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Abstract 

Background: Prostate cancer has become one of the leading causes of death in men. Cancer patients often seek 

alternative treatments apart from chemotherapy, radiation therapy, and surgery. The use of medicinal plants in 

both preventive and curative actions in healthcare has been widely recognized. One of the plants known to have 

anticancer activity is the soursop leaf (Annona muricata L.). Objective: This study was conducted to explore the 

potential of active compounds contained in A. muricata as drug candidates for the inhibition of caspase-3 in 

silico. Methods: The research began with the prediction of Lipinski's Rule of Five and ADMET properties for the 

compounds found in A. muricata. The prediction process was followed by pharmacophore modelling and 

molecular docking simulations on caspase-3 (PDB: 1NME) as the target protein and 2-hydroxy-5-(2-mercapto-

ethylsulfamoyl)-benzoic acid as the natural ligand using AutoDockTools 1.5.6. Results: Based on the molecular 

docking results, 22 test ligands were able to form bonds with the caspase-3 enzyme. The two best interactions 

were observed with the test ligands, Isolaureline and S-norcorydine, with binding energy values of -6.20 kcal 

/mol and -6.12 kcal /mol and inhibition constant values of 28.65 µM and 32.53 µM. In terms of receptor-target 

interactions, these two compounds also exhibited hydrogen bonding and van der Waals interactions similar to 

the natural ligand. Conclusion: The best bioactive compounds in A. muricata (Isolaureline and S-norcorydine) 

were predicted to have the ability to interact with caspase-3 and the potential to be used as prostate cancer drug 

candidates. 
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INTRODUCTION 

Cancer is a complex and life-threatening illness 

that has impacted the lives of countless individuals and 

families worldwide. It refers to a group of disorders 

characterized by abnormal cell growth and division 

within the body (Faubert et al., 2020). Cancer can 

manifest in a variety of organs and tissues, disrupting 

the body’s normal functions and posing significant 

physical and emotional challenges. The cancer journey 

is often difficult, requiring courage, resilience, and 

unwavering support. The causes of cancer are 

multifaced, including genetic, environmental, and 

lifestyle factors. Inherited or acquired genetic 

mutations can disrupt cell function and increase the 

risk of cancer. Tobacco smoke, radiation, certain 

chemicals, and infectious agents are all carcinogens 

that can contribute to the development of cancer. 

Furthermore, lifestyle factors such as diet, physical 

activity, tobacco, and alcohol use may all affect the risk 

of developing certain types of cancer (Anand et al., 

2008). 

Early detection of cancer is critical for successful 

treatment and improved outcomes. Regular screenings 

and self-examinations are critical for early detection 

because they allow medical professionals to identify 

abnormalities and initiate appropriate diagnostic 

procedures. Imaging scans, biopsies, and laboratory 

tests provide valuable insights into the presence, extent, 

and characteristics of cancer, allowing for more 

personalized treatment plans. It is a multidisciplinary 

approach to treatment that is determined by the type, 

stage, and location of the disease, as well as the 

individual’s overall health. Surgery to remove tumors, 

radiation therapy to target and destroy cancer cells, and 

chemotherapy to kill cancer cells throughout the body. 

Besides, the use of drugs or treatments that specifically 

target specific molecules or pathways involved in the 

development and progression of cancer is known as 

targeted therapy (Shuel, 2022). 

Related to cancer treatment and drug development, 

targeted therapy and molecular docking are 

inextricably linked. Molecular docking is a useful tool 

for discovering, designing, and optimising targeted 

therapies. It is a computational prediction and 

modelling of molecular interactions between 

molecules, such as drug candidates and their target 

proteins. By stimulating the interactions between drug 

molecules and target proteins, molecular docking 

allows researchers to predict and evaluate the 

effectiveness of potential drug candidates (Suhandi et 

al., 2022).  

As cancer treatment requires the development of 

new medication, herbal medicine is a global icon of 

alternative medication much needed as new drugs. 

