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Abstract 
There is concern regarding the use of synthetic antioxidants which spurred the 
yearly increase of natural antioxidants to substitute synthetic ones. Fish protein 
hydrolysate (FPH), which has been reported to have potent antioxidant properties, 
could be utilized to solve this problem. This study aimed to utilize the by-product 
of snakehead fish (head) and determine the optimum hydrolysis conditions to 
obtain FPH with antioxidant activity. Two parameters were tested during the 
hydrolysis process: enzyme concentration (papain enzyme) and hydrolysis 
time. The optimum condition was evaluated by measuring dissolved protein, 
hydrolysis degree (DH), and antioxidant activity, including DPPH, ABTS, and 
FRAP. The optimal hydrolysis conditions were 5% enzyme concentration and 6 h 
of hydrolysis time at 55°C and pH 7.0. The DPPH, ABTS, and FRAP antioxidant 
activities were 50.70%, 66.67%, and 1.35 M Tr/mg, respectively. Based on the 
antioxidant activity, Snakehead fish head has the potential as a source of natural 
antioxidants.
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1. Introduction 

Antioxidants are substances that can stabilize 
free radicals by completing the unpaired electrons 
of radical molecules. These compounds have been 
widely used to improve food quality (Zahid et al., 
2018; Karpińska-Tymoszczyk and Draszanowska, 
2019; Tavdidishvili et al., 2020) and human health 
quality (Villaverde et al., 2019; Jideani et al., 2021). 
There are two main categories of antioxidants, natural, 
and synthetic. Natural antioxidants are typically more 
expensive and difficult to employ than synthetic 
antioxidants. However, synthetic antioxidants are 
reported to have toxicity potential (Mbah et al., 2019). 
The potential for toxicity is a significant concern 
that motivates some consumers to switch to natural 
antioxidants. Many natural antioxidants have been 
studied, such as plant-based (Memarpoor-Yazdi et al., 
2013; de Camargo et al., 2017; Gallego et al., 2020; 
Jideani et al., 2021) and animal-based (Karnjanapratum 
et al., 2017; Wang and Shahidi, 2018; Verma et al., 
2018), including protein hydrolysate from fish (Chi et 
al., 2015; Zhang et al., 2019). 

Fish protein hydrolysate (FPH) is a protein-
derived substance that has been hydrolyzed to produce 
amino acid and peptide components of varying molecular 
sizes. It is widely known to have bioactive peptide with 
functional properties such as antioxidants (Sohaib et 
al., 2017; Nurilmala et al., 2020; Shiao et al., 2021), 
antibacterial (Trang and Pasuwan, 2018; Atef et al., 
2021), anti-Inflammatory (Da Rocha et al., 2018), and 
antihypertensive (Abachi et al., 2019; Naik et al., 2021). 
Several proteases have been reported to be used for the 
production of FPH such as orientase, protease XXIII, 
trypsin, bromelain, papain, protamex, bovine pancreatin 
6.0, neutrase 1.5MG, and alcalase (Ren et al., 2007; 
Hsu, 2010; Šližytė et al., 2016; Yathisha et al., 2022). 
Among them, papain has been reported to produce FPH 
with good antioxidant activity (Li et al., 2011; Lu et al., 
2014; Qiu et al., 2019). Many FPH studies have been 
conducted using various materials such as cod (Šližytė 
et al., 2009), jellyfish collagen (Zhuang et al., 2009), 
Parastromateus niger by-product (Ganesh et al., 2011), 
unicorn leatherjacket (Sai-Ut et al., 2014), tilapia (Lin 
et al., 2017), catfish (Abraha et al., 2017), parrotfish 
(Prihanto et al., 2019), Pangasius sp. (Hamzah et al., 
2021), including snakehead fish (Rasimi et al., 2020). 

However, few studies have used snakehead 
fish by-products (head) as the raw material. Snakehead 
fish is one of Indonesia’s most popular freshwater fish, 
with annual production reaching 21,987 tons in 2019 
(MMAF, 2020). Along with the production, by-products 

such as heads and viscera will be left behind. Due to 
the high protein content of these by-products, they 
can be optimized as bioactive protein-based products. 
Therefore, this study investigates the viability of 
snakehead fish by-products as materials for producing 
protein hydrolysate with antioxidant activity.    

