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Abstract

Crude oil production triggers the formation of hydrogen sulphide, also known as
souring, which is extremely toxic and corrosive to the environment. It additiona-
lly give an adverse consequence to aquatic, terrestrial, and human existence. Stu-
dies of hydrogen sulphide reduction in sediments polluted by crude oil have been
carried out recently to investigate the capability of indigenous Nitrate-Reducing
Sulphide Oxidising Bacteria, hereinafter referred to as NR-SOB, as bioremediation
agents. The experiments utilised hydrogen sulphide with 200 µM concentration
combined with NO3  with different concentrations of 100 µM, 200 µM, and 300
µM.  Measurements  of  the  hydrogen  sulfide  concentrations  were  observed  up
to  48  hours  within  the  experimental  period.  The  SOB  used  in  this  study  were
taken from Balongan Bay at Indramayu coast using  Nansen  bottle to carry out 
water sample. The sulphide-oxidising ability of SOB was then evaluated at room
temperature  in  control  environment.  Methylene  blue  method  was  applied  to
monitor  the  sulphide  concentration. The  results  showed  a  complete  removal  of
hydrogen  sulphide  concentrations  in  48  hours  accompanied  with  gradual  drops
of nitrate in all experiment series. Sulphide oxidation rate was detected to appear
between  6.8  and  10.2  fmol/cell/hour.  Measurements  of  cell  abundance  after  48
hours showed 6.2 x 105, 7.5 X 105, and 8.2 X 105 cell/ml from Experiments I, II,
and III respectively. Using MSS selective medium, the bacteria were identified as
Thiobacillus denitrificans  and  Arcobacter  sp. Overall, the isolated NR-SOB from
the  coast  of  Balongan  Bay,  Indramayu  proves  to  be  a  promising  candidate  for
sulphide controls and mitigation
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1. Introduction

Sulphide generation, resulting from both natu-
rally and anthropogenic activities, has been long regard-
ed as a major problem to its environment. It is prone 
to occurring not only in engineering facilities such as 
sewer, oil reservoirs, aquaculture, wastewater treatment 
plants, but also in natural environment like sediments, 
volcanic and hydrothermal vents. Waste water contami-
nated by sulphide not only negatively impact the aquatic 
and  terrestrial  life,  but  also  affects human life (Zaib et 
al., 2022). This type of sulphide formation is attributed 
to the group of bacteria called Sulphate Reducing Bac-
teria (SRB), whose jobs is to reduce the release of sul-
phate in anaerobic environment by using sulphate as an 
electron acceptor to produce sulphide and free form of 
hydrogen sulphide (H2S) (Liu et al., 2018). The release 
of free hydrogen sulphide (H2S) from sediment into 
water column is viewed as the extreme consequence of 
anaerobic water column reactions and it occurs after the 
oxidative capacity of bottom waters is exhausted. Hy-
drogen Sulphide (H2S) is certainly undesirable due to 
its high toxicity, unpleasant odor, and severe corrosive-
ness (Austigard et al., 2018). Exposure of hydrogen sul-
phide (H2S) was reported to decrease the survival rate 
of benthic communities by 30% due to tissue hypoxia, 
disturbance in aerobic metabolism, and the exposure is 
also able to cause pulmonary oedema and sudden un-
consciousness (Austigard et al., 2018). Some elevated 
hydrogen sulphide (H2S) concentrations have been re-
corded in other areas such as in the Namibian shelf wa-
ters which correlates with high macrofaunal mortality 
rate and in  China exposure of sulphide is related to 
immunology and stress response of the ark shell (Currie 
et al., 2018; Wang et al., 2019). Moreover, the presence 
of hydrogen sulphide in sewers and oil field facilities 
have been damaging the existential structures in the en-
vironment by initiating corrosion, and billions of finan-
cial lost have been reported. 

