Therapeutic Potential of Eugenol for Muscle Pain Management in Athletes: A Scoping Review

Chaerul Fadly Mochtar^{1*}

¹Faculty of Sport and Health Sciences, Universitas Negeri Makassar, Makassar, Indonesia.

Corresponding author: chaerul.fadly@unm.ac.id

ABSTRACT

Muscle pain is a prevalent affliction experienced by athletes during training and competition. Eugenol, a natural compound found in cloves, exhibits considerable promise as a therapeutic agent for myalgia through multiple mechanisms of action. Eugenol has been shown to inhibit prostaglandin E2 production and reduce cyclooxygenase-2 (COX-2) expression, a process that plays a pivotal role in inflammation and pain. Furthermore, eugenol has been observed to interact with TRPV1, HVACC, and a2-adrenergic and opioidergic receptors, contributing to its analgesic effects. In addition, studies have demonstrated that eugenol possesses significant antiinflammatory properties, as evidenced by its ability to reduce the expression of proinflammatory cytokines and augment the activity of antioxidant enzymes. In a preclinical context, eugenol-active topical formulations have demonstrated encouraging results, showing promise in the development of muscle pain relief preparations for athletes, with a superior safety profile compared to conventional drugs. However, further research is necessary to optimize the dosage, formulation, and the appropriate application method. This review underscores the potential of eugenol as a safe and effective muscle pain therapy for athletes, as well as opportunities for the development of innovative topical formulations.

Keywords: eugenol, muscle pain, topical formulation, pain management

Received: May 07, 2025 **Revised:** May 30, 2025 **Accepted:** June 10, 2025

INTRODUCTION

Muscle pain represents a common issue frequently experienced by athletes during both training and competition. Pharmacological treatments for this condition typically involve the use of non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac, capsaicin, and combinations of menthol and methyl salicylate, which have long been used to manage muscle pain. However, several limitations are associated with treatments. For these instance. diclofenac has been reported to induce allergic contact dermatitis in some individuals (Gulin and Chiriac, 2016). Methyl salicylate often causes a burning and stinging sensation (Versteeg et al., 2024), while capsaicin is known to

produce primarily local side effects, including erythema, burning, stinging, or itching, which are particularly uncomfortable when applied to open wounds (Groninger and Schisler, 2012). These issues highlight the growing need for safer and more effective therapeutic alternatives.

Eugenol, a natural compound found in various plants such as clove and cinnamon, attracts considerable attention from researchers as a potential therapeutic agent for managing muscle pain in athletes (Khalil *et al.*, 2017).The mechanism of action of eugenol in alleviating muscle pain involves several pathways, including the inhibition of inflammatory mediators and the modulation of pain receptors. Recent demonstrate studies that eugenol inhibits the production of prostaglandin E2 and reduces the expression of cyclooxygenase-2 (COX-2), both of critical roles in which play the inflammation and pain processes (Barboza et al., 2018). Additionally, eugenol exhibits analgesic effects through its interaction with the TRPV1 receptor, which is involved in pain perception (Ye et al., 2024).

The development of eugenol as a therapy for muscle pain shows outcomes. Topical promising formulations of eugenol demonstrate effectiveness in reducing post-exercise muscle pain in athletes, with an improved safety profile (Ratna et al., 2020; Cherdchom et al., 2021). However, further research remains necessary to optimize the dosage, formulation, and application methods of eugenol in specific sports contexts. Given eugenol's potential as a safe and effective alternative for muscle pain management in athletes, a comprehensive literature review is warranted to evaluate the current scientific evidence and to identify opportunities for innovation in its application. This review aims to examine and discuss the mechanisms of action of eugenol, its effectiveness across different types of sports, and the potential for developing optimal formulations and application methods for athletes. The findings from this review are expected to provide a strong scientific foundation for the further development of eugenol as an innovative therapeutic agent for muscle pain in the field of sports.

METHODS

This article employed a narrative literature review approach to explore the potential of eugenol as a therapeutic agent for muscle pain in athletes. The analyzed literature included experimental studies, clinical trials, and related publications that addressed muscle pain issues in athletes and discussed eugenol in terms of its mechanisms of action, effectiveness, and formulation development for muscle pain management. Data were collected through literature searches in leading academic databases such as Scopus.

