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Abstract 
Antimicrobial agents are crucial for managing bacterial infections in fish 
cultures. Centella asiatica is a medicinal plant recognised for its diverse bioactive 
compounds with important antibacterial properties. The present study aimed to 
investigate the antibacterial activity of C. asiatica leaves bioactive compounds on 
fish pathogenic bacteria using an In vitro and In silico approach. The maceration 
method was used to extract bioactive compounds from C. asiatica leaves and 
was identified using Gas Chromatography-Mass Spectrometry (GC-MS). In vitro 
analysis of antibacterial activity was evaluated using the minimum inhibitory 
concentration method. While In silico molecular docking is applied alongside 
assessing Lipinski’s rules of five, as well as absorption, distribution, metabolism, 
excretion, and toxicity properties. The result of the GC-MS examination of the 
C. asiatica leaf extracts identified 53 bioactive compounds. In vitro studies 
showed antibacterial efficacy of leaf extracts against fish pathogenic bacteria 
(Streptococcus agalactiae, Bacillus subtilis, and Staphylococcus aureus) with 
minimum inhibitory concentration values of 12,5 mg/ml. In silico molecular 
docking analysis showed that several bioactive compounds have the potential 
to be DNA gyrase inhibitors. Compound 13-Hexyloxacyclotridec-10-en-2-one 
has the highest inhibition with binding energy of −7,4 Kcal/mol compared to 
ciprofloxacin as drug standard with a binding energy value −7,3 Kcal/mol. The 
following compound is gamma.-Muurolene (−6,7 Kcal/mol), Copaene (−6,6 
Kcal/mol) and Humulene (−6,6 Kcal/mol). These results suggest that bioactive 
compounds of C. asiatica leaves extracts hold promise as potential antibacterial 
agents for treating fish pathogenic bacteria infections.
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1. Introduction
Pathogenic bacteria increasingly impact 

fish culture, as higher population densities can ex-
acerbate disease outbreaks. Effective antimicrobial 
agents are essential for addressing bacterial infec-
tions in fish culture frameworks. Recent studies 
show that traditional medicinal plant extracts, par-
ticularly Centella asiatica, may help manage bac-
terial pathogens in aquaculture (Si et al., 2023; 
Jenitha, 2023).

 Centella asiatica, also known as Pegagan in 
Indonesia, is a notable medicinal plant known for its 
many bioactive components demonstrating remark-
able antibacterial activities. This distinctive herb, 
part of the Apiaceae family, has been traditionally 
utilized in several civilizations, especially in Asia, 
to treat numerous diseases. The medicinal effective-
ness of C. asiatica is largely attributed to its wide 
range of bioactive substances, notably terpenoids, 
saponins, flavonoids, tannins, alkaloid, and ste-
roids, which play a significant role in enhancing its 
bioactivity, particularly its antibacterial properties 
(Liu et al., 2020; Magaña et al., 2020; Yusof et al., 
2020; Akkol et al., 2021; Mohapatra et al., 2021). 
This plant contains several important triterpenes, 
including asiaticoside, madecassoside, asiatic acid, 
and madecassic acid, all of which have recognized 
health benefits, especially their antibacterial effects 
(Sun et al., 2020; Tripathy et al., 2022; Wei et al., 
2023; Wang et al., 2024b). 

Previous studies reported strong antibacte-
rial effects of C. asiatica extracts against common 
fish pathogens like Vibrio harveyi and Aeromonas 
hydrophila, which cause significant economic loss-
es in aquaculture (Rukisah et al., 2019). Leaf ex-
tracts and endophytic fungi associated with C. 
asiatica have been shown strong antimicrobial ac-
tivity in aquaculture and can suppress the growth 
of fish and shellfish pathogenic bacteria (Shankar 
and Sathiavelu, 2024). Centella asiatica extracts 
are beneficial not only for pathogen control but also 
for improving biosecurity in aquaculture systems. 
This will reduce the use of conventional antibiotics, 
leading to increased antimicrobial resistance (Bon-
dad-Reantaso et al., 2023). Streptococcus agalacti-
ae, Bacillus subtilis, and Staphylococcus aureus are 
aquatic bacterial pathogens that significantly impact 
the ecosystem. These pathogens can be found in a 
variety of fish species and shrimp. They persist in 
both freshwater and marine ecosystems, potentially 
leading to infection outbreaks (Wang et al., 2020; 
Zelellw et al., 2021; Chen et al., 2023).