2. Materials and Methods

2.1 Materials
Materials used were protease Papain (Sigma-

Aldrich 1.5-10 units/mg), HCl (Merck), NaOH (Merck), 
1,1-diphenyl-2-picrylhydrazyl (DPPH) (Sigma-
Aldrich), Tris Pyridyl Triazine (TPTZ) (Sigma-Aldrich), 
2,2-Azinobis 3-ethyl benzothiazoline 6-sulphonic 
acid (ABTS) (Sigma-Aldrich), FeCl3.6H2O (Merck), 
follin-ciocalteu, NaK-tartrate, NaCO3, CuSO4, Bovine 
serum albumin (BSA) (Sigma-Aldrich), Trolox (Sigma-
Aldrich), ethanol, buffer acetate, and TCA 20%.

2.2 Methods
2.2.1 Sample preparation

The heads of snakehead fish were obtained from 
small and medium enterprises in Palembang, South 
Sumatra, Indonesia. Samples were washed, packed 
in a polyethylene plastic zipper bag, frozen at -20°C, 
transported in an insulated box to the laboratory, and 
stored at -20°C until used. 

2.2.2 By-products yield and proximate analysis

A live snakehead fish was bought and 
slaughtered carefully to calculate the snakehead fish by 
product yield. Fish heads and viscera were weighed and 
compared with the weight of the whole fish. Proximate 
analysis was conducted for moisture, fat, protein, and 
ash content according to AOAC (2005), while the 
carbohydrate was calculated by difference. 

2.2.3 Hydrolysis process

The hydrolysis followed method by Souissi et 
al. (2007) with modifications on enzyme concentration 
and hydrolysis time. Single factor tests with enzyme 
concentration and hydrolysis time were conducted 
to determine the optimal conditions for enzymatic 
hydrolysis. Enzyme concentrations were 1%, 2%, 3%, 
4%, 5%, and 6%, while hydrolysis times were 0, 3, 4, 5, 6, 
and 7 hours (each treatment was performed in triplicates). 
Before being used as material, snakehead fish head was 
minced and boiled at 90°C to deactivate indigenous 
protease. The optimum enzyme concentration was 
produced by mixing 30 grams of pretreated snakehead 
head with distilled water (1:1 w/v) and hydrolyzing for 
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3 hours. The temperature and pH were maintained at the 
optimum condition for papain reaction, which was 55°C 
and 7.0, respectively. The hydrolysis was stopped by 
heating at 90°C for 20 minutes, followed by supernatant 
collection by centrifugation at 14000 x g for 20 minutes. 
It was then lyophilized through freeze-drying and stored 
at -40 °C as a powder until used. After optimum enzyme 
concentration was obtained, the selected treatment was 
used afterward to optimize hydrolysis time in the same 
hydrolysis condition as mentioned before. 

2.2.4 Snakehead head protein hydrolysate evaluation

2.2.4.1 Yield

The yield was calculated as a percentage of the 
dry protein hydrolysate powder relative to the initial 
raw material following Chalamaiah et al. (2013).

                                                                       

           (1)
2.2.4.2 Degree of hydrolysis (DH)

The degree of hydrolysis was determined 
according to method done by Amin et al. (2013). 
Twenty milliliters of protein hydrolysate were mixed 
with 20 mL of TCA 20% (w/v). The mixture was kept 
for 30 minutes to precipitate, then centrifuged at 7,800 
x g for 15 minutes. The supernatant was analyzed for 
nitrogen content using the Kjeldahl method. The degree 
of hydrolysis was calculated as follows:

                         
                     
           (2)

2.2.4.3 Protein solubility

The protein solubility was performed according 
to Bradford (1976). The sample was added with Bradford 
solutions at 1:1 (500 µl each), followed by a vortex. 
The mixture was incubated for 10 min and immediately 
measured using a spectrophotometer at 𝛌 595 nm.