The reviewed articles were selected based on inclusion criteria, which consisted of original research articles available in English and addressing the pharmacological aspects, mechanisms of action, and potential applications of eugenol in the context of muscle pain therapy. This review did not apply a time restriction for article selection, as it aimed to examine all relevant publications aligned with the objectives of the study. Meanwhile, exclusion criteria included articles that were irrelevant to the topic, studies with unclear methodologies, and publications not sourced from indexed journals. The selection of articles was conducted using flowchart adapted from PRISMA а (2020), as illustrated in Figure 1.

RESULT AND DISCUSSION

Based on the results of the article search that met the inclusion criteria. several relevant studies were identified and reviewed, as outlined in Table 1. Eugenol, a compound found in clove (Suzuqium aromaticum L.), demonstrated substantial potential as a therapeutic agent for muscle pain. One of the mechanisms of eugenol's action was through its analgesic effect, which had been proven in various animal pain models (Lugo-Lugo et al., 2019). In a study using mice, eugenol exhibited significant antinociceptive effects in reducing pain responses induced by acetic acid (Daniel et al., 2009). According to Park et al. (2011), this antinociceptive effect was believed to be associated with interactions between

eugenol and a2-adrenergic and opioidergic receptors, but not serotonergic receptors.

The mechanism of eugenol in relieving muscle pain also involved the inhibition of ion channels related to pain transmission. Lee *et al.* (2005) found that eugenol inhibited high-voltageactivated calcium channels (HVACC), which likely contributed to its analgesic effect. Similarly, Seo *et al.* (2013) reported that T-type Ca²⁺ ion channels served as molecular targets contributing to eugenol's pain-relieving activity.



Figure 1. Flowchart of article selection.

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	
Pozos- Guillén A de J, Zapata- Morales JR, Rodrígue z-Chong A, Rangel-	ptive local activity of 4-allyl-1- hydroxy-2- methoxybe nzene (eugenol) by the formalin test: an anti- inflammato ry effect	Sciences. 2019	determine the	In vivo experimen t	Mice	Pure eugenol, local injection	The study showed that eugenol had moderate activity during the acute pain phase and stronger activity during inflammatory pain, with effects comparable to diclofenac and less than those of naproxen and tramadol in the formalin test.
Daniel AN, Sartorett o SM, Schmidt G, Caparroz -Assef SM, Bersani- Amado CA, Cuman RKN.	antinocicep tive activities of eugenol essential oil in	de Farmaco gnosia.	To evaluate the anti- inflammato ry and antinocicep tive activities of eugenol for dental medicine after oral administra tion in vivo.	experimen t	Rats	Oral essential oil	The study demonstrate d that eugenol exhibited peripheral anti- inflammatory and antinocicepti ve activities.
Kang YJ,		al Resealun	analgesic effects and	t	Mice	Oral eugenol	The study showed that eugenol exhibited antinocicepti ve properties in various

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	-
			eugenol administra tion.				pain models, and its effects could be mediated by a2- adrenergic and opioid receptors, but not serotonergic receptors.
Lee MH, Yeon KY, Park CK, Li HY, Fang Z, Kim MS, et al.	Inhibits Calcium Currents in Dental	J Dent Res. 2005	To explain the molecular mechanism underlying the analgesic activity of eugenol and investigate its effects on high- voltage activated calcium currents (HVACC) in primary dental afferent neurons using heterologo us expression systems.	electrophy siology	Rat neurons		The study revealed that inhibition of HVACC by eugenol in primary dental afferent neurons was not mediated by TRPV1 activation, which could contribute to the analgesic effects of eugenol.
Seo H, Li HY, Perez- Reyes E, Lee JH.	Effects of eugenol on T-type Ca2+ channel isoforms.	The Journal of Pharmac ology and Experime	affects	In vitro electrophy siology	HEK29 3 cells	Eugenol in patch- clamp solution	The study indicated that T-type Ca2+ channels are an additional

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	-
		ntal Therapeu tics. 2013	type calcium channel isoforms expressed in HEK293 cells using the whole- cell patch- clamp technique.				molecular target for eugenol's analgesic effects.
Takahas hi K, Yoshida T, Wakamo ri M.	Mode- selective inhibitory effects of eugenol on the mouse TRPV1 channel.	cal and Biophysic al			Mouse TRPV1 channel s	Eugenol in medium solution	The study showed that eugenol is a mode- selective TRPV1 antagonist and could be evaluated as a key analgesic compound targeting TRPV1 without serious side effects.
-	Study on mechanism of transderm al administra tion of eugenol for pain treatment by network pharmacol ogy and molecular docking technology.		To explore the pharmacol ogical mechanism s of transderm al administra tion of eugenol (EUG) for pain treatment.	C		Transder mal eugenol	The study demonstrate d that the initial application of eugenol leads to transient TRPV1 receptor stimulation and increased TRPV1 expression. Eugenol also

