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Abstract 

226Ra and 232Th are natural radionuclides with long half-lives, and they have 
a dangerous radiation exposure effect on marine biota and even humankind. 
This study investigates the activity concentration and horizontal distribution of 
natural radionuclides 226Ra and 232Th in sediments and seawater from the coastal 
waters of Cirebon, Indonesia, directly adjacent to the Cirebon Coal-Fired Power 
Station (CFPS). The activity concentrations of 226Ra and 232Th radioactivity were 
measured using gamma-ray spectrometry. Radioactivity analysis of 226Ra and 
232Th was conducted on sediment and seawater columns. Furthermore, Ocean 
Data View (ODV) version 5.8.2 software was used to analyse the horizontal 
distribution pattern. The results showed that the highest concentrations of 
226Ra and 232Th radioactivity were found in the sediment rather than the water 
column, even though they varied by location. The concentration activity of 
226Ra and 232Th radioactivity was found to be a linear function of distance from 
the potential pollution source. Higher activity was detected at stations closer 
to the pollution source (CFPS). There was no significant effect of the depth 
of radionuclide distribution. Further monitoring activities at Cirebon’s CFPS 
should be conducted to predict and manage the impact on biota and human life.
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1. Introduction
Cirebon waters have diverse and dynamic ac-

tivities (Haryati et al., 2023). Activities such as agri-
culture, industry, mining, and fisheries are known to 
be the leading sectors in the area (Jaelani, 2016). Us-
ing coal as a fuel for CFPS in industrial activity can 
cause NORM (Naturally Occurring Radioactive Mate-
rial) (Malaka, 2019; Anggarini et al., 2018). PT Cire-
bon Power Services (CPS), the coal-fired power plant 
established in 1980, was located in Cirebon (Yudis-
woro and Heri, 2019). Cirebon has 2 CFPSs capable 
of producing 660 mW and 1000 mW of electrical en-
ergy (Widiawaty et al., 2020). The existence of the 
Cirebon CFPS with coal fuel contributes to changes in 
environmental qualities that are a concern on a nation-
al scale (Dede et al., 2020). Coal combustion, as the 
driving force of CFPS turbines, contributes majorly to 
Naturally Occurring Radioactive Materials (NORM) 
(Prihatiningsih and Hudiyono, 2013). Coal used as 
CFPS fuel produces releases in the form of fly ash and 
bottom (Ozden et al., 2018) and contains natural ra-
dionuclides 226Ra and 232Th in solid and gaseous form 
that can accumulate in the environment  and  living 
organisms (Cevik et al., 2007).

Radium (Ra) and thorium (Th) are of concern 
in terms of their content in NORM because they have 
very long half-lives, are distributed throughout the 
environment (waters, sediments, air, soil, and food-
stuffs) (Chau et al., 2011; Milenkovic et al., 2019). 
The effects of their radiation exposure are dangerous 
to human health (Taher et al., 2018), and even the re-
productive system, mortality, and morbidity of marine 
organisms (Garnier-Laplace et al., 2008; Suliman and 
Alsafi, 2021). It is well known that radionuclides en-
tering the marine environment contribute to increas-
ing the radiation dose received by marine organisms 
and then transferred to humans through the food chain 
(Kiris and Baltas, 2019).

Cirebon is the necessary center for producing 
marine capture fishery products to ensure the avail-
ability of fishery food stocks in West Java province 
and DKI Jakarta (Supriyadi et al., 2019). The potential 
of fish resources in Cirebon is more abundant, amount-
ing to 27,553.01 tons in 2018 and 34,135 tons in 2020 
(Central Bureau of Statistics-Cirebon Regency, 2021). 
However, along with the potential and high yield of 
fisheries production, several activities can cause an 
increase in radionuclide concentrations in Cirebon 
Waters. Natural radionuclides released into the marine 
environment will generally be dispersed through wa-
ter and sediments (Aryanti et al., 2021). 