2.2.4.4 DPPH radical scavenging activity

The antioxidant activity of DPPH was 
determined following the method utilized by Wu et al. 
(2003). As much as 1.5 mL of sample was added with 
1.5 mL of 0.1 mM DPPH in 95% ethanol, followed 
by incubation in the dark at room temperature for 30 
minutes. The solution was then measured using a 
spectrophotometer at 𝛌 517 nm. The blank was prepared 
in the same manner by using distilled water as a sample.
                             
                                                                                   (3)

 2.2.4.5 ABTS radical scavenging activity

ABTS assay was carried out as described 
by Binsan et al. (2008). A total of 150 μl sample was 
mixed with 2850 μl of the working solution followed by 
incubation in the dark at room temperature for 2 hours. 
The working solution was pre-made by mixing two 
stock solutions, namely 7.4 mM ABTS solution and 2.6 
mM potassium persulphate solution (1:1). It was then 
kept at room temperature and in the dark for 12 hours 
to allow the reaction to occur. The absorbance was then 
measured at 𝛌 734 nm. The blank was prepared in the 
same manner by using distilled water as a sample. The 
standard Trolox curve ranging from 90 – 600 μM was 
used as the standard, and then the reducing power was 
expressed in μM   Trolox equivalents (TE) per mg dry 
sample.

            
   
           (4)

2.2.4.6 FRAP (Ferric Reducing Antioxidant Power)

The FRAP analysis was conducted based on 
Benzie and Strain (1996). A total of 150 μl of the sample 
was mixed with 2.85 mL FRAP reagent (a mixture of 10 
mM TPTZ solution in 40 mM HCL, 20 mM FeCl3.6H2O 
solution, and 300 mM acetate buffer, pH 3.6 (1:1:10 
v/v/v) which previously prepared (FRAP reagent was 
mix and at room temperature 37°C 30 minutes before 
use). The solution mixture was then kept in the dark 
place for 30 min at room temperature. The absorption 
was measured at 𝛌 595 nm with distilled water as a blank. 
The standard Trolox curve was used, and the reducing 
power was expressed in μM   Trolox equivalents (TE) per 
mg dry sample.

2.3 Statistical Analysis
The experiments were performed in a 

completely randomized design and the collected data 
were analyzed using one-way ANOVA (IBM SPSS 
Ver. 24). The significantly different data was further 
calculated with least significance different (LSD) in 
95% confidence level.

3. Results and Discussion

3.1 Rendement and Proximate Analysis of 
Snakehead Fish

Various businesses, like the fisheries sector, 
have implemented the zero-waste principle by utilizing 
by-product resources. The head and viscera of snakehead 
fish were utilized in this study as a by-product of a 
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small and medium-sized fish processing plant in South 
Sumatra, Indonesia. The snakehead fish by-products 
accounted for over 60% of the total weight. The highest 
by-product was the head (41.65%), followed by bone 
(9.45%), viscera (4.65%), and scale (2.98%). Therefore, 
the head utilization in this study contributes to utilizing 
41% of total fish or 72% of total producers. The protein 
content of the head of the snakehead fish is high and 
comparable to that of the flesh (Table 1). 

3.2 Optimization of Enzyme Concentration 

The enzyme concentration optimization 
indicated that the increase of enzyme concentration 
affects the yield, degree of hydrolysis, and soluble 
protein of the resulting snakehead fish head protein 
hydrolysate (SFHPH) (Table 2).  

The yield increased from 6.01 to 7.82% and 
peaked at 7.820.7% (P0.05) at an enzyme concentration 
of 3% before decreasing marginally. A slight decrease 
in yield showed that the maximum peptide cleavage 
process was achieved at a concentration of 3%. This 
study’s yield is lower than those reported by Noman et 

Sample Water (%) Protein (%db) Fat (%db) Ash (%db) Carbohydrate 
(%db)

Meat 70.41±0.18b 20.38±0.51c 1.66±0.08 b 1.15±0.17b 6.4±0.58b

Viscera 80.05±0.25a 5.60±0.81a 3.20±0.22c 0.75±0.04a 10.4±0.29a

Head 72.68±0.1c 14.29±0.1b 0.62±0.17a 1.58±0.16c 10.83±0.45a

 

