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1. Introduction

Cirebon waters have diverse and dynamic ac-
tivities (Haryati er a/., 2023). Activities such as agri-
culture, industry, mining, and fisheries are known to
be the leading sectors in the area (Jaclani, 2016). Us-
ing coal as a fuel for CFPS in industrial activity can
cause NORM (Naturally Occurring Radioactive Mate-
rial) (Malaka, 2019; Anggarini ef al., 2018). PT Cire-
bon Power Services (CPS), the coal-fired power plant
established in 1980, was located in Cirebon (Yudis-
woro and Heri, 2019). Cirebon has 2 CFPSs capable
of producing 660 mW and 1000 mW of electrical en-
ergy (Widiawaty et al., 2020). The existence of the
Cirebon CFPS with coal fuel contributes to changes in
environmental qualities that are a concern on a nation-
al scale (Dede er al., 2020). Coal combustion, as the
driving force of CFPS turbines, contributes majorly to
Naturally Occurring Radioactive Materials (NORM)
(Prihatiningsih and Hudiyono, 2013). Coal used as
CFPS fuel produces releases in the form of fly ash and
bottom (Ozden er al., 2018) and contains natural ra-
dionuclides ***Ra and #**Th in solid and gaseous form
that can accumulate in the environment and living
organisms (Cevik ef al., 2007).

Radium (Ra) and thorium (Th) are of concern
in terms of their content in NORM because they have
very long half-lives, are distributed throughout the
environment (waters, sediments, air, soil, and food-
stuffs) (Chau et al., 2011; Milenkovic et al., 2019).
The effects of their radiation exposure are dangerous
to human health (Taher ez a/., 2018), and even the re-
productive system, mortality, and morbidity of marine
organisms (Garnier-Laplace ez a/., 2008; Suliman and
Alsafi, 2021). It is well known that radionuclides en-
tering the marine environment contribute to increas-
ing the radiation dose received by marine organisms
and then transferred to humans through the food chain
(Kiris and Baltas, 2019).

Cirebon is the necessary center for producing
marine capture fishery products to ensure the avail-
ability of fishery food stocks in West Java province
and DKI Jakarta (Supriyadi et al., 2019). The potential
of fish resources in Cirebon is more abundant, amount-
ing to 27,553.01 tons in 2018 and 34,135 tons in 2020
(Central Bureau of Statistics-Cirebon Regency, 2021).
However, along with the potential and high yield of
fisheries production, several activities can cause an
increase in radionuclide concentrations in Cirebon
Waters. Natural radionuclides released into the marine
environment will generally be dispersed through wa-
ter and sediments (Aryanti et al., 2021).

Studies on the presence of natural radionu-

clides in sediments globally have been conducted by
most countries, such as the Potenga Sea (Yasmin ef
al., 2018), the Nansha Sea (Liu ef a/., 2021), the Bar-
ents (Yakovlev and Puchkov, 2020), the Gulf of Aliaga
Izmir (Ozden and Pehlivanoglu, 2021), and the Baltic
Sea (Salahel and Vesterbacka, 2012). Meanwhile, only
a small number of researchers at the global level have
researched natural radionuclides in marine waters,
such as Akram ef a/. (2005) in the Arabian Sea, Zare
et al. (2015), and Darabi-Golestan ez a/. (2017) in the
Oman Sea. In Indonesia, research on natural radionu-
clides in sediments has been conducted on the coast of
Bangka Island (Prihatiningsih ez a/., 2012), Tanjung
Jati Jepara (Alviandini ef al., 2019), South Sulawesi
(Prihatiningsih and Makmur, 2021), Central Sulawesi
(Siregar et al., 2021), and South Kalimantan (Prihati-
ningsih et al., 2020). Meanwhile, research on natural
radionuclides in Indonesian waters was conducted by
(Sukirno et al., 2003) in the Lemahabang Muria, and
Sasongko et al. (2012) in the Muria Peninsula. Cire-
bon is one of the areas potentially polluted by natural
radionuclides from various activities, which can result
in increased levels of these radionuclides in the wa-
ter column or sediment surface. Muslim ef al. (2024)
showed that the sediment surface radionuclide of Cire-
bon CFPS did not show any significant radiological
health risk to the ecosystem, but still lacks information
on natural radionuclides in the water column and their
interconnection in the ecosystem. This research de-
scribes the horizontal distribution and initial concen-
tration of specific radionuclides in the water column
and the sediment surface of the Cirebon coastal water
near the CFPS. Furthermore, it may serve as a basis
for future monitoring of Cirebon’s CFPS.