Studies on the presence of natural radionu-

clides in sediments globally have been conducted by 
most countries, such as the Potenga Sea (Yasmin et 
al., 2018), the Nansha Sea (Liu et al., 2021), the Bar-
ents (Yakovlev and Puchkov, 2020), the Gulf of Aliağa 
İzmir (Özden and Pehlivanoglu, 2021), and the Baltic 
Sea (Salahel and Vesterbacka, 2012). Meanwhile, only 
a small number of researchers at the global level have 
researched natural radionuclides in marine waters, 
such as Akram et al. (2005) in the Arabian Sea, Zare 
et al. (2015), and Darabi-Golestan et al. (2017) in the 
Oman Sea. In Indonesia, research on natural radionu-
clides in sediments has been conducted on the coast of 
Bangka Island (Prihatiningsih et al., 2012), Tanjung 
Jati Jepara (Alviandini et al., 2019), South Sulawesi 
(Prihatiningsih and Makmur, 2021), Central Sulawesi 
(Siregar et al., 2021), and South Kalimantan (Prihati-
ningsih et al., 2020). Meanwhile, research on natural 
radionuclides in Indonesian waters was conducted by 
(Sukirno et al., 2003) in the Lemahabang Muria, and 
Sasongko et al. (2012) in the Muria Peninsula. Cire-
bon is one of the areas potentially polluted by natural 
radionuclides from various activities, which can result 
in increased levels of these radionuclides in the wa-
ter column or sediment surface. Muslim et al. (2024) 
showed that the sediment surface radionuclide of Cire-
bon CFPS did not show any significant radiological 
health risk to the ecosystem, but still lacks information 
on natural radionuclides in the water column and their 
interconnection in the ecosystem. This research de-
scribes the horizontal distribution and initial concen-
tration of specific radionuclides in the water column 
and the sediment surface of the Cirebon coastal water 
near the CFPS. Furthermore, it may serve as a basis 
for future monitoring of Cirebon’s CFPS.

2. Materials and Methods
2.1 Materials 

2.1.1 The equipment

Sediment equipment used in this research was 
a Sediment Grab (1,000 cm2), Van Veen grab sampler 
(Duncan, Denmark), Sediment Cruiser (Sediment 
Cruiser Fritsch Pulverisette 14, Landsberger, Berlin), 
and Automatic Oven (Oven Memmert, Schwabach, 
Germany), Gamma Spectrometry (Canberra type 
GX2018, Mirion, Germany). Global Positioning Sys-
tem (Garmin GPS eTrex 10 Sea, Jakarta, Indonesia) 
was used to locate the accurate position of the sam-
pling station. The early chemical seawater proper-
ties used a pH indicator (Universal Indicator, Merck, 
Germany). Vacuum filtration (Sigma-Aldrich, Merck, 
Germany) and a Polycarbonate filter (Sigma-Aldrich, 
Merck, Germany) were used for sample preparation 
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before radionuclide analysis.

2.1.1 The materials

Seawater sample 40-60 liters, sediment sam-
ple of 2-3 kg for each station, ammonia (NH3) 0.25 N 
(PA) (Sigma-Aldrich, Merck, Germany), KMnO4 250 
µl 0.25 N (PA) (Sigma-Aldrich, Merck, Germany), 
MnCl2 100 µL 0.25 N (PA) (Sigma-Aldrich, Merck, 
Germany), Nitric acid (HNO3) stock (PA) (Sigma-Al-
drich, Merck, Germany), and standard reference (RG-
U, RG-Th, RG-K, 152Eu, Merck, Germany). 

2.1.3 Ethical approval

This study does not require ethical approval 
because it does not involve the use of experimental 
animals.