The present study focused on investigation 

of the antimicrobial activity of C. asiatica leaves 
bioactive compounds on pathogenic bacteria by in 
vitro and in silico approach. This study offers a nov-
el approach to address antibiotic resistance in fish 
pathogenic bacteria, including S. agalactiae, S. au-
reus and B. subtilis. The use of in silico methods 
to assess the affinity of these compounds for DNA 
gyrase offers important insights into their potential 
as antimicrobial agents. This study investigates an-
tibacterial activity by in vitro and continued with 
molecular docking of bioactive compounds from C. 
asiatica, as potential inhibitors of DNA gyrase in 
pathogenic bacteria which is still rarely practiced 
today, and only a few data have been published.

2. Materials and Methods
2.1 Materials

2.1.1 The equipments

The main equipment and tools used in this 
research included: vacuum rotary evaporator (Bu-
chi, Swiss), spectrophotometer (Thermoscientific, 
USA), bacterial incubator (Memmert, Germany), 
micropipettes (Eppendorf, Germany), microtips 
(Axygen, USA), microtubes (Axygen, USA), labo-
ratory glassware (Pyrex, USA), Separating funnel 
(Schott Duran, Germany), Petridish (SPL Life Sci-
ences, South Korea), and 96well plate (Biologix, 
USA).

2.1.2 The materials

The plant material from Centella asiatica 
was obtained in Tegal Waru, Ciampea, Bogor Regen-
cy, West Java, Indonesia (6°34′19″S 106°41′58″E). 
The leaves used in the study were old leaves. Other 
materials used in this study were distilled water, eth-
anol (Merck, USA), n-hexane (Merck, USA), tryptic 
soy agar (Merck, USA), mueller hinton broth (MHB) 
(Himedia, India), NaCl (Oxoid, United Kingdom), 
and Phosphat Buffer Saline (Himedia, India).

2.1.3 Ethical approval

Ethical approval was not required for this 
study as no experimental animals were involved.

2.2 Methods

2.2.1 Identification of bioactive compounds

The extraction procedure involved submerg-
ing 300 g of dried plant material in 1500 mL of a 70% 
ethanol solution.  The precipitate was then separat-
ed from the filtrate. The filtrate was further concen-
trated with a rotary evaporator set at a temperature 
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mg/mL in MHB medium. A 96-microwell plate was 
utilized, where test tubes were filled with 160 µL 
of MHB. Subsequently, 20 µL of crude extracts and 
fraction solutions at varying concentrations were 
added, followed by inoculation with 60 µL of bacte-
rial isolates at a density of 108 cfu/mL. The mixture 
was then incubated for 24 hours. The concentration 
of crude extracts that most effectively inhibits the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
growth of selected bacteria is indicated by the pre-
cise visual assessment of the turbidity of the test 
tube. Bacterial growth was observed visually, and 
the MIC value was established as the lowest concen-
tration capable of halting bacterial growth, marked 
by a transition in color from yellow to pink. In the 
MIC test, Oxytetracycline antibiotic was used as the 
control.

2.2.3 In silico analysis

The PubChem database was used to obtain 
the details of the bioactive compounds, including 
their Lipinski’s rules of five (Ro5) and ADME/T 
(Absorption, Distribution, Metabolism, Excretion, 

between 40-45ºC until a concentrated extract was 
obtained (Biradar and Rachetti, 2013). The GC-MS 
method was employed for the qualitative and quan-
titative characterization of C. asiatica leaves extract 
(Magaña et al., 2020). Bioactive compound charac-
terization was conducted in the Integrated Advanced 
Chemistry Laboratory, Serpong-BRIN, using Gas 
Chromatography-Mass Spectrometry (GC-MS).