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	
							acts as a TRPV1 agonist, increasing intracellular Ca2+ levels, which may be related to the desensitizati on of pain sensation.
Kim SS, Oh OJ, Min HY, Park EJ, Kim Y, Park HJ, et al.	cyclooxyge nase-2 expression	2003	To investigate eugenol's ability to suppress cyclooxyge nase-2 expression in lipopolysac charide- stimulated RAW264.7 mouse macrophag e cells.	In vitro	Mouse macrop hages (RAW26 4.7)	Eugenol in culture medium	The study found that eugenol is a promising candidate for further development of COX-2 inhibitors as anti- inflammatory or chemopreven tive agents.
Raghave nra H, Diwakr BT, Lokesh BR, Naidu KA.	Eugenol— The active principle from cloves inhibits 5- lipoxygena se activity and leukotriene -C4 in human PMNL cells.	nes and Essential Fatty Acids. 2006	investigate eugenol from	In vitro	Human PMNL cells	Eugenol in DMSO solution	The study showed that eugenol inhibited 5- LO through a non- competitive mechanism and also inhibited LTC4 formation in human PMNL cells, possibly playing a

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	-
							beneficial role in modulating the 5-LO pathway in human PMNL cells.
de Andrade F das CP, Mendes AN.	Computati onal analysis of eugenol inhibitory activity in lipoxygena se and cyclooxyge nase pathways.	Reports.	To verify the pharmacok inetics of eugenol and its chemical interaction s with COX-2 and 5-LOX, comparing it to other NSAIDs such as diclofenac and aspirin.	In silico		Computat ional model	The study found that eugenol could be used as a pharmacolog ical compound similar to diclofenac and aspirin.
Adefegha SA, Oyeleye SI, Okeke BM, Oboh G.	Influence of eugenol on oxidative stress biomarkers in the liver of carrageena n-induced arthritis rats.	Pharmac ology.			Rats	Oral eugenol	The study showed that eugenol improved carrageenan- induced oxidative stress in the liver of arthritis rats.
Wang M, Dai T, Li S, Wang W.	suppresses	Biophysic al	To investigate the effects and molecular	In vitro	RA	Eugenol in DMSO solution	The study showed that eugenol may be a novel drug to

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	
	invasion of TNF- α - induced fibroblast- like synoviocyte s via regulating NF- κ B and COX-2.	ications. 2022	mechanism s of eugenol on the fibroblast- like synoviocyte phenotype in rheumatoi d arthritis (RA).				suppress RA progression by inhibiting NF-ĸB signaling and COX-2 expression in fibroblast- like synoviocytes.
Abdou A, Ennaji H, Maaghlo ud FE, Azhary KE, Badou A, Elmakss oudi A, et al.	and in vivo anti- inflammato ry effect of eugenol and acetyleuge nol.	African. 2024	To assess the anti- inflammato ry effects of the volatile compound s (eugenol) derived from clove buds in vivo and in silico.		Mice	Eugenol and acetyleuge nol	The study showed that eugenol and acetyleugeno l exhibited better binding properties when interacting with the COX-2 enzyme, indicating their potential as anti- inflammatory agents.
Prasad SN, Muralidh ara.	Neuroprote ctive Efficacy of Eugenol and Isoeugenol in Acrylamide -Induced Neuropath y in rats: Behavioral and	mical	the	In vivo	Rats	Oral eugenol and isoeugenol	The study demonstrate d that eugenol mitigated acrylamide- induced neuropathy in rats and showed potential for therapeutic use as an

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	-
	Biochemica l evidence.		(ACR) in rats.				adjunct in managing other forms of neuropathy in humans.
Jesudasa n JS, Wahab PUA, Sekhar MRM.	Effectivene ss of 0.2% chlorhexidi ne gel and a eugenol- based paste on postoperati ve alveolar osteitis in patients having third molars extracted: a randomise d controlled clinical trial.	British Journal of Oral & Maxillofa cial Surgery.	To compare the effects of 0.2% chlorhexidi ne gel, eugenol- based paste, and a control group on postoperati ve alveolar osteitis incidence in patients who had third molars extracted.	Randomiz ed controlled trial	Human s	Eugenol paste	The study showed that eugenol reduced pain, inflammation , infection, and wound healing more effectively than the control group in cases of alveolar osteitis.
Cavallaro A.	Gel for topical application of clove essential oil with broad spectrum anti- inflammato ry action and method of preparing same	182578A 1, 2015	To patent a topical gel formulatio n of clove essential oil.			Topical clove oil gel	The patent demonstrate d that clove essential oil gel containing eugenol exhibits anti- inflammatory and analgesic effects.