2.2 Methods
2.2.1 Sampling methods

Sediment and seawater in situ samples were 
collected once in October 2022. Sediment samples 
were collected from five stations (Figure 1), while wa-
ter column samples were collected from six stations 
(Figure 2) in the Cirebon coastal waters near a poten-
tial pollution source (CFPS). The station is designed 
to predict the impact of the distance variable on the 
horizontal distribution of radionuclide. The stations 
were located near the potential pollution source in 
shallow coastal water with depths of 10 to 20 m. The 
sampling coordinates were 6 stations for seawater col-
umn samples and 5 stations for sediment samples. The 
station coordinates for sea water column samples were 
station 1 (60 46’ 04.75’’ S / 1080 36’ 42.48” E), station 
2 (60 45’ 23.55’’ S / 1080 37’ 01.35” E), station 3 (60 
44’ 55.44’’ S / 1080 37’ 14.48” E), station 4 (60 45’ 
27.41’’ S / 1080 37’ 34.24” E), station 5 (60 45’ 53.39’’ 
S / 1080 37’ 43.81” E), and station 6 (60 45’ 47.77’’ S 
/ 1080 36’ 19.70” E). The station coordinates for sed-
iment samples were station 1 (60 46’ 04.75’’ S / 1080 
36’ 42.48” E), station 2 (60 45’ 23.55’’ S / 1080 37’ 
01.35” E), station 3 (60 44’ 55.44’’ S / 1080 37’ 14.48” 
E), station 4 (60 45’ 27.41’’ S / 1080 37’ 34.24” E), and 
station 5 (60 45’ 47.77’’ S / 1080 36’ 19.70” E). 

2.2.2 Sample preparation 

Sediment samples were collected as much as 
2-3 kg using a sediment grab, and then seawater sam-
ples were collected as much as 40-60 litres, acidified 
to pH <1, stored in a container/zip lock plastic, cooled 
(<10 °C), and labelled for laboratory analysis. Samples 
will be analysed in the next two days after sampling. 

2.3 Analysis Data

2.3.1 Gamma spectroscopic analysis

Qualitative and quantitative analysis of radio-
nuclide samples performed with a computer-based, 
High-Purity Germanium (HPGe) γ-spectrometry and 
connected to Genie-2000 analysis software (Akram et 
al., 2005; Diab et al., 2019). System calibration and 
γ-spectrum analysis were performed with Genie-2000 
software (CANBERRA) (Akram et al., 2005; Diab et 
al., 2019). System calibration and analysis for effi-
ciency calibration used International Atomic Energy 
Agency (IAEA) reference standards such as RG-U 
(4940 ± 30 Bq kg-1) and RG-Th (3250 ± 90 Bq kg-1) 
(Akram et al., 2005). The time spent counting mea-
surements of the samples was approximately 295,000 
seconds. The activity concentrations of 226Ra and 232Th 
were measured through their decay products in radio-
active equilibrium. The concentration of 226Ra was 
measured via γ-particles 214Pb (295 keV, 351.9 keV) 
and 214Bi (609.3 keV, 1120.3 keV, 1764 keV). The con-
centration of 232Th was measured via γ-particles 212Pb 
(238.6 keV), 228Ac (911 keV, 338 keV), and 208Tl (583 
keV) (Akram et al., 2005).

2.3.2 Determination of radioactivity concentration of 
226Ra and 232Th 

For both samples, the radioactivity concentra-
tions of 226Ra and 232Th were determined through their 
decay product activities using the following formula:

......................................................(i)
Where :                                                                         

A = is the concentration of radioactivity to be mea-
sured (Bq kg⁻¹) for sediment samples, 
Bq/L = for seawater samples, 
N = is the peak area per unit of time (counts/s), 
e = is the peak abundance in the observed radionu-
clide, 
m = is the mass of the sediment sample (kg),
η = is the efficiency value for each peak of the ob-
served radionuclide (El-Taher et al., 2010; Suseno and 
Prihatiningsih, 2014). 
Extraction of radionuclides from seawater was car-
ried out radiochemically through manganese diox-
ide (MnO2) precipitation (Uddin et al., 2017). In de-
tail, 6 drops of 25% ammonia (NH3) and 250 μL of 
KMnO4 solution were added to 20 litres of filtered 
seawater sample. The samples were mixed with 100 
μL of MnCl2 solution, and MnO2 suspension particles 
were formed. After 8 hours, the suspension was fil-
tered using a 1 μm polycarbonate filter to obtain the 
MnO2 precipitate. The precipitates were separated by 
vacuum filtration and then dried at 100-105 °C in an  
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Figure 1. Sediment sampling stations.