2. Materials and Methods
2.1 Materials
2.1.1 The equipment

Sediment equipment used in this research was
a Sediment Grab (1,000 cm?), Van Veen grab sampler
(Duncan, Denmark), Sediment Cruiser (Sediment
Cruiser Fritsch Pulverisette 14, Landsberger, Berlin),
and Automatic Oven (Oven Memmert, Schwabach,
Germany), Gamma Spectrometry (Canberra type
GX2018, Mirion, Germany). Global Positioning Sys-
tem (Garmin GPS eTrex 10 Sea, Jakarta, Indonesia)
was used to locate the accurate position of the sam-
pling station. The early chemical seawater proper-
ties used a pH indicator (Universal Indicator, Merck,
Germany). Vacuum filtration (Sigma-Aldrich, Merck,
Germany) and a Polycarbonate filter (Sigma-Aldrich,
Merck, Germany) were used for sample preparation
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before radionuclide analysis.

2.1.1 The materials

Seawater sample 40-60 liters, sediment sam-
ple of 2-3 kg for each station, ammonia (NH,) 0.25 N
(PA) (Sigma-Aldrich, Merck, Germany), KMnO, 250
pul 0.25 N (PA) (Sigma-Aldrich, Merck, Germany),
MnCl, 100 uL 0.25 N (PA) (Sigma-Aldrich, Merck,
Germany), Nitric acid (HNO,) stock (PA) (Sigma-Al-
drich, Merck, Germany), and standard reference (RG-
U, RG-Th, RG-K, '?Eu, Merck, Germany).

2.1.3 Ethical approval

This study does not require ethical approval
because it does not involve the use of experimental
animals.

2.2 Methods
2.2.1 Sampling methods

Sediment and seawater in situ samples were
collected once in October 2022. Sediment samples
were collected from five stations (Figure 1), while wa-
ter column samples were collected from six stations
(Figure 2) in the Cirebon coastal waters near a poten-
tial pollution source (CFPS). The station is designed
to predict the impact of the distance variable on the
horizontal distribution of radionuclide. The stations
were located near the potential pollution source in
shallow coastal water with depths of 10 to 20 m. The
sampling coordinates were 6 stations for seawater col-
umn samples and 5 stations for sediment samples. The
station coordinates for sea water column samples were
station 1 (6°46°04.75” S/ 108°36” 42.48” E), station
2 (6°45°23.55” S/ 108° 37 01.35” E), station 3 (6°
44’ 55.44” S / 108" 37 14.48” E), station 4 (6" 45’
27.41” S/ 108° 37 34.24” E), station 5 (6° 45 53.39”
S /108° 37 43.81” E), and station 6 (6° 45*47.77” S
/ 108° 36” 19.70” E). The station coordinates for sed-
iment samples were station 1 (6° 46° 04.75” S / 108°
36> 42.48” E), station 2 (6" 45° 23.55 S / 108" 37’
01.35” E), station 3 (6° 44’ 55.44” S/ 108° 37" 14.48”
E), station 4 (6°45°27.41° S /108°3734.24” E), and
station 5 (6°45°47.77 S / 108 36° 19.70” E).

2.2.2 Sample preparation

Sediment samples were collected as much as
2-3 kg using a sediment grab, and then seawater sam-
ples were collected as much as 40-60 litres, acidified
to pH <1, stored in a container/zip lock plastic, cooled
(<10°C), and labelled for laboratory analysis. Samples
will be analysed in the next two days after sampling.

2.3 Analysis Data
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2.3.1 Gamma spectroscopic analysis

Qualitative and quantitative analysis of radio-
nuclide samples performed with a computer-based,
High-Purity Germanium (HPGe) y-spectrometry and
connected to Genie-2000 analysis software (Akram ef
al., 2005; Diab et al., 2019). System calibration and
v-spectrum analysis were performed with Genie-2000
software (CANBERRA) (Akram et al., 2005; Diab et
al., 2019). System calibration and analysis for effi-
ciency calibration used International Atomic Energy
Agency (IAEA) reference standards such as RG-U
(4940 + 30 Bq kg-1) and RG-Th (3250 + 90 Bq kg-1)
(Akram et al., 2005). The time spent counting mea-
surements of the samples was approximately 295,000
seconds. The activity concentrations of >*°Ra and **Th
were measured through their decay products in radio-
active equilibrium. The concentration of *?Ra was
measured via y-particles 2"*Pb (295 keV, 351.9 keV)
and ?"“Bi (609.3 keV, 1120.3 keV, 1764 keV). The con-
centration of 22Th was measured via y-particles 2'?Pb
(238.6 keV), 2!Ac (911 keV, 338 keV), and **°T1 (583
keV) (Akram et al., 2005).