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2.2.2 In vitro analysis

Pathogenic bacterial isolates Bacillus sub-
tilis (Inacc B1210) and Staphylococcus aureus (In-
acc B4) were obtained from the Indonesian Culture 
Collection Laboratory (InaCC), Cibinong, BRIN. 
Meanwhile, Streptococcus agalactiae was isolated 
from infected fish. In vitro crude extracts antibac-
terial activity was evaluated using modified mini-
mum inhibitory concentration (MIC) methods. The 
MIC was determined using the serial two-fold dilu-
tion method (Choudhury et al., 2024). Experiments 
involved preparing a solution of crude extracts (50 
mg) at concentrations of 50, 25, 12.5, 6.25, 3.125, 
1.563, 0.781, 0.390, 0.195, 0.098, 0.049, and 0.024 
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Figure 1. The minimum inhibitory concentration assay. A. Agar well diffusion; B. S. agalacti-
ae isolate; C. B. substilis isolate; D. S. aureus isolate.
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Figure 2. 3D and 2D interactions of four potential ligands and ciprofloxacin at the DNA gyrase site resi-
dues during molecular docking. A. 13-Hexyloxacyclotridec-10-en-2-one; B. γ-muurolene; C. copaene; D. 
humulene; E. ciprofloxacin.

and Toxicity) properties. In silico method applying 
molecular docking, alongside the assessment of Ro5 
and ADME/T properties. By analyzing the chemical 
properties of compounds, Lipinski’s Ro5 serves as a 
method to predict their oral bioavailability. Lipins-
ki’s criteria suggest that a compound is more like-
ly to be an effective oral drug if it possesses the 
following characteristics: (1) a molecular weight 
(MW) not exceeding 500 Da, (2) a partition coeffi-
cient (logP) less than or equal to 5, (3) no more than 
5 hydrogen bond donors (HBD), and (4) no more 
than 10 hydrogen bond acceptors (HBA) (Frau et al., 
2018; Kumari and Kumar, 2023). The median lethal 
dosage (LD50) values were determined through an 
assessment of the toxicity class utilizing ProTox-II.

The in silico analysis material used three-di-
mensional structures of all ligands of bioactive 
compounds derived in .sdf file format from the rep-
utable National Center for Biotechnology Informa-

tion (NCBI) PubChem database (https://pubchem.
ncbi.nlm.nih.gov/). At CB-Dock (https://cadd.lab-
share.cn/cb-dock2/index.php), molecular docking 
studies were conducted. This involved identifying 
binding sites, assessing their dimensions and cen-
tral coordinates, and adjusting the docking box size 
based on the ligands in the query. AutoDock Vina 
performed molecular docking based on three-di-
mensional structures of specific proteins and ana-
lyzed the mechanisms of action of bioactive com-
pounds (Eberhardt et al., 2021; Xu et al., 2021). The 
proteins analyzed comprised DNA gyrase from S. 
aureus (PDB ID: 6tck). We assessed the typical in-
hibitor orientation in crystal structures. The highly 
credible Protein Data Bank was referenced for the 
protein X-ray structures. Binding postures and in-
teraction diagrams were generated using BIOVIA 
Discovery Studio Visualizer 24.1.0.0 (https://ww-
w.3ds.com/products/biovia/discovery-studio/visual-
ization). 
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No. Compound Name Area % MW HBA HBD TPSA Log P 
(iLogP) LD50