Several efforts to address this issue have been 
performed for years, yet they were all still in the phase 
of exploratory research. The most common method is to 
add biocides to suppress the growth of SRB (Vaithiya-
nathan et al., 2018). Generally, biocides  used to control 
SRB includes glutaraldehyde, tetrakis (hydroxymethyl) 
phosphonium sulphate (THPS), benzalkonium chlo-
ride, formaldehyde, and sodium hypochlorite (Basafa 
and Hawboldt, 2019). However, this approach could 
potentially lead to generation of biocide-resistant strain 
of bacteria that would create another challenging prob-
lem (Basafa and Hawboldt, 2019). Another strategy 
to tackle the issue is by nutrient addition, particularly 
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nitrate, where it promotes the growth of another group
of  bacteria  called  Nitrate-Reducing  Sulphide-Oxidiz-
ing Bacteria (NR-SOB) that will metabolically convert
sulphide  to  relatively  less  toxic  sulphate  (Basafa  and
Hawboldt,  2019;  Dolfing  and  Hubert,  2017).  Sulphide
oxidation  done  by  chemolithoautotrophic-denitrifying
bacteria can lead to a formation of sulphur or sulphate,
depending  on  the  physiological  conditions  (Cui  et  al.,
2019;  Jørgensen  et al., 2019;  Kiragosyan  et al., 2019).
When nitrate is injected to the well or water column of
compartment that is rich in sulphide, NR-SOB will start
reducing  nitrate  and  change  it  into  nitrite,  which  later
acts not only as hydrogen sulphide scavengers, but also
an  effective   inhibition   agent   for   SRB  (Watsuntorn  et
al., 2017).  Thus,  the  final  products  are  sulphate  and
nitrogen  gas.

  NR-SOB typically can be found as indigenous
bacteria  in  anaerobic  environment.  Several  studies  re-
ported  of  the  prevalence  of  isolation  of  NR-SOB  in
oil  fields,  sediment  of  intensive  aquaculture,  and  hot
springs  (Kumar  et  al.,  2018;  Watsuntorn  et  al.,  2017).
However, in open ocean waters, little is known since ep-
isodic appearances of sulphuric plumes have only been
reported recently. The coast in the northern part of West
Java, Balongan Bay Indramayu, is home to Indonesia’s
biggest oil refinery, where risks of contamination occur
frequently. Yet, no studies on the potential isolation of
NR-SOB  from  this  contaminated  sediment  have  been
reported.  This  research  focuses  on  batch  cultures  tak-
en from the bay coast area to identify nitrate reducing
sulphide oxidizers (i.e., several bacteria groups will be
used for this research) and to study  sulphur and nitro-
gen products with various nitrate concentrations.

2.  Materials and Methods
2.1  Materials

  Laboratory experiments were used as the meth-
od to conduct this research. The inoculum was isolated
from contaminated sediments in Balongan bay, Indrama-
yu. Artificial seawater and specific modified version of
Coleville Synthetic Brine (CSB), called MSS (Medium
Screening  Sulphide)  for  facilitating  exclusive  growth
of  NR-SOB,  were  used  according  to  the  research  that
had been published previously (Callbeck  et al., 2019).
Our  MSS  contained  2g  of  KH2PO4,  2g  of  KNO3,  1g
of  NH4Cl,  0,8g  of  MgSO4.7H2O,  2ml  of  mineral  solu-
tion with pH 6, 5g of Na2S2O3.5H2O, 1g NaHCO3  and
an  addition  of  15g  solid  medium  culture.  Throughout
the  whole  experiments,  nitrogen  gas  was  also  used  to
prevent  aerobic  condition.  Uv-Vis  Spectrophotometer
and Gas Chromatography Mass Spectroscopy (GC-MS)
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were used for our parameter measurement.

2.2  Method

2.2.1  Incubation

The treatment in this research was carried out 
by adding 200 µM of H2S concentrations of sea water 
(testing medium) with various nitrate concentrations of 
100 µM (Experiment I), 200 µM (Experiment II), and 
300 µM (Experiment III) by 10% v/v bacterial inoculum 
derived from the previously grown liquid culture stock. 
The experiments were done in an-aerobic condition by 
adding N2 gas to omit oxygen (Figure 1). As for the 
measurements of gasses, an adequate amount of sample 
was then inserted to vial bottles based on the treatment 
time of each observation (0, 3, 6, 12, 24, and 48 hours 
within the experiment period) and HgCl2 was added in 
each time step accordingly. 

