

JIPK (JURNAL ILMIAH PERIKANAN DAN KELAUTAN)

Scientific Journal of Fisheries and Marine

Research Article

Activity Concentration of ²²⁶Ra and ²³²Th in Sediments and Seawater of Cirebon (Northern West Java)

Moh. Muhaemin^{1*}, Wahyu Retno Prihatiningsih², Mohamad Nur Yahya², Yogi Priasetyono², Anggun Dinanti Pantis¹, Salsabela Marisya Athariq¹, Murdahayu Makmur², Deddy Irawan Permana Putra², Ambar Winansi²

¹Marine Science Department, University of Lampung, Lampung. Indonesia ²Radioecology Group Research, Research Center for Safety, Metrology and Nuclear Quality Technology, National Research and Innovation Agency, South Tangerang. Indonesia

ARTICLE INFO

Received: Sept 30, 2025 Accepted: Oct 29, 2025 Published: Nov 06, 2025 Available online: Jan 30, 2026

*) Corresponding author: E-mail: moh.muhaemin@fp.unila. ac.id

Keywords:

Gamma Spectroscopic Natural Radionuclides Sediment Radioactivity Radium-226 Thorium-232

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0/)

Abstract

²²⁶Ra and ²³²Th are natural radionuclides with long half-lives, and they have a dangerous radiation exposure effect on marine biota and even humankind. This study investigates the activity concentration and horizontal distribution of natural radionuclides ²²⁶Ra and ²³²Th in sediments and seawater from the coastal waters of Cirebon, Indonesia, directly adjacent to the Cirebon Coal-Fired Power Station (CFPS). The activity concentrations of ²²⁶Ra and ²³²Th radioactivity were measured using gamma-ray spectrometry. Radioactivity analysis of ²²⁶Ra and ²³²Th was conducted on sediment and seawater columns. Furthermore, Ocean Data View (ODV) version 5.8.2 software was used to analyse the horizontal distribution pattern. The results showed that the highest concentrations of ²²⁶Ra and ²³²Th radioactivity were found in the sediment rather than the water column, even though they varied by location. The concentration activity of ²²⁶Ra and ²³²Th radioactivity was found to be a linear function of distance from the potential pollution source. Higher activity was detected at stations closer to the pollution source (CFPS). There was no significant effect of the depth of radionuclide distribution. Further monitoring activities at Cirebon's CFPS should be conducted to predict and manage the impact on biota and human life.

Cite this as: Muhaemin, M., Prihatiningsih, W. R., Yahya, M. N., Priasetyono, Y., Pantis, A. D., Athariq, S. M., Makmur, M., Putra, D. I. P., & Winansi, A. (2026). Activity Concentration of ²²⁶Ra and ²³²Th in Sediments and Seawater of Cirebon (Northern West Java). *Jurnal Ilmiah Perikanan dan Kelautan*, 18(1):30-45.https://doi.org/10.20473/jipk.v18i1.79658

1. Introduction

Cirebon waters have diverse and dynamic activities (Haryati et al., 2023). Activities such as agriculture, industry, mining, and fisheries are known to be the leading sectors in the area (Jaelani, 2016). Using coal as a fuel for CFPS in industrial activity can cause NORM (Naturally Occurring Radioactive Material) (Malaka, 2019; Anggarini et al., 2018). PT Cirebon Power Services (CPS), the coal-fired power plant established in 1980, was located in Cirebon (Yudisworo and Heri, 2019). Cirebon has 2 CFPSs capable of producing 660 mW and 1000 mW of electrical energy (Widiawaty et al., 2020). The existence of the Cirebon CFPS with coal fuel contributes to changes in environmental qualities that are a concern on a national scale (Dede et al., 2020). Coal combustion, as the driving force of CFPS turbines, contributes majorly to Naturally Occurring Radioactive Materials (NORM) (Prihatiningsih and Hudiyono, 2013). Coal used as CFPS fuel produces releases in the form of fly ash and bottom (Ozden et al., 2018) and contains natural radionuclides ²²⁶Ra and ²³²Th in solid and gaseous form that can accumulate in the environment and living organisms (Cevik et al., 2007).