Plants with medicinal properties have been used to 

treat a variety of ailments since the dawn of time. The 

key characteristics were medicinal plant chemical 

compounds that can have a physiological effect on the 

human system (Ilango et al., 2022). Annona muricata, 

also known as soursop, has been studied for its 

potential as a source of anticancer compounds. Several 

studies have been carried out in laboratories to 

investigate the effects of various extracts and isolated 

compounds from Annona muricata on cancer cells. 

There have been reports of widespread use of A. 

muricata, of which 80.9% of patients with prostate, 

breast, and colorectal cancer for their malignancies 

(Foster et al., 2017). A. muricata is also known as one 

of the liver cancer therapies that been used by 14% 

Peruvian patients to treat their cancer-related 

symptoms (Rojas et al., 2018). 

This study aimed to predict the cytotoxic activity, 

inhibition of proliferation, and apoptosis induction 

activity of A. muricata leaf extract targeting the 

caspase-3 pathway of prostate cancer. An increase in 

caspase-3 can cause certain proteins in cells to become 

activated, which can accelerate the process of 

apoptosis. Via the intrinsic mechanism, an increase in 

caspase-3 enzyme expression will accelerate the PC-3 

prostate cancer cell line's in vitro turnover (Ismy et al., 

2020). 

 

MATERIALS AND METHODS 

Materials 

Caspase-3 structure, with PDB ID number 

"1NME," was retrieved from the Research 

Collaboratory for Structural Bioinformatics Protein 

Data Bank (RCSB PDB) at www.rcsb.org for use in 

this investigation. The bioactive substances used in the 

test ligands came from the soursop plant (Annona 

muricata L.). The three-dimensional structure of a 

natural ligand and the test compounds, which include 

the reference medication Sorafenib, were retrieved 

from PubChem (pubchem.ncbi.nlm.nih.gov) created 

using the program ChemOffice 2010. 

Tools 

The computer used in this investigation was an 

Acer Swift SF314-56G with an Intel ® CoreTM i5-

8265U processor, 4.00 GB of RAM, and a Windows 11 

Home Single Language 64-bit operating system. The 

docking positions and interactions were visualized 

using the Biovia Discovery Studio Visualizer. The 
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production of macromolecules and ligands, as well as 

the execution of docking studies, were done using 

AutoDock 1.5.6. 

Method 

Physicochemical and pharmacokinetic prediction 

Physicochemical and pharmacokinetic predictions 

were conducted for both the test ligands. The ligand 

structures were obtained from the PubChem database 

(pubchem.ncbi.nlm.nih.gov) in (.sdf) format. The 

physicochemical predictions were performed using 

Lipinski’s Rule of Five on the SwissADME website 

(http://www.swissadme.ch/). The pharmacokinetic 

predictions were carried out by submitting the structure 

of the test ligands to the PreADMET website 

(https://preadmet.webservice.bmdrc.org/). 

Ligand preparation 

For both test ligands, physicochemical and 

pharmacokinetic predictions were made. The ligand 

structures were downloaded in (.sdf) format from the 

PubChem database at pubchem.ncbi.nlm.nih.gov. On 

the SwissADME website (http://www.swissadme.ch), 

Lipinski’s Rule of Five was used to make the 

physicochemical predictions. The test ligands' 

structures were entered into the PreADMET website 

(https://preadmet.webservice.bmdrc.org) to make 

pharmacokinetic predictions. 

Receptor preparation 

The Protein Data Bank's Caspase-3 3D structure 

(PDB ID: 1NME) was visualized using the BIOVIA 

Discovery Studio application. The protein chain was 

then isolated from the native ligand by removing those 

components as well as the water molecules surrounding 

the protein. The generated structure was stored as the 

receptor in the *pdb file format. In addition, the natural 

ligand's structure was recovered by eliminating the 

protein chain and saved in the *pdb file format. A 

software called AutoDockTools 1.5.6 was used to 

produce the native ligand as well as the protein. To 

proceed with this production, hydrogen atoms had to be 

added to the structure's polar side, Kollman charges 

had to be applied for the receptor, and Gasteiger 

charges for the native ligand. 