 

 

3. Results and Discussion

3.1 Bacterial Growth

Controls of hydrogen sulphide especially in 
oil reservoirs, have been performed by manipulating 
the environment, such as having an addition of nitrate, 
in order for its microbiological population structures 
to shift from the SRB dominated environment to NR-
SOB homogenised one. Typically, an addition of nitrate 
will promote the growth of NR-SOB and consequently 
suppress SRB. Isolation procedure was employed to ex-
clusively isolate NR-SOB from the contaminated sed-
iment using a modified version of Coleville Synthetic 
Brine (CSB), a commonly used medium for NR-SOB 
isolation, called MSS (Medium Screening Sulphide) for 
NR-SOB. The medium was incorporated with a redox 
indicator for a colour change as the NR-SOB actively 
grew (Callbeck et al., 2019). The isolated inoculum of 
NR-SOB would then be transferred to a liquid culture 
medium for the incubation experiment shortly thereaf-
ter.

The growth of NR-SOB in batch experiments 
with the addition of nitrate revealed a clear pattern of 
gradual shift in the population density from the lowest 
nitrate concentration (100 µM) to the highest one (300 
µM) (Figure 2). Its peak growth took place at 48-h (T5) 
with a measured value of 8.2 x 105 cell/ml, whereas its 
initial concentration at 0-h (T0) was only measured at 
2.1 x 105 cell/ml.  Therefore, the bacterial growth in 
Experiment III is 1.27 x 104 cell/ml. The lowest bacte-
rial growth occurred in Experiment I with the concen-
trations of H2S and NO3 measuring at 200 µM and 100 
µM respectively. Bacteria abundance on experiment I 
after 48-h (T5) is 6.2 x 105 cell/ml. Meanwhile the bac-
teria abundance on experiment I is 8.2 x 103 cell/ml/h. 
The values matched the previously published research 
by Nemati et al. (2001) when the ratio of SRB and NR-
SOB appeared more distinct as the nitrate addition trig-
gered an increase up to 20 mM. It is important to note 
that NR-SOB will metabolically oxidize sulphide to sul-
phate or elemental sulphur by utilizing nitrate as their 
sole electron acceptor in anaerobic condition (Lahme et 
al., 2019; Veshareh et al., 2021). Thus, growth in pop-
ulation was also expected. It is also reported that, after 
NR-SOB cultures with SRB and sulphide were added 
to the batch medium (Kamarisima et al., 2018), instant 
depletion of nitrate occurred, accompanied with the 
discontinuation of sulphide production. This reaction 
was associated with the rapid growth of NR-SOB in the 
presence of nitrate. 
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Figure 1.  Incubation Process

2.2.2   Identification and parameter measurement
  Bacteria  identification  was  performed  through
two phases,  namely  morphology test by  gram staining,
and  biochemical  test  using  Kit  API  20A  of  20  tests.
Fluorescent  In  Situ  Hybridization  was  also  performed
to further see the bacterial characteristics  (Hu and Wu,
2021). Parameters that are measured in this research are
H2S, NO3, and the bacteria abundance in each treatment.
Hydrogen Sulphide concentration was measured colori-
metrically  using  methylene  blue  method  (Wang  et  al.,
2021).  Colorimetric determination was  also  conducted
to measure NO3  and bacterial abundance using UV-Vis
Spectrophotometer at 540 nm and 600 nm, respectively
(Studt  et al., 2020).  Gas chromatography spectroscopy
was used to understand the pattern of nitrate reduction
products such as N2O and N2  gasses.



Figure 2. Bacterial growth in artificial sea water

Figure 3. In situ hybridization

Bacterial growth is determined by the avail-
ability of nutrients such as C, N, and P, and while their 
presence is considered limited factors in determining 
the bacteria activities, the presence of those compounds 
in the sea water medium is known to be very scarce. 
Therefore, the bacteria in sea water medium with 200 
µM H2S can only be used along with 100 µM, 200 µM, 
and 300 µM of NO3. Another fact to consider during the 
calculation was that the 300 µM NO3 from the bacteri-
al growth experienced a lag phase between 0 and 3-h, 
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and another lag phase at the 48th hour, followed by a 
stationary phase and declination thereafter. Though in 
general substrate supports bacteria growth, these bacte-
ria were unable to grow due to the accumulation of toxic 
metabolism byproducts. 