2.3.2 Determination of radioactivity concentration of
26Ra and *°Th

For both samples, the radioactivity concentra-
tions of 2*Ra and **Th were determined through their
decay product activities using the following formula:

A=_—N

exmxn

Where :

A = is the concentration of radioactivity to be mea-
sured (Bq kg™") for sediment samples,

Bg/L = for seawater samples,

N = is the peak area per unit of time (counts/s),

e = is the peak abundance in the observed radionu-
clide,

m = is the mass of the sediment sample (kg),

n = is the efficiency value for each peak of the ob-
served radionuclide (El-Taher ef a/., 2010; Suseno and
Prihatiningsih, 2014).

Extraction of radionuclides from seawater was car-
ried out radiochemically through manganese diox-
ide (MnO,) precipitation (Uddin ez a/, 2017). In de-
tail, 6 drops of 25% ammonia (NH,) and 250 pL of
KMnO, solution were added to 20 litres of filtered
seawater sample. The samples were mixed with 100
uL of MnCl, solution, and MnO, suspension particles
were formed. After 8 hours, the suspension was fil-
tered using a 1 um polycarbonate filter to obtain the
MnO, precipitate. The precipitates were separated by
vacuum filtration and then dried at 100-105 °C in an
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Figure 2. Seawater sampling station.
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oven until they reached a constant weight. After the
precipitate reached room temperature (25°C), the total
precipitate was weighed and equated to the standard
geometry (Loeff and Moore, 1999). The use of res-
ins with MnO, can increase the concentration of the
sample before it enters the radionuclide analysis or
detection stage (Varga, 2007). The initial radioactiv-
ity concentrations of **Ra and **Th were too low to
detect; the concentrations were determined from the
average concentrations of their decay products. The
total initial concentration of 22Ra was determined by
measuring the average radioactivity concentration of
its decay element, i.e., 2'“Pb and ?'“Bi. Meanwhile, the
total initial concentration of »**Th was determined by
measuring the average radioactivity concentration of,
i.e., 2?Pb, 2%®Tl1, and *®Ac (Hamby and Tynybekov,
2002).

2.3.3 Analysis and visualization of radioactivity con-
centration of *?Ra and *°Th

The horizontal distribution of each radionu-
clide was analyzed and visualized using Ocean Data
View (ODV) online version 5.8.2 at https://webodv-
egi-ace.cloud.ba.infn.it/. Spatial analysis was con-
ducted using Ocean Data View (v5.8.2) with inverse
distance weighting (IDW) interpolation at a 0.01° grid
resolution. All measurements were performed in trip-
licate, with results expressed as mean £+ 1 SD. Quality
assurance was verified using [AEA-315 reference ma-
terial with recovery rates of 95-103%.
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3. Results and Discussion
3.1 Results

3.1.1 Radioactivity concentration

The radioactivity concentrations of **°Ra and
22Th in sediments worldwide (Table 2) and seawater
worldwide (Table 3) can be compared with our sam-
ples (Table 1) from several stations (Figures 1 - 2).
The highest radioactivity concentration for *?Ra in
sediment was detected at station 2 at 25.9 Bg/kg, and
in seawater at station 1 at 0.0033 Bq/L. The lowest
radioactivity concentration for *°Ra in sediment was
detected at station 4 at 23.7 Bg/kg, and in seawater
at station 3 at 0.0014 Bq/L. The highest radioactivi-
ty concentration for 22Th in sediment was detected at
station 3 at 28.89 Bg/kg, and in seawater at station 3 at
0.0082 Bg/L. The lowest radioactivity concentration
for ’Th in sediment was detected at station 4 at 24.47
Bg/kg, and in seawater at station 2 at 0.0069 Bq/L.
The average values of ?°Ra and #?Th were 10,000 and
3,800 times higher than those in seawater samples, re-
spectively. These were in line with the results of stud-
ies in other regions that report that the concentration
of 2°Ra and **Th radioactivity in sediment samples
is higher than in seawater samples (Sasongko er al.,
2012; Antovic and Ivanka, 2014; Tham et al., 2022).

