever cases in Mulyorejo Public Health Center could be predicted with ARIMA model (1,0,0), thought based on diagnostics test the ARIMA model met all tests but the forecasting number of dengue hemorrhagic fever cases in years 2016–2017 showed a downward trend, and in 2017 was fl at, while MAPE and MAE amounted to 63.026% and 1.89%, the value of the error was large enough which indicated that less accurate forecasting. DHF data had a lot of missing data caused big value of MAPE and MAE so must be transformed by series mean method. DHF data was trend and seasonal so winters exponential smoothing with ordinary least square was better than ARIMA to get small error.

Keywords


ARIMA, Time series, Dengue Hemorrhagic Fever (DHF)

Full Text:

PDF

References


Aritonang, L. 2009. Peramalan Bisnis. Jakarta: Ghalia Indonesia.

Baroroh. 2013. Analisis Multivariat dan Time Series dengan SPSS 2. Jakarta: Elex Media Komputindo.

BPS Kota Surabaya. 2016. Banyaknya Hari Hujan dan Curah Hujan di Perak 1. Diakses dari http://surabayakota.bps.go.id/webbeta/frontend/linkTabelStatis/view/id/200 (sitasi tanggal 6 Maret 2016).

Dinas Kesehatan Jawa Timur. 2013. Profil Kesehatan Jawa Timur Tahun 2013. Surabaya: Dinkes Jatim.

Direktorat Jenderal P2PL DepKes RI. 2011. Modul Pengendalian Demam Berdarah Dengue. Jakarta: Kemenkes RI.

Direktorat Jenderal P2PL DepKes RI. 2014. Informasi Pengendalian Penyakit dan Penyehatan Lingkungan. Jakarta: Kemenkes RI.

Hermawan, 2011. Perbandingan Metode Box-Jenkins dan Holt-Winters dalam Prediksi Anomali Olr Pentad di Kawasan Barat Indonesia. Jurnal Sains Dirgantara, 9:1: 27–34. LAPAN.

Makridakis., Victor. 1999. Metode dan Aplikasi Peramalan. Jakarta: Erlangga.

Sungkar S. 2007. Pemberantasan Demam Berdarah Dengue: Sebuah Tantangan yang Harus Dijawab. Jakarta: Majalah Kedokteran Indonesia.

Thomas Suroso, dkk, ed. 2011 Pencegahan dan Penanggulangan Penyakit Demam Dengue dan Demam Berdarah Dengue, Terjemahan, WHO dan Depkes RI, Jakarta.

Wei. 2006. Time Series Univariate and Multivariate Methods. 2nd ed. United States of America: Pearson Education.

Wirayoga, M.A.. 2013. Hubungan Kejadian Demam Berdarah Dengue dengan Iklim di Kota Semarang Tahun 2006–2011. Semarang: Universitas Negeri Semarang.

World Health Organization. 2013.Dengue Haemorrhagic Fever. Diagnosis, treatment, prevention and control. Geneva: 2nd edition.


Refbacks

  • There are currently no refbacks.




Copyright (c) 2017 Jurnal Biometrika dan Kependudukan

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

This Journal is Indexed By:

           

 

View My Stats

 

Fakultas Kesehatan Masyarakat Universitas Airlangga

Kampus C Universitas Airlangga

Jl. Mulyorejo Kampus C Unair, Surabaya 60115, Indonesia.

E-mail: j.biokep@gmail.com / jbk@fkm.unair.ac.id

Phone: +62 816 502 307