Radium (Ra) and thorium (Th) are of concern in terms of their content in NORM because they have very long half-lives, are distributed throughout the environment (waters, sediments, air, soil, and food-stuffs) (Chau et al., 2011; Milenkovic et al., 2019). The effects of their radiation exposure are dangerous to human health (Taher et al., 2018), and even the reproductive system, mortality, and morbidity of marine organisms (Garnier-Laplace et al., 2008; Suliman and Alsafi, 2021). It is well known that radionuclides entering the marine environment contribute to increasing the radiation dose received by marine organisms and then transferred to humans through the food chain (Kiris and Baltas, 2019).

Cirebon is the necessary center for producing marine capture fishery products to ensure the availability of fishery food stocks in West Java province and DKI Jakarta (Supriyadi et al., 2019). The potential of fish resources in Cirebon is more abundant, amounting to 27,553.01 tons in 2018 and 34,135 tons in 2020 (Central Bureau of Statistics-Cirebon Regency, 2021). However, along with the potential and high yield of fisheries production, several activities can cause an increase in radionuclide concentrations in Cirebon Waters. Natural radionuclides released into the marine environment will generally be dispersed through water and sediments (Aryanti et al., 2021).

Studies on the presence of natural radionu-

clides in sediments globally have been conducted by most countries, such as the Potenga Sea (Yasmin et al., 2018), the Nansha Sea (Liu et al., 2021), the Barents (Yakovlev and Puchkov, 2020), the Gulf of Aliağa İzmir (Özden and Pehlivanoglu, 2021), and the Baltic Sea (Salahel and Vesterbacka, 2012). Meanwhile, only a small number of researchers at the global level have researched natural radionuclides in marine waters, such as Akram et al. (2005) in the Arabian Sea, Zare et al. (2015), and Darabi-Golestan et al. (2017) in the Oman Sea. In Indonesia, research on natural radionuclides in sediments has been conducted on the coast of Bangka Island (Prihatiningsih et al., 2012), Tanjung Jati Jepara (Alviandini et al., 2019), South Sulawesi (Prihatiningsih and Makmur, 2021), Central Sulawesi (Siregar et al., 2021), and South Kalimantan (Prihatiningsih et al., 2020). Meanwhile, research on natural radionuclides in Indonesian waters was conducted by (Sukirno et al., 2003) in the Lemahabang Muria, and Sasongko et al. (2012) in the Muria Peninsula. Cirebon is one of the areas potentially polluted by natural radionuclides from various activities, which can result in increased levels of these radionuclides in the water column or sediment surface. Muslim et al. (2024) showed that the sediment surface radionuclide of Cirebon CFPS did not show any significant radiological health risk to the ecosystem, but still lacks information on natural radionuclides in the water column and their interconnection in the ecosystem. This research describes the horizontal distribution and initial concentration of specific radionuclides in the water column and the sediment surface of the Cirebon coastal water near the CFPS. Furthermore, it may serve as a basis for future monitoring of Cirebon's CFPS.

2. Materials and Methods

2.1 Materials

2.1.1 The equipment

Sediment equipment used in this research was a Sediment Grab (1,000 cm²), Van Veen grab sampler (Duncan, Denmark), Sediment Cruiser (Sediment Cruiser Fritsch Pulverisette 14, Landsberger, Berlin), and Automatic Oven (Oven Memmert, Schwabach, Germany), Gamma Spectrometry (Canberra type GX2018, Mirion, Germany). Global Positioning System (Garmin GPS eTrex 10 Sea, Jakarta, Indonesia) was used to locate the accurate position of the sampling station. The early chemical seawater properties used a pH indicator (Universal Indicator, Merck, Germany). Vacuum filtration (Sigma-Aldrich, Merck, Germany) and a Polycarbonate filter (Sigma-Aldrich, Merck, Germany) were used for sample preparation

before radionuclide analysis.