The horizontal distribution maps of radionu-
clides were processed using Ocean Data View (ODV)

Table 2. Comparison of radioactivity concentrations in sediments world wide

Results of Natural Radionuclide

Region Measurements (Bq/kg) Source

226Ra 32Th
Cirebon Waters 23.75-25.94 24,47 —28.89 Present Study
South Kalimantan 9.83 —53.46 16.88 —32.91 (Prihatiningsih et al., 2020)
Banda Sea, Central Sulawesi 62.10 50.05 (Siregar et al., 2021)
Coast of South Sulawesi 16.55-47.29 20.16 — 52.73 (Prihatiningsih and Makmur, 2021)
Tanjung Jati Jepara 42.42 - 77.77 99.19 -212.34 (Alviandini et al., 2019)
Coast of Bangka Island 18.69 — 627.17 74.78 —2333.50 (Prihatiningsih et al., 2012)
Potenga Sea, Bangladesh 94.39 121.9 (Yasmin et al., 2018)
Nansha Sea, South China Sea 14.60 — 38.51 15.81-49.21 (Liu et al., 2021)
Barents Sea, Russia 0.50 - 48.30 3.60 — 54.00 (Yakovlev and Puchkov, 2020)
Aliaga Bay, Izmir (Tiirkiye) 23.54 —59.46 37.54 — 64.37 (Ozden and Pehlivanoglu, 2021)
Baltic Sea, Finland 45-98 75-83 (Salahel and Vesterbacka, 2012)

Copyright ©2026 Faculty of Fisheries and Marine Universitas Airlangga
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Table 3. Comparison of radioactivity concentrations in seawater world wide

Results of Natural Radionuclide

Region Measurements (Bq/L) SO
226Ra 232Th
North Coast of The Sea 219282 1.66—2.17 (Zare et al., 2015; Darabi-Golestan et al.,
of Oman 2017)
Eastern Black Sea Coast, ) 1557 _ 000468 0.00289 — 0.00483 (Kiris and Baltas, 2019)
Turkiye
Gulf of Tonkin (Quang 0.00703 —0.0113  0.00162 — 0.00232 (Tham et al., 2022)
Ninh), Vietnam
Muria Peninsula Beach 0.02 - 0.65 0.01-0.14 (Sasongko et al., 2012)
Waters
Southern Adriatic Sea .
(Boka Kotorska Bay) 0.08 0.10 (Antovic and Ivanka, 2014)
Mediterrancan Sea Coast, 5.4 3.1 (Ramadan et al., 2017)
Egypt
Republic of Montenegro 0.00161 - 0.0198 0.00109 — 0.00775 (Andjelic et al., 2003)
Wanasa Beach, Kuwait 4.21 1.02 (Abbas et al., 2020)
Cirebon Waters 0.0014 —0.0033 0.0069 — 0.0082 This research
Table 1. Radioactivity concentration in Cirebon coastal water
Sediment Radioactivity Seawater Radioactivity
Concentration (Bq/kg) Concentration (Bq/L)
Elemen 26Ra 22Th 26Ra 22Th
Mean 25.05 +0.7982 27.8 +£1.8526 0.0025 £ 0.0006 0.0073 £ 0.0005
Range 23.75-25.94 24.47 —28.89 0.0014 - 0.0033 0.0069 — 0.0082

software. Spatial distribution maps generated using charge. Variations in the concentration of natural ra-
Ocean Data View revealed slightly elevated activities dioactivity **Ra and #**Th were detected from samples
at offshore stations, suggesting lateral sediment trans- in the Cirebon Coastal Waters area facing the CFPS
port dominates over direct inputs from the CFPS dis (Figures 4 and 5). Figure 3 presents a spectrum sample
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Figure 5. Distribution map of 22Th in Cirebon waters (a) sediments (b) waters.