Toxicity 
Class

Terpenes

1 Copaene 1.31 204.35 0 0 0 3.40 3700 5

2 Caryophyllene 0.78 204.35 0 0 0 3.40 5300 5

3 cis-.beta.-Farnesene 0.65 204.35 0 0 0 3.86 5000 5

4 Humulene 0.52 204.35 0 0 0 3.29 3650 5

5
(1R,9R,E)-4,11,11-Trimeth-
yl-8-methylenebicyclo[7.2.0]
undec-4-ene

0.60 204.35 0 0 0 3.18 5300 5

6 .gamma.-Muurolene 0.49 204.35 0 0 0 3.39 4400 5

7 Caryophyllene oxide 1.68 220.35 1 0 12.53 3.15 5000 5

8 2-Pentadecanone, 
6,10,14-trimethyl- 2.07 268.48 1 0 17.07 4.39 5000 5

9 Phytol 1.62 296.53 1 1 20.23 4.85 5000 5

Fatty Acids

10 Heptanal 1.21 114.19 1 0 17.07 2.01 5000 5

11 Hexanoic acid 0.71 116.16 2 1 37.3 1.57 93 3

12 Heptanoic acid 0.73 130.18 2 1 37.3 1.79 900 4

13 Hexadecanoic acid, methyl 
ester 1.86 270.45 2 0 26.3 4.41 5000 5

14 n-Hexadecanoic acid 16.97 256.42 2 1 37.3 3.85 900 4

15 Ethyl 9-tetradecenoate 0.35 254.41 2 0 26.3 4.31 5000 5

16 Hexadecanoic acid, ethyl 
ester 9.59 284.48 2 0 26.3 4.65 5000 5

17 9,12-Octadecadienoic acid, 
methyl ester 0.82 294.47 2 0 26.3 0 20000 6

Table 1. Bioactive compounds identified in the leaves extract of Centella asiatica and their Lipinski prop-
erties
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No. Compound Name Area % MW HBA HBD TPSA Log P 
(iLogP) LD50

Toxicity 
Class

18 9-Octadecenoic acid (Z)-, 
methyl ester 1.42 296.49 2 0 26.3 4.63 3000 5

19 9,12-Octadecadienoic acid 
(Z,Z)- 4.95 280.45 2 1 37.3 0 10000 6

20 9,12,15-Octadecatrienoic 
acid, (Z,Z,Z)- 9.35 278.43 2 1 37.3 0 10000 6

21 Linoleic acid ethyl ester 4.21 308.5 2 0 26.3 0 20000 6

22 9,12,15-Octadecatrienoic 
acid, ethyl ester, (Z,Z,Z)- 4.78 306.48 2 0 26.3 0 20000 6

Ricinoleic Acids

23 Ricinoleic acid 2.60 298.46 3 2 57.53 3.86 11800 2

24 9-Octadecenoic acid, 12-hy-
droxy-, methyl ester, [R-(Z)]- 0.70 312.49 3 1 46.53 4.41 3000 5

Acyclic Acids

25 2-Propenamide 0.65 71.08 1 1 43.09 0.68 107 3

Ketones

26 13-Hexyloxacyclotri-
dec-10-en-2-one 1.76 280.45 2 0 26.3 4.03 34900 6

Amines

27
Benzyl alcohol, p-hydroxy-.
alpha.-[(methylamino)meth-
yl]-

0.68 167.2 3 3 52.49 1.52 4450 5

Nitrosamines

28 Ethanamine, N-ethyl-N-ni-
troso- 0.56 102.14 2 0 32.67 1.99 200 3

Pyrones

29 4H-Pyran-4-one, 2,3-dihy-
dro-3,5-dihydroxy-6-methyl- 0.64 144.12 4 2 66.76 1.19 595 4
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No. Compound Name Area % MW HBA HBD TPSA Log P 
(iLogP) LD50

Toxicity 
Class

Lactones

30
2(4H)-Benzofura-
none, 5,6,7,7a-tetrahy-
dro-4,4,7a-trimethyl-

0.69 180.24 2 0 26.3 2.29 34 2

Alkenes

31 Neophytadiene 1.62 278.52 0 0 0 5.05 5050 6

Benzofurans

32 Loliolide 0.77 196.24 3 1 46.53 2.01 34 2

Aldehydes

33 Benzeneacetaldehyde 1.43 120.15 1 0 17.07 1.33 1550 4

Carbohydrates

34 Erythritol 0.94 122.12 4 4 80.92 0.94 23000 6

Monosaccharide

35 dl-Threitol 0.65 122.12 4 4 80.92 0.61 23000 6

Epoxide

36
(1R,3E,7E,11R)-1,5,5,8-Te-
tramethyl-12-oxabicyc-
lo[9.1.0]dodeca-3,7-diene

1.22 220.35 1 0 12.53 3.18 5000 5

Others

37 .alpha.-D-Mannopyranoside, 
methyl 3,6-anhydro- 0.32 176.17 5 2 68.15 0 648 3

38 Acetic acid, hydroxy-, ethyl 
ester 1.97 104.1 3 1 46.53 1.36 2000 4

39 Oxime-, methoxy-phenyl-_ 2.95 151.16 3 1 41.82 1.69 2000 4

40 Tetraacetyl-d-xylonic nitrile 0.32 343.29 10 0 146.06 1.86 7000 6
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No. Compound Name Area % MW HBA HBD TPSA Log P 
(iLogP) LD50