Figure 2. Seawater sampling station.
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oven until they reached a constant weight. After the 
precipitate reached room temperature (25°C), the total 
precipitate was weighed and equated to the standard 
geometry (Loeff and Moore, 1999). The use of res-
ins with MnO2 can increase the concentration of the 
sample before it enters the radionuclide analysis or 
detection stage (Varga, 2007). The initial radioactiv-
ity concentrations of 226Ra and 232Th were too low to 
detect; the concentrations were determined from the 
average concentrations of their decay products. The 
total initial concentration of 226Ra was determined by 
measuring the average radioactivity concentration of 
its decay element, i.e., 214Pb and 214Bi. Meanwhile, the 
total initial concentration of 232Th was determined by 
measuring the average radioactivity concentration of, 
i.e., 212Pb, 208Tl, and 228Ac (Hamby and Tynybekov, 
2002).

2.3.3 Analysis and visualization of radioactivity con-
centration of 226Ra and 232Th

The horizontal distribution of each radionu-
clide was analyzed and visualized using Ocean Data 
View (ODV) online version 5.8.2 at https://webodv-
egi-ace.cloud.ba.infn.it/. Spatial analysis was con-
ducted using Ocean Data View (v5.8.2) with inverse 
distance weighting (IDW) interpolation at a 0.01° grid 
resolution. All measurements were performed in trip-
licate, with results expressed as mean ± 1 SD. Quality 
assurance was verified using IAEA-315 reference ma-
terial with recovery rates of 95-103%.

 
 

Region
Results of Natural Radionuclide 

Measurements (Bq/kg) Source
226Ra 232Th

Cirebon Waters 23.75 – 25.94 24.47 – 28.89 Present Study

South Kalimantan 9.83 – 53.46 16.88 – 32.91 (Prihatiningsih et al., 2020)

Banda Sea, Central Sulawesi 62.10 50.05 (Siregar et al., 2021 )

Coast of South Sulawesi 16.55 – 47.29 20.16 – 52.73 (Prihatiningsih and Makmur, 2021)

Tanjung Jati Jepara 42.42 – 77.77 99.19 – 212.34 (Alviandini et al., 2019)

Coast of Bangka Island 18.69 – 627.17 74.78 – 2333.50 (Prihatiningsih et al., 2012)

Potenga Sea, Bangladesh 94.39 121.9 (Yasmin et al., 2018)

Nansha Sea, South China Sea 14.60 – 38.51 15.81 – 49.21 (Liu et al., 2021)

Barents Sea, Russia 0.50 – 48.30 3.60 – 54.00 (Yakovlev and Puchkov, 2020)

Aliağa Bay, İzmir (Türkiye) 23.54 – 59.46 37.54 – 64.37 (Özden and Pehlivanoglu, 2021)

Baltic Sea, Finland 45 – 98 75 – 83 (Salahel and Vesterbacka, 2012)

3. Results and Discussion
3.1 Results

3.1.1 Radioactivity concentration

The radioactivity concentrations of 226Ra and 
232Th in sediments worldwide (Table 2) and seawater 
worldwide (Table 3) can be compared with our sam-
ples (Table 1) from several stations (Figures 1 - 2). 
The highest radioactivity concentration for 226Ra in 
sediment was detected at station 2 at 25.9 Bq/kg, and 
in seawater at station 1 at 0.0033 Bq/L. The lowest 
radioactivity concentration for 226Ra in sediment was 
detected at station 4 at 23.7 Bq/kg, and in seawater 
at station 3 at 0.0014 Bq/L. The highest radioactivi-
ty concentration for 232Th in sediment was detected at 
station 3 at 28.89 Bq/kg, and in seawater at station 3 at 
0.0082 Bq/L. The lowest radioactivity concentration 
for 232Th in sediment was detected at station 4 at 24.47 
Bq/kg, and in seawater at station 2 at 0.0069 Bq/L. 
The average values of 226Ra and 232Th were 10,000 and 
3,800 times higher than those in seawater samples, re-
spectively. These were in line with the results of stud-
ies in other regions that report that the concentration 
of 226Ra and 232Th radioactivity in sediment samples 
is higher than in seawater samples (Sasongko et al., 
2012; Antovic and Ivanka, 2014; Tham et al., 2022).