from the Gamma Spectrometer, which shows energy
peaks of radionuclides as described in the methods.
Figures 4 and 5 illustrate the distribution patterns of
the natural radionuclides ?°Ra and ?*’Th in the waters
of Cirebon, highlighting distinct behaviours in sedi-
ment and water. In Figure 4b, it is evident that the con-
centration of *Ra tends to be higher in the southern
part of the study area, which is closer to the coastline.
Near the shore, the concentration reaches 0.003 Bq
kg™, while at the farthest point from the land, it is
recorded at 0.002 Bq kg'. The concentration of ***Ra
in the water column is lower than that of **Th (Fig-
ures 4b and 5b). In contrast, Figure 5b indicates that
22Th concentrations are relatively higher at locations
farther from the shore, reaching up to 0.008Bq kg™,
compared to 0.007 Bq kg' near the coast. Both ra-
dionuclides exhibit a similar trend, with their concen-
trations in sediments being higher than in the water

column, as shown in Figures 4 and 5. However, they
also display relatively uniform concentration values
across the study area. This uniformity may be attribut-
ed to differences in the origin and mobility of the two
radionuclides in the marine environment.

3.1.2 Influence of depth

Figure 6 illustrates the relationship between
depth and the concentrations of radioactivity for *°Ra
(a) and *Th (b) in sediment. Each point on the graphs
corresponds to a specific sampling station at a given
depth. The data suggest that there is no linear rela-
tionship between depth and radionuclide concentra-
tion in the sediment. However, points 1 and 5, which
represent the shallowest depths, along with point 3,
the deepest station, show relatively similar levels of
radioactivity for both *Ra and #*2Th.

Copyright ©2026 Faculty of Fisheries and Marine Universitas Airlangga
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3.2 Discussion
3.2.17°Ra and **’Th behaviour

The presence of 2°Ra in the seawater column
may drive its concentration in sediments of Cirebon
waters, which are dominated by fine silt sand (Muslim
et al., 2024; A. A. Ramadan and Diab, 2013; Rama-
samy ef al., 2011). Fine silt sand has a wider layer

of adsorption than other larger sediment fractions, so
it can bind more elements according to the coarse-
grained size (Yii er al., 2007; Alviandini er al., 2019;
Pappa et al., 2016; Patiris et al., 2016). In addition,
high activity values at some station points may also
be associated with radionuclide sources originating
from fly ash as waste from CFPS activities (Pandit ef
al., 2011) stated that natural radionuclides in fly ash
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are two to five times higher than raw coal, so stations
close to CFPS activities around Cirebon waters have
the potential to obtain higher activity values. (Pandit
et al., 2011) stated that natural radionuclides in fly
ash are two to five times higher than in raw coal, so
stations close to CFPS activities around Cirebon wa-
ters have the potential to obtain higher activity values.
The activity value of ?**Ra is influenced by the chem-
ical properties of the element (Marwoto et al., 2019),
such as its high solubility in sediment (Ramasamy e?
al., 2011; Suresh et al., 2011; Alfonso et al., 2014,
Al-Absi et al., 2016; Alviandini et al., 2019; Fallah et
al., 2019; Suliman and Alsafi, 2021); volatility; and
condensation (Hasani er al., 2014). ?2°Ra is mobile
(Papaefthymiou et a/., 2017) and undergoes chemical
reduction, and it can be deposited in sediments (Zheng
et al., 2002; Papaefthymiou et al., 2017).

Song et al. (2017) stated that the farther away
the pollutant source, the smaller the concentration of
radium radioactivity because it is affected by the pro-
cess of dilution and radioactive decay. The detection
of 22Ra in Cirebon waters is related to the highly sol-
uble nature of ?*Ra in water (Khandaker ez al., 2015;
Suliman and Alsafi, 2021), the ability to maintain its
presence after being released into seawater (Charette
et al.,2007), the process of dissolution and desorption
in water (Kiro ef al., 2014), the decay of the parent nu-
clide in seawater (Yi ef a/., 2019) and the dissolution
of mineral grains containing radium (Kraemer ef al/.,
2014). The horizontal distribution of ?*°Ra in Cirebon
Coastal Waters was higher in waters close to the pol-
lutant source and lower as the distance from the source
increased. The high concentration of *°Ra in some sta-
tions may be associated with the nearest station posi-
tion to CFPS Cirebon. The waste products from CFPS
are known to be a natural source of radionuclides that
enter the environment (Cevik ef al., 2007; Papp et al.,
2002). In accordance with the statement of Bhangare
et al. (2014), coal-fired CFPS releases natural radio-
nuclides during the combustion process that can cause
high radioactivity.