Toxicity 
Class

41 2,4-Hexanedione, 5,5-dimeth-
yl-1-phenyl- 0.73 218.29 2 0 34.14 2.34 4000 5

42 .beta.-Alanine, TMS deriva-
tive 2.49 161.27 3 1 52.32 2.1 2280 5

43 Hydrazinecarboximidothioic 
acid, ethyl ester 0.78 119.19 1 2 89.7 0.76 815 4

44
11,11-Dimethyl-4,8-dimeth-
ylenebicyclo[7.2.0]unde-
can-3-ol

1.54 220.35 1 1 20.23 3.04 3900 5

45 2-Propenoic acid, pentadecyl 
ester 1.06 282.5 2 0 26.3 4.89 5000 5

46
.alpha.-Methyl-3,4-(methy-
lenedioxy) phenethylamine 
hydrochloride

0.91 215.68 3 1 44.48 0 13 2

47 Oxazepam, 2TMS derivative 0.42 431.08 3 0 41.9 4.18 1148 4

48 Decane, 3,8-dimethyl- 0.97 170.33 0 0 0 3.59 750 3

49 1-Octadecanesulphonyl chlo-
ride 1.42 353 2 0 42.52 4.84 2100 5

50

2-(2’,4’,4’,6’,6’,8’,8’-Hep-
tamethyltetrasiloxan- 2’-ylox
y)-2,4,4,6,6,8,8,10,10-nonam
ethylcyclopentasiloxane

0.35 653.32 10 0 92.3 6.33 1540 4

51 Palmitic Acid, TMS deriva-
tive 0.82 328.61 2 0 26.3 5.33 2280 4

52 Hexasiloxane, tetradecameth-
yl- 0.60 458.99 5 0 46.15 5.76 1540 4

53 Octadecanoic acid, 2-methyl-, 
methyl ester 0.89 312.53 2 0 26.3 5.38 5000 5

Description: MW (molecular weight-g/mol), HBA (hydrogen bond acceptors), HBD (hydrogen bond do-
nors), TPSA (topological polar surface area), LD50 (lethal dose-mg/kg).
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No. Compound Name Compound ID

DNA Gyrase

Binding Energy Cavity Volume

1 13-Hexyloxacyclotridec-10-en-2-one 6536948 −7.4 560

2 .gamma.-Muurolene 6432308 −6.7 384

3 Copaene 12303902 −6.6 560

4 Humulene 5281520 −6.6 560

5 Caryophyllene 5281515 −6.5 384

6 9,12,15-Octadecatrienoic acid, ethyl ester, (Z,Z,Z)- 5367460 −6.4 560

7 2,4-Hexanedione, 5,5-dimethyl-1-phenyl- 581252 −6.3 384

8 cis-.beta.-Farnesene 5317319 −6.2 384

9 1-Octadecanesulphonyl chloride 66281 −6.1 560

10 Phytol 5280435 −6.1 560

11 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- 5280934 −6.1 560

12 (1R,9R,E)-4,11,11-Trimethyl-8-methylenebicyc-
lo[7.2.0]undec-4-ene 6429274 −6.0 384

13 Caryophyllene oxide 1742210 −5.9 560

14 Benzyl alcohol, p-hydroxy-.alpha.-[(methylamino)
methyl]- 7172 −5.9 560

15 (1R,3E,7E,11R)-1,5,5,8-Tetramethyl-12-oxabicyc-
lo[9.1.0]dodeca-3,7-diene 10704181 −5.7 560

16 9,12-Octadecadienoic acid, methyl ester 5284421 −5.7 560

Table 2. Molecular docking results analysis of potential bioactive compounds identified from C. asiat-
ica and ciprofloxacin (drug standard) against DNA Gyrase (PDB id: 6tck)
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No. Compound Name Compound ID