Validation of the molecular docking method 

The approach is validated to confirm that the 

docking parameters are appropriate for the docking 

process of the test ligand with the caspase-3 receptor. 

Re-docking, which includes inserting the dissociated 

native ligand back into the Caspase-3 receptor, is used 

to carry out this validation. A grid box with the 

dimensions 30 x 30 x 30 and the coordinates x = 

42.197; y = 96.352; z = 24.611 is used in the re-

docking procedure. 

The Genetic strategy (GA) value is set to 10, and 

Lamarckian GA 4.2 is used as the docking strategy in 

the docking settings. The default settings are used for 

all other docking parameters. 

The Root Mean Square Deviation (RMSD) is a 

parameter that can be taken into account in the re-

docking outcomes. The RMSD value of 2.0 is 

considered acceptable (Istyastono, 2018). 

Molecular docking 

The reference drug and each of the twenty-two test 

compounds were docked against the Caspase-3 

receptor after being optimized and produced. Using 

AutoDockTools 1.5.6, the receptor was created by 

separating it from its natural ligand and docking it in 

the same manner as in the technique validation. 

Data analysis and visualization 

The data presentation design in this study took into 

account various factors such as binding free energy, 

conventional hydrogen bonds, van der Waals bonds, 

and the number of hydrogen bonds. The BIOVIA 

Discovery Studio allows visualization of the receptor's 

complex conformations, ligand interactions, and 

contact amino acid residues in both two-dimensional 

(2D) and three-dimensional (3D) formats. 

 

RESULTS AND DISCUSSION 

Physicochemical and pharmacokinetic prediction 

Physicochemical and pharmacokinetic prediction 

are two fields essential for drug discovery to explain 

how two chemical compounds interact in the human 

body. Physicochemical studies explain the physical and 

chemical properties of chemical compounds; therefore, 

pharmacokinetics predictions refer to scores of 

absorption, distribution, metabolism, excretion, and 

toxicity (ADMETox) predicted by how the chemical 

compounds work on the human body. 

Lipinski’s Rule of Five (Ro5) is one of the 

methods that can be used to predict the 

pharmacokinetics of drug-like chemical compounds 

designed for oral route administration. These rules are 

used to determine if chemical compounds have the 

potential to be drugs. The parameters include 

molecular weight (MW), partition coefficient (LogP), 

hydrogen bond donor (HBD), and hydrogen bond 

acceptor (HBA). The drug-like compound has a 

molecular weight under 500 Da. LogP value less than 

five represents hydrophobicity; no HBD is more than 

five, and no HBA is more than 10. (Chagas et al., 

2018). 

http://www.swissadme.ch/
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On the other hand, the parameters of ADMETox 

are HIA (Human Intestinal Absorption) and CaCO2, 

which define the capability of oral and transdermal 

administration of drug candidates to absorb. PPB 

(Plasma Protein Binding) is defined as the capacity of a 

chemical compound to bind with blood protein. BBB 

(Blood-Brain Barrier) is defined as the capability of a 

chemical compound to pass through the blood-brain 

barrier and reach the brain. Mutagenicity and 

carcinogenicity are parameters that determine the 

toxicity properties of potential drug candidates 

(Afinasari et al., 2022). 

Lipinski’s Rules of Five and ADMETox 

evaluations are used as an early-stage evaluations for 

drug discovery. From the Lipinski prediction results 

(Table 1), one out of 22 chemical compounds from A. 

muricata L. did not pass Lipinski’s Rule of Five and 

from the predicted result of the ADMETox (Table 2). 

Seven compounds did not fit the HIA criteria; only one 

compound did not fit the CaCO2 criteria; eight 

compounds did not fit the PPB criteria; and only three 

compounds passed the BBB criteria. Six compounds 

were found to have no toxicity, either carcinogenicity 

or mutagenicity. 