The horizontal distribution maps of radionu-
clides were processed using Ocean Data View (ODV)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Comparison of radioactivity concentrations in sediments world wide
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Region
Results of Natural Radionuclide 

Measurements (Bq/L) Source

226Ra 232Th

North Coast of The Sea 
of Oman 2.19 – 2.82 1.66 – 2.17 (Zare et al., 2015; Darabi-Golestan  et al., 

2017)

Eastern Black Sea Coast, 
Turkiye 0.0022 – 0.00468 0.00289 – 0.00483 (Kiris and Baltas, 2019)

Gulf of Tonkin (Quang 
Ninh), Vietnam 0.00703 – 0.0113 0.00162 – 0.00232 (Tham et al., 2022)

Muria Peninsula Beach 
Waters 0.02 – 0.65 0.01 – 0.14 (Sasongko et al., 2012 )

Southern Adriatic Sea 
(Boka Kotorska Bay) 0.08 0.10 (Antovic and Ivanka, 2014)

Mediterranean Sea Coast, 
Egypt 5.4 3.1 (Ramadan et al., 2017)

Republic of Montenegro 0.00161 – 0.0198 0.00109 – 0.00775 (Andjelic et al., 2003)

Wanasa Beach, Kuwait 4.21 1.02 (Abbas et al., 2020)

Cirebon Waters 0.0014 – 0.0033 0.0069 – 0.0082 This research

 
 
 

Sediment Radioactivity 
Concentration (Bq/kg)

Seawater Radioactivity 
Concentration (Bq/L)

Elemen 226Ra 232Th 226Ra 232Th

Mean 25.05 ± 0.7982 27.8 ± 1.8526 0.0025 ± 0.0006 0.0073 ± 0.0005

Range 23.75 – 25.94 24.47 – 28.89 0.0014 – 0.0033 0.0069 – 0.0082

 
 
software. Spatial distribution maps generated using 
Ocean Data View revealed slightly elevated activities 
at offshore stations, suggesting lateral sediment trans-
port dominates over direct inputs from the CFPS dis 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
charge. Variations in the concentration of natural ra-
dioactivity 226Ra and 232Th were detected from samples 
in the Cirebon Coastal Waters area facing the CFPS 
(Figures 4 and 5). Figure 3 presents a spectrum sample 

Table 3. Comparison of radioactivity concentrations in seawater world wide

Table 1. Radioactivity concentration in Cirebon coastal water
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from the Gamma Spectrometer, which shows energy 
peaks of radionuclides as described in the methods. 
Figures 4 and 5 illustrate the distribution patterns of 
the natural radionuclides 226Ra and 232Th in the waters 
of Cirebon, highlighting distinct behaviours in sedi-
ment and water. In Figure 4b, it is evident that the con-
centration of 226Ra tends to be higher in the southern 
part of the study area, which is closer to the coastline. 
Near the shore, the concentration reaches 0.003 Bq 
kg⁻¹, while at the farthest point from the land, it is 
recorded at 0.002 Bq kg⁻¹. The concentration of 226Ra 
in the water column is lower than that of 232Th (Fig-
ures 4b and 5b). In contrast, Figure 5b indicates that 
232Th concentrations are relatively higher at locations 
farther from the shore, reaching up to 0.008Bq kg⁻¹, 
compared to 0.007 Bq kg⁻¹ near the coast. Both ra-
dionuclides exhibit a similar trend, with their concen-
trations in sediments being higher than in the water  

 
 
 

 
 
 
 
column, as shown in Figures 4 and 5. However, they 
also display relatively uniform concentration values 
across the study area. This uniformity may be attribut-
ed to differences in the origin and mobility of the two 
radionuclides in the marine environment.

3.1.2 Influence of depth

Figure 6 illustrates the relationship between 
depth and the concentrations of radioactivity for 226Ra 
(a) and 232Th (b) in sediment. Each point on the graphs 
corresponds to a specific sampling station at a given 
depth. The data suggest that there is no linear rela-
tionship between depth and radionuclide concentra-
tion in the sediment. However, points 1 and 5, which 
represent the shallowest depths, along with point 3, 
the deepest station, show relatively similar levels of 
radioactivity for both 226Ra and 232Th.

A B

Figure 4. Distribution map of 226Ra in Cirebon waters (a) sediments (b) waters.