The value of 2*2Th activity can be associated
with geochemical properties (Ramasamy e al., 2011;
Suresh et al., 2011; Alfonso et al., 2014; Alviandini et
al., 2019). Thorium is insoluble in seawater (Jurina et
al., 2013; Suresh ef al., 2011), and it is often associat-
ed with solid materials (El-Taher and Madkour, 2011;
Alfonso et al., 2014; Ravisankar et al., 2015; Al-Ab-
si et al., 2016; Papaefthymiou et al., 2017; Fallah et
al., 2019), so the thorium activity value obtained in
sediments was higher. The presence of »>Th may be
influenced by sediment properties in Cirebon waters,
which are dominated by silt sand. Grain size with fine
texture has a larger surface area (Ramadan and Diab,

2013; Ramasamy et al., 2011), so it can bind stron-
ger elements than coarse-grained size (Yii et al., 2007,
Alviandini et al., 2019; Pappa et al., 2016; Patiris et
al., 2016). Pandit et al. (2011) stated that natural ra-
dionuclides in fly ash are two to five times higher than
in raw coal. We may assume that the CFPS Cirebon
activity may generate potentially higher radionuclide
activity values around the Cirebon coastal water.

Thorium is a reactive particle (Lippold et al.,
2012; Santschi et al., 2006) of a larger size (Kenny et
al., 2019; Rehman et al., 2013) that can be removed
quickly in the water column, then it is deposited in the
sediments (Lippold ez a/., 2012). Thorium is insoluble
in water or almost completely insoluble (Khandaker
et al., 2015; Suliman and Alsafi, 2021) and easily dis-
solves in non-polar substances (Cotton and Wilkinson,
1988 in Ma et al., 2016). These phenomena are also
related to the location of Cirebon waters, located in
the northern coastal waters of Java, making the area
widely used for shipping activities (Nurkhasanah et
al., 2019) and becoming an international gateway to
the region (Jaelani, 2016; Muslim et al., 2024). Cire-
bon City has a port that plays an active role in nation-
al and international trade, which cannot be separated
from shipping activities (Astuti, 2018). It is assumed
that the high concentration of ***Th radioactivity at
station 3 was influenced by shipping activities that
can cause sediment resuspension in these waters. It is
well known that the resuspension process is one of the
sources of radionuclides detected in seawater (Dara-
bi-Golestan et al., 2017; Muslim et al., 2024; El-Sa-
harty, 2013).

3.2.2 Distribution of **Ra and **’Th

The highest concentration of >*Ra radioactivi-
ty was detected at a depth of (-6 m), while the highest
concentration of »**Th radioactivity was detected at a
depth of (-8 m). Water depth affects the resuspension
and deposition of radionuclide material (Marwoto et
al., 2019). In addition, depth also affects particle sedi-
mentation time. Putra and Nugroho, (2017) in Pawitra
et al. (2022) stated that sediment distribution correlat-
ed with depth, while the deeper sediment is relatively
finer. Finer sediment particles are found in suspension
over a longer time and distance. In line with the in-
crease in the weight of sediment particles, particles
are likely to quickly settle in areas close to the source
(Ikhwan et al., 2015; Selim et al., 2022). According
to Kurniawan et al. (2014) and Marwoto et al. (2019),
water conditions, such as current speed and bathyme-
try, result in continuous stirring. The stirring potential-
ly caused sediment resuspension and provided radio-
nuclides bound to sand-textured sediments into the air.
The release of radionuclides from sediments reduced
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the activity value of radionuclides in sediments (Mus-
lim et al., 2015; Marwoto ef al., 2019).

The results of radionuclide activity values ob-
tained in Cirebon waters near CFPS are compared with
other studies (national and international). The range
of 22Ra and *Th activity values in Cirebon waters is
much lower than the values reported in South Kali-
mantan, Central Sulawesi, Banda Sea, South Sulawesi
Coast, Tanjung Jati Jepara, and Bangka Island Coast,
Nansha Sea, Russian Barents Sea, Aliaga Bay, Izmir,
Turkey, Potenga Sea, Bangladesh, and Baltic Sea.
However, based on the comparison with other studies
(national and international), the highest activity value
is found in the coastal area of Bangka Island. The high
activity value is due to the tin mining activity and geo-
logical formations (Prihatiningsih ez al., 2012). Tin
ore contains uranium and thorium that bind to various
minerals (Prihatiningsih ef a/., 2012), so it has the po-
tential to increase natural radionuclides **°Ra and *Th
in the environment around the coast of Bangka Island.