2.1.1 The materials

Seawater sample 40-60 liters, sediment sample of 2-3 kg for each station, ammonia (NH₃) 0.25 N (PA) (Sigma-Aldrich, Merck, Germany), KMnO₄ 250 μl 0.25 N (PA) (Sigma-Aldrich, Merck, Germany), MnCl₂ 100 μL 0.25 N (PA) (Sigma-Aldrich, Merck, Germany), Nitric acid (HNO₃) stock (PA) (Sigma-Aldrich, Merck, Germany), and standard reference (RG-U, RG-Th, RG-K, ¹⁵²Eu, Merck, Germany).

2.1.3 Ethical approval

This study does not require ethical approval because it does not involve the use of experimental animals.

2.2 Methods

2.2.1 Sampling methods

Sediment and seawater in situ samples were collected once in October 2022. Sediment samples were collected from five stations (Figure 1), while water column samples were collected from six stations (Figure 2) in the Cirebon coastal waters near a potential pollution source (CFPS). The station is designed to predict the impact of the distance variable on the horizontal distribution of radionuclide. The stations were located near the potential pollution source in shallow coastal water with depths of 10 to 20 m. The sampling coordinates were 6 stations for seawater column samples and 5 stations for sediment samples. The station coordinates for sea water column samples were station 1 (6° 46' 04.75" S / 108° 36' 42.48" E), station 2 (6° 45' 23.55" S / 108° 37' 01.35" E), station 3 (6° 44' 55.44" S / 108° 37' 14.48" E), station 4 (6° 45' 27.41" S / 108° 37' 34.24" E), station 5 (6° 45' 53.39" S / 108° 37' 43.81" E), and station 6 (6° 45' 47.77" S / 108° 36' 19.70" E). The station coordinates for sediment samples were station 1 (6° 46' 04.75" S / 108° 36' 42.48" E), station 2 (6° 45' 23.55" S / 108° 37' 01.35" E), station 3 (6° 44' 55.44" S / 108° 37' 14.48" E), station 4 (6° 45' 27.41" S / 108° 37' 34.24" E), and station 5 (6° 45' 47.77" S / 108° 36' 19.70" E).

2.2.2 Sample preparation

Sediment samples were collected as much as 2-3 kg using a sediment grab, and then seawater samples were collected as much as 40-60 litres, acidified to pH <1, stored in a container/zip lock plastic, cooled (<10 °C), and labelled for laboratory analysis. Samples will be analysed in the next two days after sampling.

2.3 Analysis Data

2.3.1 Gamma spectroscopic analysis

Qualitative and quantitative analysis of radionuclide samples performed with a computer-based, High-Purity Germanium (HPGe) γ-spectrometry and connected to Genie-2000 analysis software (Akram et al., 2005; Diab et al., 2019). System calibration and γ-spectrum analysis were performed with Genie-2000 software (CANBERRA) (Akram et al., 2005; Diab et al., 2019). System calibration and analysis for efficiency calibration used International Atomic Energy Agency (IAEA) reference standards such as RG-U $(4940 \pm 30 \text{ Bq kg-1})$ and RG-Th $(3250 \pm 90 \text{ Bq kg-1})$ (Akram et al., 2005). The time spent counting measurements of the samples was approximately 295,000 seconds. The activity concentrations of ²²⁶Ra and ²³²Th were measured through their decay products in radioactive equilibrium. The concentration of 226Ra was measured via γ-particles ²¹⁴Pb (295 keV, 351.9 keV) and ²¹⁴Bi (609.3 keV, 1120.3 keV, 1764 keV). The concentration of ²³²Th was measured via γ-particles ²¹²Pb (238.6 keV), ²²⁸Ac (911 keV, 338 keV), and ²⁰⁸Tl (583 keV) (Akram et al., 2005).

2.3.2 Determination of radioactivity concentration of ²²⁶Ra and ²³²Th

For both samples, the radioactivity concentrations of ²²⁶Ra and ²³²Th were determined through their decay product activities using the following formula:

$$A = \frac{N}{e \times m \times \eta} \qquad(i)$$

Where

A = is the concentration of radioactivity to be measured (Bq kg⁻¹) for sediment samples,

Bq/L = for seawater samples,

N = is the peak area per unit of time (counts/s),

e = is the peak abundance in the observed radionuclide,

m = is the mass of the sediment sample (kg),

 η = is the efficiency value for each peak of the observed radionuclide (El-Taher *et al.*, 2010; Suseno and Prihatiningsih, 2014).