DNA Gyrase

Binding Energy Cavity Volume

17 2-Pentadecanone, 6,10,14-trimethyl- 10408 −5.6 560

18 9,12-Octadecadienoic acid (Z,Z)- 5280450 −5.6 384

19 Oxime-, methoxy-phenyl-_ 9602988 −5.5 384

20 Hexadecanoic acid, ethyl ester 12366 −5.5 384

21 9-Octadecenoic acid, 12-hydroxy-, methyl ester, 
[R-(Z)]- 5354133 −5.4 560

22 Ethyl 9-tetradecenoate 12054546 −5.3 560

23 2-Propenoic acid, pentadecyl ester 543579 −5.2 560

24 Hexadecanoic acid, methyl ester 8181 −5.1 560

25 Linoleic acid ethyl ester 5282184 −5.0 384

26 9-Octadecenoic acid (Z)-, methyl ester 5364509 −4.9 384

27 Erythritol 222285 −4.4 560

28 dl-Threitol 8998 −4.4 384

29 Heptanal 8130 −4.3 560

30 Acetic acid, hydroxy-, ethyl ester 12184 −4.1 560

31 .beta.-Alanine, TMS derivative 554627 −4.0 560

  Ciprofloxacin (drug standard) −7.3 560
 
3. Results and Discussion
3.1 Results

3.1.1 Gas chromatography analysis

The GC-MS results of the C. asiatica leaves ex-
tracts yielded 53 bioactive compounds (Table 1). 
The compounds of C. asiatica leaves extract include 
terpenes, fatty acids, ricinoleic acids, acyclic acids, 
ketones, amines, nitrosamines, pyrones, lactones, 

alkenes, benzofurans, aldehydes, carbohydrates, 
monosaccharides, epoxides, and various other com-
ponent classes. 

3.1.2 Antibacterial activity of C. asiatica

	 In vitro analysis shows that the mini-
mum inhibitory concentration is the lowest con-
centration of antimicrobial agents capable of in-
hibiting the growth of harmful microorganisms. 
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The MIC of crude extract was evaluated using the 
agar well diffusion assay (Figure 1). The MIC val-
ues of C. asiatica leaves extracts against S. agalacti-
ae, B. subtilis, and S. aureus were 12.5 mg/mL. The 
results showed a positive antibacterial effect of C. 
asiatica extract against Gram-positive bacteria.

In silico Ro5 and ADME/T analysis identi-
fied 31 potential drug-candidate compounds with 
antibacterial properties (Table 2). The 31 active 
compounds derived from the leaves extract of C. 
asiatica demonstrated molecular weights between 
104.1 Da and 353 Da. The toxicity assessment of 
31 compounds indicated an LD50 toxicity range of 
2,000 to 34,900 mg/kg. 

Figure 2 illustrates the comparison of bind-
ing patterns and molecular interactions of the eval-
uated compounds with the highest binding energies 
against the drug standard ciprofloxacin, recognized 
as a DNA gyrase inhibitor. The four highest-ranking 
ligands for DNA Gyrase, determined by Vina score, 
are 13-Hexyloxacyclotridec-10-en-2-one (−7.4 kcal/
mol), γ-Muurolene (−6.7 kcal/mol), Copaene (−6.6 
kcal/mol), and Humulene (−6.6 kcal/mol). 

3.2 Discussion

3.2.1 Gas chromatography identification

GC-MS analysis of C. asiatica leaves ex-
tract in accordance with previous studies by Micheli 
et al. (2022), Jenitha (2023), and Taleghani et al. 
(2024) found the metabolites of C. asiatica, which 
include triterpenoids, phenolics, flavonoids, phenyl-
propanoids, acyclic acids, ketones, and amines. The 
findings align with those of Yang et al. (2023), Pillai 
et al. (2024), and Rafi et al. (2024), which indicate 
that C. asiatica comprises numerous bioactive com-
ponents, such as terpenoids, flavonoids, saponins, 
tannins, amino acids, fatty acids, alkaloids, steroids, 
and and other categories. According to Sieberi et al. 
(2020) and Taghizadeh and Jalili (2024) that C. asi-
atica bioactive compounds, especially triterpenoids, 
flavonoids, and phenolic compounds, play an im-
portant role as antibacterial agents. Likewise, Pham 
et al. (2020) and Menon et al. (2023) mentioned that 
the antibacterial properties of phytochemical com-
pounds contained in C. asiatica are applied to a va-
riety of pathogenic microbial organisms.