Authors	Title	Source and Year	Objective	Study Design	Test Species	Dosage / Formulati on	•
om S, Keawson gsaeng W, Buasorn W, Rimsueb N,	Nanopartic les as a Local t Anesthetic	ACS Omega. 2021	To investigate the potential use of calcium citrate nanoparticl es as carriers for the topical application of eugenol.	n study	cells	cles	The study revealed that eugenol- loaded calcium citrate nanoparticle s have shown potential as a carrier for the topical administratio n of eugenol. These new nanoparticle s represent a promising alternative for the topical application of local anesthetics with natural pain relief.

In addition, eugenol was found to inhibit the Transient Receptor Potential Vanilloid 1 (TRPV1) receptor, which plays a role in pain stimulation (Takahashi et al., 2021). TRPV1 is known to have a critical role in molecular mechanisms contributing to pain and injury-induced hyperalgesia. Ye et al. (2024) reported that eugenol acted as a TRPV1 agonist, increasing intracellular Ca²⁺ levels, which may desensitizing contribute to pain sensations, thus providing new evidence for the application of topical transdermal eugenol in pain therapy. These findings indicated that eugenol offers potential as an effective muscle pain therapy agent through multiple pathways.

leukotrienes, which are inflammatory mediators

Beyond analgesic eugenol also possessed significant antiinflammatory properties, which helped reduce muscle pain associated with inflammation. Since inflammation often accompanied muscle pain, its reduction could help relieve discomfort. In a study carrageenan-induced using а inflammation model, eugenol was shown reduce edema and leukocvte to migration, demonstrating its antiinflammatory effectiveness (Daniel et al., 2009). Kim et al. (2003) and Raghavenra

et al. (2006) found that eugenol inhibited

the synthesis of prostaglandins and

in

pain

involved

effects.

its

transmission. This finding was further supported by de Andrade and Mender (2020), who showed that eugenol exerted anti-inflammatory effects through the inhibition of lipoxygenase and cyclooxygenase enzymes. Moreover. eugenol was found to reduce the expression pro-inflammatory of cytokines such as TNF-a and COX-2 while enhancing the expression of antioxidant enzymes including superoxide dismutase (SOD), catalase and glutathione peroxidase (CAT). (GPX). By reducing inflammation and oxidative stress, eugenol helped alleviate muscle pain related to inflammatory conditions (Adefegha et al., 2019; Wang et al., 2022; Abdou et al., 2024).

Research conducted by Prasad and Muralidhara (2013) also revealed that eugenol was effective in alleviating neuropathy. Neuropathy results from damage to the nervous system due to trauma, toxins, or metabolic disorders affecting peripheral or central neurons. In athletes, neuropathic pain can result from direct or indirect injuries to central (brain and spinal cord) or peripheral (nerves and small fibers) nervous structures. Using an acrylamideneuropathy model. induced both eugenol and isoeugenol were shown to reduce oxidative stress in the sciatic nerve, lower cytosolic calcium levels, and inhibit acetylcholinesterase activity. These results suggested that eugenol may serve as an effective alternative for managing neuropathic pain.

In the context of clinical use, further investigations were required to determine the effective and safe dosage of eugenol as a therapeutic agent for muscle pain. Although eugenol had shown substantial potential in various animal models, human studies were still needed to ensure its safety and efficacy. Nevertheless, with its multiple identified mechanisms of action, eugenol offered new hope as a more natural and safer alternative for muscle pain therapy.

The development of topical formulations containing eugenol for managing muscle pain in athletes showed considerable promise, as eugenol present in clove leaf oil had demonstrated significant analgesic and anti-inflammatory properties (Daniel et al., 2009). Jesudasan et al. (2015) found that a paste formulation containing eugenol provided superior pain relief in postoperative alveolar osteitis compared to 0.2% chlorhexidine gel. In a gel formulation, Cavallaro (2015) patented a clove essential oil-based topical gel in which eugenol was the main active component with proven antiinflammatory and analgesic activity.