Extraction of radionuclides from seawater was carried out radiochemically through manganese dioxide (MnO₂) precipitation (Uddin et al., 2017). In detail, 6 drops of 25% ammonia (NH₃) and 250 μL of KMnO₄ solution were added to 20 litres of filtered seawater sample. The samples were mixed with 100 μL of MnCl₂ solution, and MnO₂ suspension particles were formed. After 8 hours, the suspension was filtered using a 1 μm polycarbonate filter to obtain the MnO₂ precipitate. The precipitates were separated by vacuum filtration and then dried at 100-105 °C in an

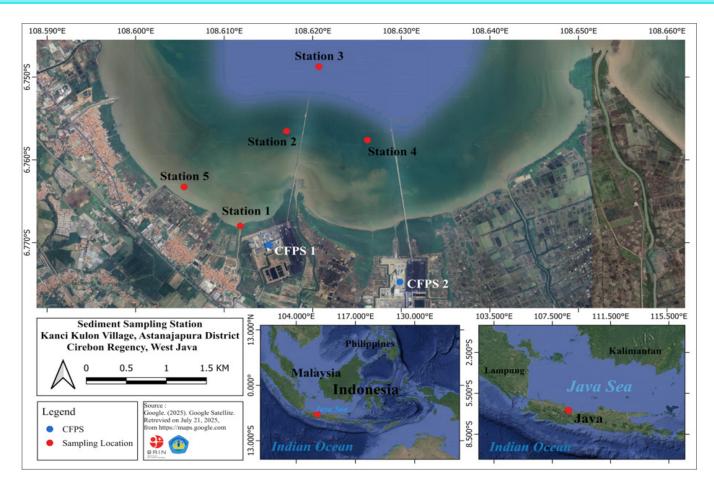


Figure 1. Sediment sampling stations.



Figure 2. Seawater sampling station.

oven until they reached a constant weight. After the precipitate reached room temperature (25°C), the total precipitate was weighed and equated to the standard geometry (Loeff and Moore, 1999). The use of resins with MnO₂ can increase the concentration of the sample before it enters the radionuclide analysis or detection stage (Varga, 2007). The initial radioactivity concentrations of ²²⁶Ra and ²³²Th were too low to detect; the concentrations were determined from the average concentrations of their decay products. The total initial concentration of ²²⁶Ra was determined by measuring the average radioactivity concentration of its decay element, i.e., ²¹⁴Pb and ²¹⁴Bi. Meanwhile, the total initial concentration of ²³²Th was determined by measuring the average radioactivity concentration of, i.e., ²¹²Pb, ²⁰⁸Tl, and ²²⁸Ac (Hamby and Tynybekov, 2002).

2.3.3 Analysis and visualization of radioactivity concentration of ²²⁶Ra and ²³²Th

The horizontal distribution of each radionuclide was analyzed and visualized using Ocean Data View (ODV) online version 5.8.2 at https://webodvegi-ace.cloud.ba.infn.it/. Spatial analysis was conducted using *Ocean Data View* (v5.8.2) with inverse distance weighting (IDW) interpolation at a 0.01° grid resolution. All measurements were performed in triplicate, with results expressed as mean \pm 1 SD. Quality assurance was verified using IAEA-315 reference material with recovery rates of 95-103%.