3.2 Bacterial Characterisation

The isolates were characterized both morpho-
logically and biochemically to give a glimpse of spe-
cies compositions of the NR-SOB consortia. It became 
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apparent that the bacteria consisted of a large number 
of gram-negative bacteria. Our biochemical 20A API 
Test revealed that the isolates shared almost the same 
characteristics with Arcobacter sp. and Thiobacillus de-
nitrificans. The functional gene sequence analysis and 
fluorescence in  situ  hybridization  indicated that the 
detoxification, performed with chemolithotrophic oxi-
dation of sulphide and nitrate, was mainly catalysed by 
two discrete populations of gammaproteobacteria, the 
blue one, and epsilonproteobacteria, the green one (Fig-
ure 3).

Both gamma and epsilon proteobacteria are 
well-known for their ability in oxidizing sulphuric com-
pounds (Patwardhan et al., 2018). They were identified 
in deep sea hydrothermal vent environment as predomi-
nant primary producers both in symbiotic and free-living 
system with inorganic sulphur as their source of energy 
(Yamamoto and Takai, 2011). Gammaproteobacteria are 
known to live in microaerobic environment, where its 
optimum metabolism occurred in the co-existence of re-
duced sulphur and oxygen (Guerrero-Cruz et al., 2021; 
Gupta et al., 2022).

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Nitrogen removal from sulphidic batch culture in various concentrations (A) 100 µM (B) 200 µM, and 
(C) 300 µM, along with the sulphide oxidation rates in (D) 100 µM, (E) 200 µM, and (F) 300 µM during the initial 
nitrate concentrations.
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Meanwhile, the epsilonproteobacteria were also found 
to be able to utilize sulphur both for the electron do -
nor and acceptor in two kinds of metabolic pathway, i.e. 
using hydrogenase and polysulphide reductase enzymes 
to perform hydrogen oxidizing  sulphur respiration, and 
using Sox Multienzyme Complex System (Yamamo-
to and Takai, 2011). Sox pathway will utilize different 
types of proteins, e.g. SoxYZ, SoxXA, SoxB, and Sox-
CD, that are essential to conduct a complete oxidation 
from sulphide to sulphate (Wu et al., 2021). Similar to 
this, the gammaproteobacteria group has also utilized 
the Sox Multienzyme Complex System, but in the ab-
sence of SoxCD protein that operated as sulphur dehy -
drogenase (Yamamoto and Takai, 2011). 

Several other species of gammaproteobacteria 
and epsilonproteobacteria were also identified as a sym-
biont of higher organisms in sediments, and deep sea. 
Epsilonproteobacteria Sulfvorafum sp. and Nitratrip-
tor sp. for example were isolated from the sediments 
of mid-Okinawa (Mino and Nakagawa, 2018). Thiomi-
crospira crunogena from the vents of Galapagos Rift, 
Endoriftia persephone from Riftia symbiont, Ruthia 
magnifica from Calyptogena symbiont also reported as 
gammaproteobacteria are present in sulphide rich envi-
ronments (Mangiapia et al., 2017). Nevertheless, both 
groups have a large impact on the sulphur cycle and 
productivities in deep sea ecosystems and anaerobic 
conditions.

3.3 NR-SOB Activities

In anaerobic conditions, where oxygen is not 
present, microorganisms utilize other terminal electron 
acceptor such as nitrate, sulphate or iron (Rubio-Rincón 
et al., 2017). However, in natural system, its occurrence 
is limited by various physicochemical factors, thus re-
verting all the processes. An addition of terminal elec-
tron acceptor will then promote its metabolic activity 
and growth as it was indicated in this research as well 
as in other studies similar to ours (Cai et al., 2021; Fan 
et al., 2020). The physicochemical factors such as tem-
perature and pH will influence the metabolic activity of 
NR-SOB as they govern the rate of the reaction and the 
speciation of sulphur and nitrate species in the water 
(Watsuntorn et al., 2017).

Nitrate was found to experience a slight de-
crease in the first few hours followed by a noticeable de-
pletion afterwards reaching a total of 70% reduction at 
48h observation (Figure 4A-4C). When nitrate was in-
jected to the culture, it readily acted as electron acceptor 
for the NR-SOB  to oxidize H2S (Lahme et al., 2019), it 
can be depicted by alignment decrement of both nitrate 

and H2S in the observed experiments, accompanied by 
generation of nitrate reduction final product which is N2 
gas via nitrite intermediate. This was also observed in 
Zhang et al. (2020) where a sudden plunge of nitrate 
concentration occurred as soon as NR-SOB was add-
ed to the medium. The same pattern was also detected 
during the practical application of nitrate injection to an 
oil field reservoir where progressive reduction occurred 
as it was being utilized by the NR-SOB (Kamarisima et 
al., 2018). This nitrate reduction was accompanied by a 
steady generation of nitrate final products, e.g., N2O and 
N2, indicating that a denitrifying mechanism occurred 
after its reduction (Figure 4A-4C).