A B

Figure 5. Distribution map of 232Th in Cirebon waters (a) sediments (b) waters.
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3.2 Discussion
3.2.1 226Ra and 232Th behaviour

	 The presence of 226Ra in the seawater column 
may drive its concentration in sediments of Cirebon 
waters, which are dominated by fine silt sand (Muslim 
et al., 2024; A. A. Ramadan and Diab, 2013; Rama-
samy et al., 2011). Fine silt sand has a wider layer 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
of adsorption than other larger sediment fractions, so 
it can bind more elements according to the coarse-
grained size (Yii et al., 2007; Alviandini et al., 2019; 
Pappa et al., 2016; Patiris et al., 2016). In addition, 
high activity values at some station points may also 
be associated with radionuclide sources originating 
from fly ash as waste from CFPS activities (Pandit et 
al., 2011) stated that natural radionuclides in fly ash 

Figure 3. Sampel spectrum of gamma spectrometer.

Figure 6. Graph of the relationship between the concentration of radioactivity in sediments at each station (•) and the 
depth (a) 226Ra and (b) 232Th.
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are two to five times higher than raw coal, so stations 
close to CFPS activities around Cirebon waters have 
the potential to obtain higher activity values. (Pandit 
et al., 2011) stated that natural radionuclides in fly 
ash are two to five times higher than in raw coal, so 
stations close to CFPS activities around Cirebon wa-
ters have the potential to obtain higher activity values. 
The activity value of 226Ra is influenced by the chem-
ical properties of the element (Marwoto et al., 2019), 
such as its high solubility in sediment (Ramasamy et 
al., 2011; Suresh et al., 2011; Alfonso et al., 2014; 
Al-Absi et al., 2016; Alviandini et al., 2019; Fallah et 
al., 2019; Suliman and Alsafi, 2021); volatility; and 
condensation (Hasani et al., 2014). 226Ra is mobile 
(Papaefthymiou et al., 2017) and undergoes chemical 
reduction, and it can be deposited in sediments (Zheng 
et al., 2002; Papaefthymiou et al., 2017).

Song et al. (2017) stated that the farther away 
the pollutant source, the smaller the concentration of 
radium radioactivity because it is affected by the pro-
cess of dilution and radioactive decay. The detection 
of 226Ra in Cirebon waters is related to the highly sol-
uble nature of 226Ra in water (Khandaker et al., 2015; 
Suliman and Alsafi, 2021), the ability to maintain its 
presence after being released into seawater (Charette 
et al., 2007), the process of dissolution and desorption 
in water (Kiro et al., 2014), the decay of the parent nu-
clide in seawater (Yi et al., 2019) and the dissolution 
of mineral grains containing radium (Kraemer et al., 
2014). The horizontal distribution of 226Ra in Cirebon 
Coastal Waters was higher in waters close to the pol-
lutant source and lower as the distance from the source 
increased. The high concentration of 226Ra in some sta-
tions may be associated with the nearest station posi-
tion to CFPS Cirebon. The waste products from CFPS 
are known to be a natural source of radionuclides that 
enter the environment (Cevik et al., 2007; Papp et al., 
2002). In accordance with the statement of Bhangare 
et al. (2014), coal-fired CFPS releases natural radio-
nuclides during the combustion process that can cause 
high radioactivity.

The value of 232Th activity can be associated 
with geochemical properties (Ramasamy et al., 2011; 
Suresh et al., 2011; Alfonso et al., 2014; Alviandini et 
al., 2019). Thorium is insoluble in seawater (Jurina et 
al., 2013; Suresh et al., 2011), and it is often associat-
ed with solid materials (El-Taher and Madkour, 2011; 
Alfonso et al., 2014; Ravisankar et al., 2015; Al-Ab-
si et al., 2016; Papaefthymiou et al., 2017; Fallah et 
al., 2019), so the thorium activity value obtained in 
sediments was higher. The presence of 232Th may be 
influenced by sediment properties in Cirebon waters, 
which are dominated by silt sand. Grain size with fine 
texture has a larger surface area (Ramadan and Diab, 

2013; Ramasamy et al., 2011), so it can bind stron-
ger elements than coarse-grained size (Yii et al., 2007; 
Alviandini et al., 2019; Pappa et al., 2016; Patiris et 
al., 2016). Pandit et al. (2011) stated that natural ra-
dionuclides in fly ash are two to five times higher than 
in raw coal. We may assume that the CFPS Cirebon 
activity may generate potentially higher radionuclide 
activity values around the Cirebon coastal water. 