Protein 
concentration Yield (%) Degree of hydrolysis 

(%)
Soluble protein 

(ppm)

1% 6.31±0.7a 54.10±1.8a 111.66±6.1a

2% 7.01±0.5a 77.29±1.8b 212.36±22.7b

3% 7.82±0.7b 79.25±2.0bc 583.77±45c

4% 7.36±0.1ab 82.6±0.0bc 625.52±11.4c

5% 6.12±1.2ab 83.75±4.6c 643.24±2.1c

6% 6.01±0.1a 79.8±1.7d 636.75±14.9c

al. (2019) with fish protein hydrolysate from Chinese 
Sturgeon using alcalase 0.5-4.5% and Wijayanti et 
al. (2016) with milkfish using bromelain 4-6%. This 
difference is believed to be caused by variances in the 
kind of protein in the substrate and the activity of the 
enzymes used during the hydrolysis process, which 
result in differing cleavage of peptide bonds.

The degree of hydrolysis (DH) is one of the 
crucial parameters for assigning protein hydrolysate 
functional and biological properties (Sila and Bougatef, 
2016). This study showed that the hydrolysis process 
produced DH values ranging from 54.09 to 83.75% 
(P<0.05). The DH value increased gradually, peaked 
at 5% enzyme concentration, and decreased afterward. 
According to some research, the DH value correlated 
with enzyme/substrate ratio (Ramakrishnan et al., 2013) 
but not enzyme concentration (Noman et al., 2018). It 
could be described that the availability of peptides in 
the substrate had been hydrolyzed completely at a 
maximum concentration. Therefore, increasing enzyme 
concentrations did not give any significant results. 

A significant difference (P<0.05) was observed 
in soluble protein among all the tested samples. The  

Table 1. The proximate composition of snakehead fish

*Different letters within the same column in each parameter indicate significant difference 
at P<0.05.

Results were obtained from three replicates ± standard deviation. 
*Different letters within the same column in each parameter indicate significant difference at P<0.05. 

Table 2. Effect of enzyme concentration on yield, degree of hydrolysis, and soluble protein 
of head protein hydrolysate
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protein solubility increased sharply along with the 
addition of enzyme concentration from 11166±6.1 ppm in 
1% enzyme and peaked at 5% enzyme concentration with 
643.24±2.1 ppm (0.643 mg/ml) (Table 2). These results 
 

agreed with Mutamimah et al. (2018) that increasing 
enzyme concentration could increase protein solubility 
in FPH products. During hydrolysis, insoluble protein 
will be converted into smaller components such as 
amino and peptides. 

Figure 1. Antioxidant activities of protein hydrolysate 
at various enzyme concentration (a) DPPH; (b) ABTS; 
(c) FRAP.
*Different letters in each value indicate significant 
difference at P<0.05.

Figure 2. Antioxidant activities of protein hydrolysate 
at different hydrolysis time (a) DPPH; (b) ABTS; (c) 
FRAP. 
*Different letters in each value indicate significant 
difference at P<0.05.
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The evaluation of the enzyme concentration 
on antioxidant activity by DPPH, ABTS, and FRAP on 
SFHPH suggested a strong effect (Figure 1). The radical 
scavenging activity of DPPH is widely used to evaluate 
the efficacy of antioxidant compounds quantitatively as 
hydrogen donors or free radical scavengers (Verma et 
al., 2017). The present study showed that antioxidant 
activity of SFHPH based on DPPH increased following 
the increase in enzyme concentration (P<0.05) (Figure 
1a) in the range of 40.32±0.8%-49.10±3.5% (percent 
inhibition) with Trolox equivalent of 3.32-13 μM Tr/
mg. These findings are similar to the previous study by 
Puspawati et al. (2020), who reported that the radical 
inhibitory activity of DPPH increased with increasing 
enzyme concentration. Baehaki et al. (2015) investigated 
the catfish FPH using papain was effective in breaking 
peptides where a concentration of 1-6% produced four 
protein bands with molecular weights of 42.62 kDa, 
31.46 kDa, 27.85 kDa, and 11.90 kDa. Smaller molecule 
weights can impede the oxidative process (Ranathunga 
et al., 2006).