Ligand preparation 

ChemDraw Pro 12.0 software was used to 

construct 2D structures for the 22 test ligands during 

the preparation process. Afterwards, their 3D structures 

were created, and Chem3D Pro 12.0 software was used 

to optimize the test compounds' molecular mechanics 

(MM) geometry for stability. 

To create the most stable structure that closely 

resembles the existing natural compound structures, the 

total energy of the molecules was minimized during the 

geometry optimization process (Roy et al., 2015). 

These findings led to the creation of the test 

compound's optimal structures. 

Receptor preparation 

X-ray crystal structure of human Caspase-3 (PDB 

ID: 1NME) was chosen because it originated from 

humans (Homo sapiens), had no mutation, had a good 

resolution (<2 Å), and had a natural ligand. The 

Caspase-3 receptor was prepared by separating the 

protein from its original ligand using BIOVIA 

Discovery Studio software, resulting in a space or 

pocket that would be utilized during the docking 

simulation. The native ligand's structure without the 

protein was also discovered, in addition to the protein 

structure having a pocket for the test ligand. 

 

 

 

Table 1. Lipinski prediction results of bioactive compounds in soursop plant (Annona muricata L.) 

Compound 

Parameter Lipinski rule of five Application of 

Lipinski's rule of 

five 
Molecular weight 

(<500 Da) 
LogP (<5) 

Hydrogen 

donor (<5) 

Hydrogen 

acceptor (<10) 

Annoionol A 

Annoionol B 

Anomuricine 

Anomurine 

Anonaine 

Asimilobine 

Chlorgenic acid 

Coclaurine 

Coreximine 

Epicathecine 

Isoboldine 

Isolaureline 

Liriodenine 

Myricyl alcohol 

Myristic acid 

N-methylcoclaurine 

Palmitic acid 

Polyphenol 

Remerine 

Reticuline 

S-norcorydine 

Xylopine 

230.34 

244.33 

329.39 

343.42 

265.31 

267.32 

354.31 

285.34 

327.37 

290.27 

327.37 

265.31 

275.26 

438.81 

228.37 

299.36 

256.42 

458.37 

279.33 

329.39 

327.37 

295.33 

1.73 

0.81 

2.65 

3.08 

2.88 

2.65 

-0.39 

2.36 

2.40 

0.83 

2.45 

3.12 

2.88 

10.52 

4.45 

2.59 

5.20 

1.01 

3.13 

2.64 

2.61 

2.88 

3 

4 

2 

1 

1 

2 

6 

3 

2 

5 

2 

0 

0 

1 

1 

2 

1 

8 

0 

2 

2 

1 

3 

4 

5 

5 

3 

3 

9 

4 

5 

6 

5 

4 

4 

1 

2 

4 

2 

11 

3 

5 

5 

4 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Passed 

Didn’t pass 

Passed 

Passed 

Passed 

Passed 
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Table 2. The predicted results of the ADMETox profile of bioactive compounds in soursop plant (Annona muricata L.) 

Compound 

Parameter 

Absorption Distribution Toxicity 

HIA (%) 

[HIA > 

70%] 

Caco-2 (nm/sec) 

[CaCO2 > 5 

nm/sec) 

PPB (%) 

[PPB < 

90%] 

BBB 

[LogD > 

2] 

Mutagen 

Carcinogen 

Mouse Rat 

Annoionol A 80.621107 21.3756 78.685043 1.83591 mutagen negative negative 

Annoionol B 68.686646 21.159 55.761220 0.426248 non-mutagen negative negative 

Anomuricine 93.529812 29.5702 78.913882 0.558569 non-mutagen negative positive 

Anomurine 95.858409 51.8528 76.072725 0.112353 non-mutagen negative negative 

Anonaine 96.493990 47.6818 65.565065 0.984994 mutagen negative negative 

Asimilobine 93.174009 26.308 63.678123 2.4684 mutagen positive negative 

Chlorgenic acid 24.404298 19.2384 39.507803 0.0370233 non-mutagen positive negative 