3.2.2 In vitro and in silico antibacterial activity

The antibacterial activity of C. asiatica 
leaves extracts against three pathogenic bacteria (S. 
agalactiae, B. subtilis, and S. aureus) was deter-
mined. In the antibacterial activity, the extract con-

centration is significant in preventing the growth of 
pathogenic bacteria. The MIC values against S. aga-
lactiae, B. subtilis and S. aureus were 12.5 mg/mL. 
The results are in accordance with those reported by 
Zhang et al. (2020), Qurrotuaini et al. (2022), and 
Kathirvel et al. (2025), C. asiatica leaves extracts 
exhibit activity against Acinetobacter calcoaceti-
cus anitratus, Bacillus cereus, Enterococcus avium, 
Klebsiella pneumoniae, Proteus mirabilis, Pseudo-
monas aeruginosa, Salmonella typhi, Staphylococ-
cus aureus, and Streptococcus agalactiae with a 
MIC ranging from 1.25 to 25 mg/mL.

The results indicate that C. asiatica has 
a significant inhibitory effect on the growth of 
Gram-positive bacteria within 24 hours. Sieberi et 
al. (2020) reported that ethanol and Dichloro meth-
ane (DCM) extracts of C. asiatica inhibit the growth 
of Gram-positive and Gram-negative bacteria. 
While Menon et al. (2023) suggested that in vitro 
studies have also shown a significant reduction in 
the number of colonies of pathogenic bacteria after 
treatment with C. asiatica extract. 

The antibacterial mechanism of bioactive 
compounds in C. asiatica functions synergistically 
within bacterial cells by inhibiting nucleic acid syn-
thesis, which is thought to involve the loss of bac-
terial membrane integrity. This results in increased 
permeability and subsequent cell death and influ-
ences the bacterial metabolic system (Wong and 
Ramli, 2021; Maitra et al., 2022; Qurrotuaini et al., 
2022; Wei et al., 2023). Another study found that the 
antibacterial mechanism is related to the inhibition 
of quorum-sensing activity that prevents communi-
cation between bacteria in biofilm formation as well 
as in increased pathogenicity (Sieberi et al., 2020; 
Taghizadeh and Jalili, 2024).

The results of the in silico analysis showed 
that 31 bioactive compounds passed the Lipins-
ki Ro5 and ADME/T test. Zafar et al. (2020) and 
Nguyen et al. (2023) reported that Lipinski Ro5 
indicate that a molecular weight of under 500 Da 
implies potential for cellular membrane penetration. 
Both compounds exhibited HBA, HBD, and iLog P 
values of less than 10, less than 5, and less than 5, 
respectively, while the TPSA value was less than or 
equal to 140 Å. LD50 value indicates reduced chemi-
cal toxicity to the tested organism. Determining tox-
icity levels using computer-based tools such as Pro-
Tox-II and Swiss ADME in molecular docking can 
facilitate the classification of bioactive compounds 
based on their toxicity in accordance with standard 
drug criteria (Lane et al., 2023; Li et al., 2024; Gha-
nem et al., 2024). Abishad et al. (2021) and Wu et al. 
(2021) suggested that enhancing the safety of these 
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drugs prior to market introduction requires a focus 
on ADME and toxicity-related factors. The SWISS 
ADME online program was employed to assess the 
drug-likeness of phytocompounds. The molecular 
factors associated with rule violations and the ac-
quisition of bioactive compounds are detailed in the 
table of Lipinski parameters.