Differences in activity values are influenced
by geological formations (Salahel and Vesterbacka,
2012; Ravisankar et al., 2015; Yasmin et al., 2018),
the process of deposition of radionuclides and heavy
minerals along the coastline at high tide (Alshahri,
2017; Zorer, 2019; Wais and Najam, 2021), chemi-
cal properties (Onjefu et al., 2017; Ramasamy ef al.,
2011), physical, and geochemical properties and their
environment (Agbalagba and Onoja, 2011; Al-Trabul-
sy et al., 2011; El-Taher and Madkour, 2011; Alfonso
et al., 2014; Al-Absi et al., 2016; Ravisankar et al.,
2015; Uosif et al., 2016; Zakaly et al., 2019). Differ-
ences in particle size distribution also affect the vari-
ation of natural radionuclide activity values in marine
sediments (Jurina ez a/., 2013; Ravisankar ef al., 2015;
Ulyantsev ef al., 2023). The amount of radionuclide
accumulation in marine sediments depends on the
chemical properties of the radionuclide, the physical
and chemical properties of the sediment: sediment
type, grain size, and organic content, and geography:
flow direction and flow rate (Khuntong ef al., 2015;
Muslim et al., 2024).

In Southeast Asian regions, such as Indonesia
and Vietnam, the radioactivity concentration of ?*°Ra
ranged from 0.00703 Bg/L to 0.65 Bq/L, and **Th
ranged from 0.00162 Bq/L to 0.14 Bg/L. The highest
radioactivity concentration was found in Indonesia’s
Muria Peninsula region. The candidate area of a nu-
clear power plant on the Muria Peninsula (Asmara,
2020), a power plant in Tanjung Jati (Kurniawan ef a/.,
2014), and mining activities that are potential resourc-
es on the Muria Peninsula (Wiyono dan Sunarto, 2016)
are known to be natural sources of radioactivity in the
region. The detection of **Ra and ***Th in Vietnam

is attributed to mining activities that are well known
to produce radioactive elements in the form of dust
(Csavina et al.,2012). The Rare Earth Elements (REE)
mining activities are well known to spread in Vietnam,
especially in northern Vietnam (Van e a/., 2019). In
West Asian regions such as Oman, Turkey, and Ku-
wait, radioactivity concentrations of 2**Ra ranged
from 0.0022 Bqg/L to 4.21 Bq/L, and ***Th ranged from
0.00289 Bg/L to 2.17 Bg/L. The high concentration
of radioactivity detected in the Oman region is relat-
ed to mining activities, which were the most common
industrial activities in the region (Palanivel and Vic-
tor, 2020). Potential natural sources of radionuclides
in Turkey originate from plutonic and volcanic rocks
that are common in certain areas of Turkey (Temizel
et al., 2020). Plutonic rock types such as granodiorite
and granite are also found in other areas of Turkey
(Kaygusuz et al., 2021). Plutonic rocks are rock types
with high levels of natural radioactivity (Yalcin ef al.,
2020).

Moving to the European region, Montenegro
has higher radioactivity concentrations of **Ra, rang-
ing from 0.00161 Bg/L to 0.08, and ***Th, of 0.00109
Bg/L to 0.10 Bg/L. Montenegro is a region with many
rocks, e.q. sediments, metamorphic, and magmatic
rocks were highly associated with thorium (Dragovic
et al., 2006). Moreover, the coastal part of Montene-
gro has active volcanoes such as Mount Lovcen (Zebre
and Stepisnik, 2014) and Mount Orjen (Woodward et
al., 2014). It may contribute to the concentration of
22Ra and **’Th radioactivity in Montenegro. Moving
to northern Africa, the *Ra and **Th radioactivity
concentrations found in Egypt were 5.4 Bq/L and 3.1
Bq/L. Egypt is known to have a phosphate rock in-
dustry with a smaller activity level, which affects the
level of radioactivity (Abbady et a/., 2005). The con-
centration activity of radionuclide detected in Cirebon
coastal waters tends to be lower than the concentra-
tion activity value of radionuclide in seawater samples
from several regions of the world.

4. Conclusion

Based on the research conducted in the coastal
waters of Cirebon near CFPS, it was concluded that
the concentration of 2*°Ra and **?Th radioactivity de-
tected in the sediment is higher than in the water col-
umn. These higher concentrations of them in sediment
may indicate higher accumulation processes of them
in sediment. The radionuclides’ activity monitoring
should be provided to ensure they are managed ac-
cording to government regulations and decrease fur-
ther impact on biota and humankind.
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