Coclaurine 89.643482 7.29997 97.170383 0.693997 mutagen negative negative 

Coreximine 93.267525 14.641 84.091816 0.726882 non-mutagen positive negative 

Epicathecine 66.707957 0.56962 100.000000 0.394913 mutagen negative negative 

Isoboldine 93.265891 24.5565 61.235563 1.51842 non-mutagen negative negative 

Isolaureline 99.658001 56.6616 71.572095 2.38425 mutagen negative negative 

Liriodenine 97.767428 28.1451 49.719419 0.809938 mutagen negative negative 

Myricyl alcohol 100.000 51.3386 100.00000 0.0875288 non-mutagen positive negative 

Myristic acid 97.848313 24.0726 100.000000 5.03596 mutagen negative positive 

N-Methylcoclaurine 93.072310 13.5813 91.190030 1.64191 non-mutagen negative negative 

Palmitic acid 98.297110 26.0735 100.000000 8.21885 mutagen negative positive 

Polyphenol 20.712498 12.0421 100.0000 0.0875288 non-mutagen negative positive 

Remerine 100.000 56.7725 74.322985 1.80495 mutagen negative negative 

Reticuline 93.26485 12.2566 83.959605 1.00893 non-mutagen negative negative 

S-norcorydine 95.533986 29.2909 56.866176 1.00154 non-mutagen negative negative 

Xylopine 95.782499 49.1829 60.230097 0.850866 mutagen negative negative 

  

(a) (b) 

Figure 1. The three-dimensional (3D) structure of Caspase-3 without a ligand (a) and native ligand 2-Hydroxy-5-(2-

mercapto-ethylsulfamoyl)-benzoic acid (b) 

 

Water molecules (H2O) must also be removed 

during this procedure. To ensure that only amino acid 

molecules are present in Caspase-3 and that only these 

amino acid molecules will interact with the test ligand. 

Water molecules must be removed. Additionally, 

eliminating water molecules can maximize the 

interaction between the protein and test ligand 

(Lemmon & Meiler, 2013). Figure 1 depicts the 3D 

architectures of Caspase-3 with its natural ligand 

separated and without it. 

Validation of the molecular docking method 

To make sure the utilized approach satisfies the 

necessary standards and can be used for subsequent 

testing stages, the molecular docking method 

underwent validation. The Root Mean Square 

Deviation (RMSD) is the parameter used for 

validation. A metric called RMSD shows how much 

the protein-ligand interactions have changed between 

the crystal structure before and after docking. If the 

RMSD value is 2.0, the docking approach is regarded 

to be valid (Istyastono, 2018). The obtained RMSD 

value in this experimental technique validation is 1.85, 

demonstrating the validity of the docking approach 

used. The information is shown in Table 3. In Figure 2, 

which is based on the re-docking results, the 

interactions between the natural ligand and Caspase-3 

are visualized in 2D and 3D. The ligand interacts with 

Caspase-3 through conventional hydrogen bonds, van 

der Waals bonds, Pi-Sulfur links, and Pi-Pi T-shaped 

bonds. 
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Table 3. The results of the method validation through re-docking with 2-Hydroxy-5-(2-mercapto-ethylsulfamoyl)-

benzoic acid 

PDB ID Grid Box (x, y, z) 
Validation 

Binding Energy (kkal/mol) 
RMSD cluster (Å) RMSD reference (Å) 

1NME 

42.197 

96.352 

24.611 

0.00 1.85 -5.28 

 

 

 

(a) (b) 

Figure 2. Visualization of the 2D interactions between Caspase-3 and the natural ligand (a) and visualization of the 3D 

interactions between Caspase-3 and the natural ligand (b) 

 

Molecular docking 

Using the same program, AutoDockTools 1.5.6, 

the test compounds continued to be docked to Caspase-

3 after fulfilling the docking method's validation 

criteria. Since those coordinates corresponded to the 

region where the native ligand interacts with Caspase-

3, they were modified to fit the grid box utilized during 

method validation when docking the test compounds 

on Caspase-3. 