One of the most recent approaches was developed by Cherdchom et al. (2021), who formulated eugenol into a calcium citrate nanoparticle-based topical delivery system that exhibited good stability and high biocompatibility. Their study demonstrated that this provided effective formulation an transdermal drug delivery system due to its ability to penetrate the skin and reach targeted areas. They also reported the formulated that eugenol nanoparticles had potential as a local topical anesthetic for pain management.

the development of such In topicals. determining the optimal formulation of eugenol was essential to ensure product safety and effectiveness. Special attention must be given to the fact that direct application of eugenol to further still required the skin investigation due to its potential to cause local irritation and its low solubility in water (Tammannavar et al., 2013). Nevertheless, the development of topical formulations containing eugenol holds great potential for muscle pain management in athletes. With its proven analgesic and anti-inflammatory effects, eugenol may be formulated into a topical product that aids athletes in recovering more quickly from injuries while reducing reliance on synthetic drugs. However, further studies are needed to confirm the safety and efficacy of such formulations.

CONCLUSION

Eugenol presented substantial potential as a therapeutic agent for muscle pain in athletes due to its significant analgesic and antiinflammatory effects. Various mechanisms of action had been identified, including the inhibition of inflammatory mediators, modulation of receptors, and reduction pain of oxidative stress. Topical formulations containing eugenol showed promising post-exercise alleviating results in muscle pain, with a favorable safety profile. Nevertheless, further research was required to determine the optimal dosage, ensure long-term safety, and develop effective application methods. Given this potential, eugenol could serve as a more natural and safer therapeutic alternative for athletes, supporting faster recovery and reducing reliance on synthetic medications. It is hoped that the findings of this review may serve as a foundation for further investigations into the application of eugenol in the management of muscle pain in athletes.

Acknowledgment

The authors acknowledge UNM for supporting facilities during this review study.

Author Contribution

All authors participated to all aspects of this work, including preparation, research, data collecting and analysis, manuscript drafting, and publication approval.

Competing Interest

None.

Ethical Approval

None.

REFERENCES

- Abdou, A., Ennaji, H., Maaghloud, F. E., Azhary, K. E., Badou, A., Elmakssoudi, A., Aboulmouhajir, A., Ibenmoussa, S., JamalEddine, J., & Dakir, M. (2024). *In silico* and *in vivo* anti-inflammatory effect of eugenol and acetyleugenol. Scientific African, 24, e02205.
- Adefegha, S. A., Oyeleye, S. I., Okeke, B. M., & Oboh, G. (2019). Influence of oxidative eugenol on stress biomarkers in liver the of carrageenan-induced arthritis rats. Journal of Basic and Clinical Physiology and Pharmacology, 30(2), 185-193.
- Barboza, J. N., da Silva Maia Bezerra Filho, C., Silva, R. O., Medeiros, J.
 V. R., & de Sousa, D. P. (2018). An Overview on the Anti-inflammatory Potential and Antioxidant Profile of Eugenol. Oxidative Medicine and Cellular Longevity, 2018(1), 3957262.
- Cavallaro, A. (2015). Gel for topical application of clove essential oil with broad spectrum antiinflammatory action and method of preparing same (United States Patent US20150182578A1).
- Cherdchom, S., Keawsongsaeng, W., Buasorn, W., Rimsueb, N.. Pienpinijtham, P., Sereemaspun, A., Rojanathanes, R., & Aramwit, P. (2021). Development of Eugenol-Embedded Calcium Citrate Nanoparticles Local as а Anesthetic Agent. ACS Omega, 6(43), 28880–28889.
- Daniel, A. N., Sartoretto, S. M., Schmidt, G., Caparroz-Assef, S. M., Bersani-Amado, C. A., & Cuman, R. K. N. (2009). Anti-inflammatory and antinociceptive activities A of

eugenol essential oil in experimental animal models. *Revista* Brasileira de Farmacognosia, 19(1b), 212–217.