Thorium is a reactive particle (Lippold et al., 
2012; Santschi et al., 2006) of a larger size (Kenny et 
al., 2019; Rehman et al., 2013) that can be removed 
quickly in the water column, then it is deposited in the 
sediments (Lippold et al., 2012). Thorium is insoluble 
in water or almost completely insoluble (Khandaker 
et al., 2015; Suliman and Alsafi, 2021) and easily dis-
solves in non-polar substances (Cotton and Wilkinson, 
1988 in Ma et al., 2016). These phenomena are also 
related to the location of Cirebon waters, located in 
the northern coastal waters of Java, making the area 
widely used for shipping activities (Nurkhasanah et 
al., 2019) and becoming an international gateway to 
the region (Jaelani, 2016; Muslim et al., 2024). Cire-
bon City has a port that plays an active role in nation-
al and international trade, which cannot be separated 
from shipping activities (Astuti, 2018). It is assumed 
that the high concentration of 232Th radioactivity at 
station 3 was influenced by shipping activities that 
can cause sediment resuspension in these waters. It is 
well known that the resuspension process is one of the 
sources of radionuclides detected in seawater (Dara-
bi-Golestan et al., 2017; Muslim et al., 2024; El-Sa-
harty, 2013).

3.2.2 Distribution of 226Ra and 232Th

The highest concentration of 226Ra radioactivi-
ty was detected at a depth of (-6 m), while the highest 
concentration of 232Th radioactivity was detected at a 
depth of (-8 m). Water depth affects the resuspension 
and deposition of radionuclide material (Marwoto et 
al., 2019). In addition, depth also affects particle sedi-
mentation time. Putra and Nugroho, (2017) in Pawitra 
et al. (2022) stated that sediment distribution correlat-
ed with depth, while the deeper sediment is relatively 
finer. Finer sediment particles are found in suspension 
over a longer time and distance. In line with the in-
crease in the weight of sediment particles, particles 
are likely to quickly settle in areas close to the source 
(Ikhwan et al., 2015; Selim et al., 2022). According 
to Kurniawan et al. (2014) and Marwoto et al. (2019), 
water conditions, such as current speed and bathyme-
try, result in continuous stirring. The stirring potential-
ly caused sediment resuspension and provided radio-
nuclides bound to sand-textured sediments into the air. 
The release of radionuclides from sediments reduced 

JIPK Vol 18 No 1. February 2026 | Activity Concentration of 226Ra and 232Th in Sediments and Seawater of... 

                   
	    38  JIPK: Scientific Journal of Fisheries and Marine  									                          Copyright ©2026 Faculty of Fisheries and Marine Universitas Airlangga



the activity value of radionuclides in sediments (Mus-
lim et al., 2015; Marwoto et al., 2019).

The results of radionuclide activity values ob-
tained in Cirebon waters near CFPS are compared with 
other studies (national and international). The range 
of 226Ra and 232Th activity values in Cirebon waters is 
much lower than the values reported in South Kali-
mantan, Central Sulawesi, Banda Sea, South Sulawesi 
Coast, Tanjung Jati Jepara, and Bangka Island Coast, 
Nansha Sea, Russian Barents Sea, Aliağa Bay, İzmir, 
Turkey, Potenga Sea, Bangladesh, and Baltic Sea. 
However, based on the comparison with other studies 
(national and international), the highest activity value 
is found in the coastal area of Bangka Island. The high 
activity value is due to the tin mining activity and geo-
logical formations (Prihatiningsih et al., 2012). Tin 
ore contains uranium and thorium that bind to various 
minerals (Prihatiningsih et al., 2012), so it has the po-
tential to increase natural radionuclides 226Ra and 232Th 
in the environment around the coast of Bangka Island.