The procedure continued with docking the test 

compounds on 1NME using the same software, 

AutoDockTools 1.5.6, after witnessing the validated 

findings of the docking approach that satisfied the 

requirements. Since these coordinates indicated the site 

of the native ligand interaction with 1NME, they were 

modified to match the grid box utilized during method 

validation while docking the test compounds on 

1NME. The test chemicals' docking with the 1NME 

receptor produced the following results: hydrogen 

bonding, inhibition constant, and binding energy. 

The scoring function computation for the ligand 

conformation (I) inside the macromolecule/receptor 

under equilibrium conditions (conformational search) 

yields the binding energy. The Gibbs energy (G), also 

known as the binding energy, can be calculated from 

these variables using the equation [E+I] = [EI] 

(Limongelli, 2020). The binding energy reveals how 

well the test substances bind to the 1NME receptor. A 

lower value of the binding energy denotes a more solid 

interaction between the protein and the produced ligand 

(Manna et al., 2017). The strength of a compound's 

ability to prevent a receptor's action is shown by its 

inhibition constant. On the other hand, the strength of 

inhibitory potency is indicated by a smaller value of the 

inhibition constant (Garcia-Molina et al., 2022). 

 

 

 

 

 

 

 



Jurnal Farmasi dan Ilmu Kefarmasian Indonesia Vol. 11 No. 1 April 2024      7 

 

 
P-ISSN: 2406-9388   ©2024 Jurnal Farmasi dan Ilmu Kefarmasian Indonesia 

E-ISSN: 2580-8303  Open access article under the CC BY-NC-SA license 

Table 4. The docking results of bioactive compounds in the soursop plant (Annona muricata L.) against the Caspase-3 

receptor 

No. Compound 

Binding 

Energy 

(kcal/mol) 