- de Andrade, F. das C. P., & Mendes, A. N. (2020). Computational analysis of eugenol inhibitory activity in lipoxygenase and cyclooxygenase pathways. Scientific Reports, 10(1), 16204.
- Groninger, H., Schisler, R.E., 2012. Topical Capsaicin for Neuropathic Pain #255. J Palliat Med 15, 946– 947.
- Gulin, S.J., Chiriac, A., 2016.
 Diclofenac-Induced Allergic
 Contact Dermatitis: A Series of
 Four Patients. Drug Saf Case Rep 3, 15.
- Jesudasan, J. S., Wahab, P. U. A., & Sekhar, М. R. Μ. (2015).Effectiveness of 0.2% chlorhexidine gel and a eugenol-based paste on postoperative alveolar osteitis in having patients third molars extracted: A randomised controlled clinical trial. The British Journal of Oral & Maxillofacial Surgery, 53(9), 826-830.
- Khalil, A. A., Rahman, U. ur, Khan, M. R., Sahar, A., Mehmood, T., & Khan, M. (2017). Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Advances, 7(52), 32669–32681.
- Kim, S. S., Oh, O.-J., Min, H.-Y., Park, E.-J., Kim, Y., Park, H. J., Nam Han, Y., & Lee, S. K. (2003). Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sciences, 73(3), 337–348.
- Lee, M. H., Yeon, K.-Y., Park, C.-K., Li, H.-Y., Fang, Z., Kim, M. S., Choi, S.-Y., Lee, S. J., Lee, S., Park, K., Lee, J.-H., Kim, J. S., & Oh, S. B. (2005). Eugenol Inhibits Calcium

Currents in Dental Afferent Neurons. Journal of Dental Research, 84(9), 848–851.

- Lugo-Lugo, D. E., Pozos-Guillén, A. de Zapata-Morales, J.. J. R.. Rodríguez-Chong, Α., Rangel-López, A. de J., Saavedra-Leos, M. Z., & Vértiz-Hernández, A. A. (2019). Antinociceptive local activity of 4-allyl-1-hydroxy-2methoxybenzene (eugenol) by the formalin test: An antiinflammatory effect. Brazilian Journal of Pharmaceutical Sciences, 55, e18022.
- Park, S.-H., Sim, Y.-B., Lee, J.-K., Kim, S.-M., Kang, Y.-J., Jung, J.-S., & Suh, H.-W. (2011). The analgesic effects and mechanisms of orally administered eugenol. Archives of Pharmacal Research, 34(3), 501– 507.
- Prasad, S. N. & Muralidhara. (2013). Neuroprotective Efficacy of Eugenol and Isoeugenol in Acrylamide-Induced Neuropathy in rats: Behavioral and Biochemical evidence. Neurochemical Research, 38(2), 330–345.
- Raghavenra, H., Diwakr, B. T., Lokesh,
 B. R., & Naidu, K. A. (2006).
 Eugenol—The active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells.
 Prostaglandins, Leukotrienes and Essential Fatty Acids, 74(1), 23–27.
- Ratna, T. S., Wicaksana, A. Y., & Sugihartini, N. (2020). Efektivitas Stretching dan Minyak Atsiri Bunga Cengkeh Terhadap Penurunan Nyeri Otot. Gaster, 18(2), 202–214.
- Seo, H., Li, H. Y., Perez-Reyes, E., & Lee, J.-H. (2013). Effects of eugenol on T-type Ca2+ channel isoforms. The Journal of Pharmacology and Experimental Therapeutics, 347(2), 310–317.

- Takahashi, K., Yoshida, T., & Wakamori,
 M. (2021). Mode-selective inhibitory effects of eugenol on the mouse TRPV1 channel.
 Biochemical and Biophysical Research Communications, 556, 156–162.
- Tammannavar, P., C, P., Jain, S., & Sv, S. (2013). An unexpected positive hypersensitive reaction to eugenol. Case Reports, 2013, bcr2013009464.
- Versteeg, N., Wellauer, V., Wittenwiler, S., Aerenhouts, D., Clarys, P., Clijsen, R., 2024. Short-term cutaneous vasodilatory and thermosensory effects of topical

methyl salicylate. Front Physiol 15, 1347196.

- Wang, M., Dai, T., Li, S., & Wang, W. (2022). Eugenol suppresses the proliferation and invasion of TNF-a-induced fibroblast-like synoviocytes via regulating NF-κB and COX-2. Biochemical and Biophysical Research Communications, 612, 63–69.
- Ye, H., Lin, Q., Mei, Q., Liu, Q., & Cao, S. (2024). Study on mechanism of transdermal administration of eugenol for pain treatment by network pharmacology and molecular docking technology. Heliyon, 10(8).