The antioxidant capacity of ABTS was between 
31.04±2.3%-57.54±3.4% with Trolox equivalent of 
2.10-7.7 M Tr/mg (P<0.05) (Figure 1b). A previous 
study by Guo et al. (2019) using 0.2% enzyme 
concentration produced lower results (148 μM Tr/g) 
than this study. According to Verma et al. (2017) amino 
acid composition, amino acid sequences, and DH value 
could affect antioxidant activity (Phanturat et al., 2010).

Hydrolysis time Yield (%) Degree of hydrolysis (%) Soluble protein (ppm)

0 4.86±0.7a 89±2.1a 415.2±61.4a

3 6.17±0.2ab 95.13±95.1b 454.9±115.9a

4 6.62±1.0b 95.38±95.3b 533.1±64.7ab

5 5.4±1.6ab 95.97±95.9b 488.3±49.2ab

6 5.59±0.8ab 93.34±93.3ab 672±51.3c

7 5.22±0.6ab 91.62±91.6ab 597.1±99.1bc

Results were obtained from three replicates ± standard deviation. 
*Different letters within the same column in each 
property indicate significant difference at P<0.05. 

The antioxidant activity in protein hydrolysate 
of SFHPH was also determined using FRAP assay. 
SFHPH has an antioxidant capacity ranging between 
0.396 and 0.706 M Tr/mg (Figure 1c). The antioxidant 
capacity of SFHPH was substantially lower than 
protein hydrolysate from tilapia skin using bromelain, 
which reported an antioxidant capacity of 2,840 mM 
Tr/mg (Choonpicharn et al. 2014). These results 
demonstrate that utilizing different enzymes could 
impact the hydrolysate product’s scavenging capacity. 
The amino acid sequences in the peptides may also 
impact this distinct antioxidant effect (Ovissipour et al., 
2012). Proteolytic enzymes break proteins into smaller 
fractions during hydrolysis (Belkaaloul et al., 2010). 
Peptides with a molecular weight of less than 100 kDa 
and a composition of 3 to 10 amino acids are known to 
have beneficial effects on the human body (Prastari et 
al., 2017). Pan et al. (2010) stated that peptides with 
small molecular weights could be easily absorbed by the 
body and bind to free radicals more easily than peptides 
with larger molecular weights. 

Based on a statistical analysis of DH and 
antioxidant activities, 5% enzyme concentration was 
then used to optimize the hydrolysis time. The same 
evaluation parameters were conducted: yield, soluble 
protein, degree of hydrolysis (DH), and antioxidant 
activity (DPPH, ABTS, and FRAP).

3.3 Optimization of Hydrolysis Time

Table 3. Effect of hydrolysis time on yield, degree of hydrolysis, and soluble protein of Snakehead fish
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3.3.1 Yield 

In the stage 2, hydrolysis was conducted with 
5% papain enzyme concentration with the highest yield 
of 6.62±1.0% (P<0.05) was achieved at 4 h hydrolysis 
time (Table 3). Based on the data presented in the table 
above, increasing hydrolysis time by more than four 
hours did not significantly increase yield.

3.4 Degree of Hydrolysis (DH)
The degree of hydrolysis (DH) of SFHPH were 

89-95.97% at 0-6 hours of hydrolysis, respectively. The 
DH value was significant (P<0.05) until hydrolysis at 3 
hours. After that, there was no statistically significant 
increase at 4-7 hours. Verma et al. (2017) showed a 
tendency similar to these results that there was no 
significant difference when increasing hydrolysis 
time for 6 hours. It probably occurred due to the rapid 
initial rate of enzymatic reactions, which slowed with 
increasing hydrolysis time and lowering the enzyme-to-
substrate concentration ratio.