KI (µM) 
Bonding with amino acids 

Hydrogen bonds Van der waals bonds Other bonds 

1 Native ligand -5.28 134.89 

ASN 208, TRP 214, 

TYR 204, SER65, 

ARG 207, PHE 250 

SER 209, SER 249 TRP 206 

2 Sorafenib -5.97 42.26 
ARG 207, PHE 

250, PHE 252 

HIS 121, THR 62, 

SER 249, ASN 208, 

TRP 217, TRP 206, 

SER 205 

TYR 204, SER 

251 

3 Annoionol A -4.99 221.09 
TYR 204, TRP 214, 

GLU 248, PHE 250 

ASN 208, ARG 207, 

SER 249, SER 251 
TRP 206 

4 Annoionol B -5.75 61.28 PHE 256, SER 209 

HIS 257, SER 251, 

ARG 207, LYS 210, 

ASN 208, PHE 250, 

TRP 214, SER 249 

TRP 206 

5 Anomuricine -5.40 109.72 - 

ASP 253, SER 251, 

TYR 204, TRP 206, 

ASN 208, PHE 250, 

ASP 253, SER 251 

PHE 252, PHE 

256 

6 Anomurine -5.40 19.78 
SER 209, PHE 250, 

TYR 204 

ASN 208, SER 65, 

ARG 207, SER 205, 

SER 251, SER 249 

GLU 248, PHE 

256, TRP 206, 

TRP 214 

7 Anonaine -5.97 41.97 TYR 204, PHE 250 
ASN 208, TRP 214, 

SER 249, SER 251 

TRP 206, 

ARG 207 

8 Asimilobine -5.78 57.73 ASN 208 
SER 209, SER 249, 

TYR 204 

TRP 214, PHE 

250, TRP 206, 

SER 205, 

ARG 207 

9 Chlorgenic acid -5.65 72.61 

GLU 248, PHE 

250, TYR 204, 

ARG 207, SER 209 

SER 65, ASN 208, 

TRP 214, SER 249, 

TRP 206 

ARG 207 

10 Coclaurine -5.14 171.23 ASN 208, ARG 207 

SER 251, PHE 250, 

GLU 248, TRP 214, 

PHE 247, SER 63, 

SER 65, SER 209 

SER 249, TRP 

206 

11 Coreximine -5.63 75.01 

ARG 207, SER 

209, TRP 214, PHE 

250 

ARG 63, ARG 64, 

SER 65, ASN 208, 

PHE 247, TYR 204 

SER 249, GLU 

248, TRP 206 

12 Epicathecine -5.23 146.95 
ARG 207, SER 

209, PHE 250 

SER 65, ASN 208, 

TRP 214, GLU 248, 

SER 249, TRP 204 

ARG 207, 

TRP 206 

13 Isoboldine -5.61 76.84 TRP 214, PHE 250 

ASN 208, ARG 207, 

SER 209, SER 251, 

GLU 248, PHE 247 

PHE 256, TRP 

206, SER 249 

14 Isolaureline -6.20 28.65 ARG 207, ASN 208 
SER 249, PHE 247, 

PHE 250 

TYR 204, TRP 

206, TRP 214, 

SER 251 

15 Liriodenine -5.97 42.20 
TYR 204, ARG 

207, PHE 250 

TRP 214, ASN 208, 

SER 249, SER 251 

TYR 204, 

ARG 207, 

TRP 206 

16 Myricyl alcohol -0.10 842.90 - 

SER 65, SER 209, 

TYR 204, PHE 256, 

ARG 207, SER 251, 

ASN 208, PHE 250, 

SER 249, GLU 248, 

TRP 214 

PHE 252, TRP 

206 
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17 Myristic acid -3.38 3.31 ARG 207 

GLU 248, ASN 208, 

SER 205, SER 249, 

PHE 250, TYR 204, 

SER 209 

TRP 206, TRP 

214 

18 
N-

methylcoclaurine 
-5.29 132.07 

ARG 207, SER 

206, PHE 250, 

GLU 248 

ASN 208, SER 209, 

TRP 214, SER 249 

TYR 204, 

ARG 207, 

SER 205, TRP 

206 

19 Palmitic acid -3.37 3.36 ARG 207 

TRP 214, SER 249, 

PHE 250, GLU 248, 

ASN 208, SER 209, 

TYR 204 

TRP 206 

20 Polyphenol -5.7 63.80 
PHE 250, SER 209, 

ARG 207, TYR 204 

SER 249, SER 251, 

TRP 206, SER 65 
ASN 208 

21 Remerine -5.38 113.09 

PHE 250, ASN 

208, SER 209, 

ARG 207, SER 65 

SER 249, SER 251, 

PHE 256, TYR 204 

TRP 206, TRP 

214 

22 Reticuline -5.65 72.70 SER 209, SER 251 
SER 65, TRP 206, 

SER 249, TRP 214 

ARG 207, 

GLU 248, 

ASN 208, PHE 

252, PHE 250 

23 S-norcorydine -6.12 32.53 PHE 250, GLU 248 
ARG 207, ASN 208, 

SER 249, SER 251 

TYR 204, TRP 

206, TRP 214 

24 Xylopine -5.58 80.58 GLU 248, PHE 250 
ARG 207, ASN 208, 

PHE 247 

SER 249, TRP 

214, TRP 206 

 

Data analysis and visualization 

Molecular docking is used to predict the 

effectiveness of a ligand in interacting with the target 

cell. In this study, twenty-four ligands were likely 

present in the A.muricata plant to see the effectiveness 

of its anticancer activity against the caspase-3 enzyme 

(PDB ID: 1NME). Caspase-3 plays a role as the major 

mediator of apoptosis activated.  

The first parameter observed from the docking 

results is the binding energy. Analysis and 

interpretation of the energy were done to data provided 

by AutoDockTools 1.5.6. According to AutoDock, the 

binding energy is the sum of the intermolecular forces 

acting upon the receptor-ligand complex (Lin et al., 

2011). A good binding energy is represented by a more 

negative (lower) value. While a low binding energy 

suggests that the compound requires less energy during 

binding, indicating that a low binding energy signifies 

a greater potential for interaction and the formation of a 

strong bond with the target protein (Rena et al., 2022). 