Differences in activity values are influenced 
by geological formations (Salahel and Vesterbacka, 
2012; Ravisankar et al., 2015; Yasmin et al., 2018), 
the process of deposition of radionuclides and heavy 
minerals along the coastline at high tide (Alshahri, 
2017; Zorer, 2019; Wais and Najam, 2021), chemi-
cal properties (Onjefu et al., 2017; Ramasamy et al., 
2011), physical, and geochemical properties and their 
environment (Agbalagba and Onoja, 2011; Al-Trabul-
sy et al., 2011;  El-Taher and Madkour, 2011; Alfonso 
et al., 2014; Al-Absi et al., 2016; Ravisankar et al., 
2015; Uosif et al., 2016; Zakaly et al., 2019). Differ-
ences in particle size distribution also affect the vari-
ation of natural radionuclide activity values in marine 
sediments (Jurina et al., 2013; Ravisankar et al., 2015; 
Ulyantsev et al., 2023). The amount of radionuclide 
accumulation in marine sediments depends on the 
chemical properties of the radionuclide, the physical 
and chemical properties of the sediment: sediment 
type, grain size, and organic content, and geography: 
flow direction and flow rate (Khuntong et al., 2015; 
Muslim et al., 2024).

In Southeast Asian regions, such as Indonesia 
and Vietnam, the radioactivity concentration of 226Ra 
ranged from 0.00703 Bq/L to 0.65 Bq/L, and 232Th 
ranged from 0.00162 Bq/L to 0.14 Bq/L. The highest 
radioactivity concentration was found in Indonesia’s 
Muria Peninsula region. The candidate area of a nu-
clear power plant on the Muria Peninsula (Asmara, 
2020), a power plant in Tanjung Jati (Kurniawan et al., 
2014), and mining activities that are potential resourc-
es on the Muria Peninsula (Wiyono dan Sunarto, 2016) 
are known to be natural sources of radioactivity in the 
region. The detection of 226Ra and 232Th in Vietnam 

is attributed to mining activities that are well known 
to produce radioactive elements in the form of dust 
(Csavina et al., 2012). The Rare Earth Elements (REE) 
mining activities are well known to spread in Vietnam, 
especially in northern Vietnam (Van et al., 2019). In 
West Asian regions such as Oman, Turkey, and Ku-
wait, radioactivity concentrations of 226Ra ranged 
from 0.0022 Bq/L to 4.21 Bq/L, and 232Th ranged from 
0.00289 Bq/L to 2.17 Bq/L. The high concentration 
of radioactivity detected in the Oman region is relat-
ed to mining activities, which were the most common 
industrial activities in the region (Palanivel and Vic-
tor, 2020). Potential natural sources of radionuclides 
in Turkey originate from plutonic and volcanic rocks 
that are common in certain areas of Turkey (Temizel 
et al., 2020). Plutonic rock types such as granodiorite 
and granite are also found in other areas of Turkey 
(Kaygusuz et al., 2021). Plutonic rocks are rock types 
with high levels of natural radioactivity (Yalcin et al., 
2020).

Moving to the European region, Montenegro 
has higher radioactivity concentrations of 226Ra, rang-
ing from 0.00161 Bq/L to 0.08, and 232Th, of 0.00109 
Bq/L to 0.10 Bq/L. Montenegro is a region with many 
rocks, e.q. sediments, metamorphic, and magmatic 
rocks were highly associated with thorium (Dragovic 
et al., 2006). Moreover, the coastal part of Montene-
gro has active volcanoes such as Mount Lovcen (Žebre 
and Stepisnik, 2014) and Mount Orjen (Woodward et 
al., 2014). It may contribute to the concentration of 
226Ra and 232Th radioactivity in Montenegro. Moving 
to northern Africa, the 226Ra and 232Th radioactivity 
concentrations found in Egypt were 5.4 Bq/L and 3.1 
Bq/L. Egypt is known to have a phosphate rock in-
dustry with a smaller activity level, which affects the 
level of radioactivity (Abbady et al., 2005). The con-
centration activity of radionuclide detected in Cirebon 
coastal waters tends to be lower than the concentra-
tion activity value of radionuclide in seawater samples 
from several regions of the world.

4. Conclusion 
Based on the research conducted in the coastal 

waters of Cirebon near CFPS, it was concluded that 
the concentration of 226Ra and 232Th radioactivity de-
tected in the sediment is higher than in the water col-
umn. These higher concentrations of them in sediment 
may indicate higher accumulation processes of them 
in sediment.  The radionuclides’ activity monitoring 
should be provided to ensure they are managed ac-
cording to government regulations and decrease fur-
ther impact on biota and humankind.
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