Hydrogen sulphide present in the water act -
ed as electron donor for NR-SOB, where then the ox-
idation adjusts the transformation to a final product, 
either sulphate or elemental sulphur via Sox pathway 
(Grabarczyk and Berks, 2017). This electron from the 
sulphide oxidation would then be utilized to reduce ni-
trate to N2O and N2 with the help of nitrite that acted as 
intermediate species (Greene et al., 2003). N2 and N2O 
productions started to occur after 12h as they were also 
confirmed by GC-MS, N2 productions were measured 
higher than N2O’s in all experiments, indicating that de-
nitrification to N2 gasses was dominating in the process 
(Figure 4A-4C).

The decline of H2S concentrations that occurred 
in all experiments (Figure 3). Generally, all experiments 
showed the same trends of decreasing sulphide. Initial 
screening at 0 to 6 h showed low oxidation ability. Sub-
sequently, the oxidation was measured higher after 6h. 
The illustrations show where sulphide was removed ap-
proximately 54% to 74% in the first 24hours, progress-
ing to a total of 100% removal in 48 hours thereafter. 
The sulphide oxidation rate was found ranging between 
6.8 and 10.2 fmol/cell/hour. This total removal of all 
sulphide in all batch experiments also explained the 
unfinished nitrate reduction where approximately 30% 
of nitrate remained in the medium. Since the hydrogen 
sulphide was all used up, there were no electron donors 
left for nitrate reduction, hence leaving the nitrate un-
reduced.

After 12h, elemental sulphur was detected at a 
very low concentration of approximately 9 to 17 µM 
(Figure 4D-4F). It indicated that sulphate was the main 
product of sulphide oxidation. Sulphide oxidation by 
chemolithoautotrophic denitrifying bacteria can lead to 
the formation of either sulphur or sulphate depending on 
its physiological condition. Facultatively, chemolitho-
autotrophic sulphide-oxidizing bacteria are widespread 
in marine environments (Cúcio et al., 2018). They do 
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not only mediate the oxidative part of sulphur cycle, 
but also the reductive part of nitrogen cycle as it is also 
in conformity with the stoichiometry equation (De Anda 
et al., 2018). 

5H2S + 8KNO3 --> 4K2SO4 + H2SO4 + 4N2 + 4H2O

The results above are in concurrent with Find-
lay et al. (2020) research where sulphate is a dominant 
final product from sulphide oxidation. In a natural ex-
periment where coexistence of SRB and NR-SOB oc-
curred, the relationship between two groups is largely 
governed by the chemical equilibrium of sulphate, sul-
phide, nitrate, and nitrite. An addition of NR-SOB to 
the system followed by even a relatively small amount 
of nitrate was able to terminate SRB activities from re-
ducing sulphate. This was postulated by the generation 
of nitrate intermediate product, nitrite, that acted as the 
natural biocides for SRB by inhibiting their sulphite re-
ductase (Fida et al., 2021). While SRB stopped reduc-
ing sulphate, NR-SOB started to oxidize sulphide, in 
the presence of nitrate, in order to produce sulphate. A 
sufficient amount of nitrate should be present in order 
to have a complete oxidation of sulphide (Sun et al., 
2019). Eventually, as the oxidation continued to occur, 
nitrate concentration dropped until there was no more 
suitable amount left. Then again, SRB found its way to 
start reducing the produced sulphate.

4. Conclusion 

In conclusion, the NR-SOB isolate from Ba-
longan Bay, Indramayu proves to be an excellent can-
didate for the sulphide removal with denitrification as 
the main process. The sulphide oxidizers used in batch 
culture are Thiobacillus denitrificans, and Arcobacter 
sp. The experiments performed in control environment 
with various nitrate concentration additions successful-
ly oxidized sulphide up to 100% within 48 hours with a 
considerable rate ranging between 6.8 to 10.2 fmol/cell/
hour. This study provide an assistance for the govern-
ment of Indonesia or the relevant authorities including 
industries in resolving the problem of contamination in 
aquatic and coastal environment. 
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