Klomklao and Benjakul (2016) investigated the 
degree of hydrolysis in protein hydrolysate from skipjack 
tuna viscera. They observed that the hydrolysis reaction 
rate was rapid for the first 20 minutes, then slowed 
and reached a stationary phase. According to Souissi 
et al. (2007), many peptide bonds were hydrolyzed in 
the initial hydrolysis phase and occurred very quickly. 
While the hydrolysis rate decreased, the enzymatic 
reaction reached a steady state. Interestingly, in this 
study, the DH is higher than that found by Prihanto et 
al. (2019) using Parrotfish heads at 30.65% and 49.74% 
using Anchovy sprats (Ovissipour et al., 2012).

3.5 Soluble Protein
The protein solubility of SFHPH ranges from 

415-672 ppm (Table 3). A significant difference in 
soluble protein among all the tested samples was 
observed when increasing hydrolysis time (P<0.05). It 
might explain hydrolysis’s long duration and reflects 
the greater number of peptides and amino acids formed. 
Based on Haslaniza et al. (2010) that increasing enzyme 
concentration and hydrolysis time caused an increase in 
dissolved nitrogen content in fish protein hydrolysate.

3.6 DPPH (Radical Scavenging Activity)
The scavenging capacity of SFHPH increases 

linearly with the increase of hydrolysis time (Figure 2a). 
The investigation suggested that the antioxidant activity 
reached a maximum value of 53.50±1.2% with Trolox 
equivalent to 12.90 μM Tr/mg at 7 hours of hydrolysis. 
The statistical analysis showed a significant difference 

between 0, 3, 4, and 5 hours (P<0.05). However, there 
was no significant difference showed for 6  and 7 hours 
of hydrolysis time. These probably due to the presence of 
bioactive peptides that act as electron donors in SFHPH 
so that it could react with free radicals to convert them 
into a more stable final product. The antioxidant activity 
in these studies was slightly higher than snakehead fish 
skin which was investigated by Baehaki et al. (2020) 
and Sampath et al. (2011) using horse mackerel fish 
skin with an antioxidant capacity of 20.7% and 49.8-
57.8%, respectively. However, the equivalent Trolox is 
smaller (94.96 μM Tr/mg) than Mirzaei et al. (2016). 
This fact could be due to the difference in peptide size 
and amino acid composition, Halim et al. (2016) stated 
that the amount of hydrophobic amino acids (valine, 
isoleucine, phenylalanine, and methionine) might 
increase during the hydrolysis process, where these 
components could contribute to the antioxidant activity 
of protein hydrolysates.

3.7 ABTS Radical Scavenging Activity
SFHPH exhibited ABTS scavenging activity 

ranging from 33.60-70.34%, with a Trolox equivalent 
of 2.67 to 10.52 M Tr/mg. ABTS scavenging activity 
increases rapidly from 0 to 5 hours of hydrolysis time 
and then remains constant until 7 hours (Figure 2b). 
According to Le Vo et al. (2016), the antioxidant 
activity of protein hydrolysate is dependent on the size 
and composition of free amino acids; the longer the 
hydrolysis time, the freer amino acids were obtained. The 
hydrophobic amino acids that form during hydrolyses, 
such as Proline, Leucine, Alanine, Tryptophane, and 
Phenylalanine can increase antioxidant activity, in 
addition to Tyrosine, Methionine, Histidine, and Lysine, 
which have antioxidants activity.

According to Ovissipour et al. (2012), all 
protein hydrolysates contain peptides that can bind to 
free radicals to donate hydrogen atoms, stabilizing the 
product and terminating the radical reaction. Alemán 
et al. (2011) also stated that one of the crucial roles in 
antioxidant properties is the presence of different amino 
acids in peptides. Hydrophobic amino acid peptides 
are also expected to inhibit lipid peroxidation and act 
as metal ions and proton donor chelators to peroxyl 
radicals.

3.8 FRAP (Ferric Reducing Antioxidant Power)
The FRAP antioxidant assay is frequently 

used to assess antioxidants’ ability to transfer electrons 
(Yildirim et al., 2000). A high absorbance value 
indicates a high reducing power capability. FRAP 
activity varied significantly (P<0.05) proportional to the 
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