The second parameter is inhibition constant (KI). 

Inhibition constant indicates the concentration required 

by the ligand to inhibit the target protein. A good 

inhibition constant is represented by a smaller value of 

KI. (Rena et al., 2022).  

In addition to the energy binding value and 

inhibition constant value, the interaction between 

residues and ligands, such as hydrogen bonding, is also 

taken into consideration. Hydrogen bonds play a 

crucial role in protein structure because the stability of 

a protein’s structure depends on hydrogen bonds 

(Suryani et al., 2018). The binding location of the 

ligand on the protein is determined by the extent of 

residue-ligand interactions. A greater number of 

interacting residues leads to a stronger bond between 

the ligand and the protein. (Rena et al., 2022). 

A total of twenty-two test ligands from A. 

muricata under research were employed and docked 

onto the caspase-3 receptor. Each ligand produced 

conformation based on binding energy values, 

inhibition constant, and hydrogen bonding. Based on 

Table 4, the test ligands, Isolaureline and S-

norcorydine, had a binding energy value of -6.20 kcal 

/mol and -6.12 kcal /mol and inhibition constant value 

of 28.65 µM and 32.53 µM. Those compounds have 

lower binding energy values (-5.28 kcal/mol) and 

inhibition constant (134.89 µM) from the native ligand. 

The visualization can be seen in Figure 3 and 4. 
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(a) (b) 

Figure 3. Visualization of the 2D interactions between Caspase-3 and Isolaureline (a) and visualization of the 3D 

interactions between Caspase-3 and Isolaureline (b) 

 

 

 

 

(a) (b) 

Figure 4. Visualization of the 2D interactions between Caspase-3 and S-Norcorydine (a) and visualization of the 3D 

interactions between Caspase-3 and S-Norcorydine (b) 

 

Table 4 shows that Isolaureline forms hydrogen 

bonds with the amino acid ARG 207 and ASN 208, 

and S-Norcorydine forms hydrogen bonds with the 

amino acid PHE 250 and GLU 248. Hydrogen bonding 

plays a major role in the stability of molecular 

interactions, resulting in an abundance of hydrogen 

bonds that increase the bond energy between the 

enzyme and the substrate (Arwansyah et al., 2014). In 

addition, these two compounds formed amino acid 

residue interactions in the form of hydrophobic 

interactions; specifically, Van Der Waals bonds with 

the residue. Isolaureline form Van Der Waals bonds 

with the amino acid SER 249, PHE 247, and PHE 250. 

On the other hand, S-Norcorydine form Van Der Waals 

bonds with the amino acid ARG 207, ASN 208, SER 

249, and SER 251. The results indicated that the bonds 



Jurnal Farmasi dan Ilmu Kefarmasian Indonesia Vol. 11 No. 1 April 2024      10 

 

 

P-ISSN: 2406-9388   ©2024 Jurnal Farmasi dan Ilmu Kefarmasian Indonesia 

E-ISSN: 2580-8303  Open access article under the CC BY-NC-SA license 

of the three compounds were nearly as strong as those 

of natural ligand–as observed from the numerous 

similarities in amino acid residues formed. Based on all 

the parameters, these two compounds (Isolaureline and 

S-norcorydine) have the potential as candidates for 

anticancer agents. 

 

CONCLUSION 

Twenty-two compounds from A. muricata were 

successfully docked and then analyzed based on their 

free energy binding and intermolecular interactions 

with the caspase-3 binding site. The results of 

molecular docking showed that two compounds, 

namely Isolaureline and S-norcorydine, showed the 

best results, giving the lowest binding energy value and 

lowest inhibition constant with the most preferred 

interaction. A further study can be conducted to 

investigate the anticancer activity of these compounds 

via in vivo and in vitro research. 
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