The results of in vitro studies demonstrated 
the antibacterial potential of C. asiatica leaves ex-
tracts, so further in silico evaluations were carried 
out to identify the compounds that could significant-
ly inhibit DNA gyrase, a critical enzyme in bacterial 
cell development. In the docking investigations of 
the DNA gyrase binding site, 13-Hexyloxacyclotri-
dec-10-en-2-one had the greatest binding energy of 
−7.4 kcal/mol surpassing drug standard ciproflox-
acin with binding energy −7.3 kcal/mol. Based on 
previous research, Selvarajan et al. (2023) report-
ed that 13−Hexyloxacyclotridec−10−en−2−one ex-
hibits wide antibacterial activity against numerous 
pathogenic bacteria. Singh et al. (2023) also stated 
that 13−Hexyloxacyclotridec−10−en−2−one effi-
ciently suppresses the development of bacteria such 
as Staphylococcus aureus and Escherichia coli. As 
a broad-spectrum antibiotic in the fluoroquinolone 
group, ciprofloxacin is widely utilized to treat a 
range of bacterial infections, including those caused 
by both Gram-positive and Gram-negative bacteria. 
Research reveals that ciprofloxacin exerts its bac-
tericidal action by binding to the bacterial enzymes 
DNA gyrase and topoisomerase IV, which prevents 
DNA replication from occurring (Hussein et al., 
2022; Grigor’eva et al., 2023). Furthermore, the ap-
proach illustrated how C. asiatica demonstrates its 
antibacterial activity by disrupting bacterial DNA 
processing. The bioactive compounds of C. asiatica 
can elicit apoptosis through mechanisms involving 
DNA synthesis (Jenitha, 2023). This observation un-
derscores a crucial connection to the role of DNA 
gyrase, a crucial enzyme in bacterial DNA replica-
tion. Inhibition of DNA gyrase obstructs bacterial 
replication, hence averting infection. Moreover, 
studies reveal that C. asiatica extracts, with their 
considerable antibacterial activity at minimal con-
centrations, hold great potential as agents that inhib-
it bacterial proliferation (Agneeswari et al., 2019). 

It appeared beneficial for performing molec-
ular docking studies that align in silico and in vitro. 
results depending on the findings of the in vitro in-
quiry. This study employed molecular docking anal-
ysis via the CB-Dock server and GC-MS analysis to 
evaluate the interactions between the bioactive com-
pounds in C. asiatica leaves extracts and the target 
protein DNA gyrase. Eberhardt et al. (2021) and 

Wang et al. (2024a) suggested that docking studies 
are employed in drug development to forecast the 
interactions between ligands and receptors, as well 
as to rank compounds according to binding energies 
or fitness scores. While Liu et al. (2022) and Zheng 
et al. (2024) stated that the CB-Dock methodolo-
gy consists of three phases: first, assessing the cur-
vature of the protein surface; second, clustering to 
pinpoint active site cavities; and third, performing 
docking with AutoDock Vina.       

The rise of bacterial resistance to existing 
treatment agents has prompted the development of 
new antimicrobial drugs aimed at selectively inhib-
iting evolving bacterial targets that face ongoing 
challenges. This study demonstrates that molecu-
lar docking analysis shows 13−Hexyloxacyclotri-
dec−10−en−2−one possesses greater selectivity for 
the DNA gyrase binding site than ciprofloxacin, the 
standard medication. The compound 13-Hexyloxa-
cyclotridec-10-en-2-one may offer a solid starting 
point for developing novel chemical entities that ex-
hibit potent antibacterial effects. The results suggest 
that bioactive compounds derived from C. asiatica 
leaves extracts could function as effective antibacte-
rial agents against fish pathogenic bacteria. 

4. Conclusion 
The bioactive compounds of Centella asi-

atica leaves extracts were analyzed via GC-MS, 
encompassing terpenes, fatty acids, ricinoleic ac-
ids, acyclic acids, ketones, amines, nitrosamines, 
pyrones, lactones, alkenes, benzofurans, alde-
hydes, carbohydrates, monosaccharides, epoxides, 
and other compounds classes. The leaves extract 
demonstrated antibacterial effectiveness against 
fish pathogenic bacteria (Streptococcus agalactiae, 
Bacillus subtilis, and Staphylococcus aureus) with 
MIC values of 12.5 mg/mL. Through in silico analy-
sis, 31 compounds met the criteria of five drug-like-
ness features. Furthermore, molecular docking 
investigations showed that 13-Hexyloxacyclotri-
dec-10-en-2-one had the most antibacterial activity. 
The results demonstrated that bioactive compounds 
from Centella asiatica leaves extracts have the po-
tential as antibacterial agents.
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