3. Results and Discussion

3.1 Results

3.1.1 Radioactivity concentration

The radioactivity concentrations of ²²⁶Ra and ²³²Th in sediments worldwide (Table 2) and seawater worldwide (Table 3) can be compared with our samples (Table 1) from several stations (Figures 1 - 2). The highest radioactivity concentration for ²²⁶Ra in sediment was detected at station 2 at 25.9 Bg/kg, and in seawater at station 1 at 0.0033 Bq/L. The lowest radioactivity concentration for ²²⁶Ra in sediment was detected at station 4 at 23.7 Bq/kg, and in seawater at station 3 at 0.0014 Bq/L. The highest radioactivity concentration for ²³²Th in sediment was detected at station 3 at 28.89 Bq/kg, and in seawater at station 3 at 0.0082 Bq/L. The lowest radioactivity concentration for ²³²Th in sediment was detected at station 4 at 24.47 Bq/kg, and in seawater at station 2 at 0.0069 Bq/L. The average values of ²²⁶Ra and ²³²Th were 10,000 and 3,800 times higher than those in seawater samples, respectively. These were in line with the results of studies in other regions that report that the concentration of ²²⁶Ra and ²³²Th radioactivity in sediment samples is higher than in seawater samples (Sasongko et al., 2012; Antovic and Ivanka, 2014; Tham et al., 2022).

The horizontal distribution maps of radionuclides were processed using Ocean Data View (ODV)

Table 2. Comparison of radioactivity concentrations in sediments world wide

Region	Results of Natural Radionuclide Measurements (Bq/kg)		Source	
8	²²⁶ Ra ²³² Th			
Cirebon Waters	23.75 – 25.94	24.47 – 28.89	Present Study	
South Kalimantan	9.83 - 53.46	16.88 - 32.91	(Prihatiningsih et al., 2020)	
Banda Sea, Central Sulawesi	62.10	50.05	(Siregar et al., 2021)	
Coast of South Sulawesi	16.55 - 47.29	20.16 - 52.73	(Prihatiningsih and Makmur, 2021)	
Tanjung Jati Jepara	42.42 - 77.77	99.19 - 212.34	(Alviandini et al., 2019)	
Coast of Bangka Island	18.69 - 627.17	74.78 - 2333.50	(Prihatiningsih et al., 2012)	
Potenga Sea, Bangladesh	94.39	121.9	(Yasmin et al., 2018)	
Nansha Sea, South China Sea	14.60 - 38.51	15.81 - 49.21	(Liu et al., 2021)	
Barents Sea, Russia	0.50 - 48.30	3.60 - 54.00	(Yakovlev and Puchkov, 2020)	
Aliağa Bay, İzmir (Türkiye)	23.54 - 59.46	37.54 - 64.37	(Özden and Pehlivanoglu, 2021)	
Baltic Sea, Finland	45 - 98	75 – 83	(Salahel and Vesterbacka, 2012)	

Table 3. Comparison of radioactivity concentrations in seawater world wide

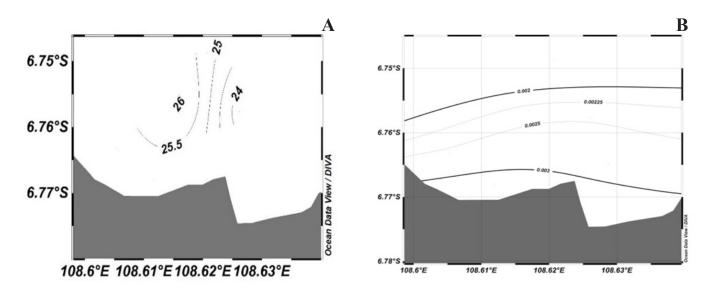

Region	Results of Natural Radionuclide Measurements (Bq/L)		Source	
	²²⁶ Ra	²³² Th		
North Coast of The Sea of Oman	2.19 - 2.82	1.66 – 2.17	(Zare et al., 2015; Darabi-Golestan et al., 2017)	
Eastern Black Sea Coast, Turkiye	0.0022 - 0.00468	0.00289 - 0.00483	83 (Kiris and Baltas, 2019)	
Gulf of Tonkin (Quang Ninh), Vietnam	0.00703 - 0.0113	0.00162 - 0.00232	(Tham et al., 2022)	
Muria Peninsula Beach Waters	0.02 - 0.65	0.01 - 0.14	(Sasongko <i>et al.</i> , 2012)	
Southern Adriatic Sea (Boka Kotorska Bay)	0.08	0.10	(Antovic and Ivanka, 2014)	
Mediterranean Sea Coast, Egypt	5.4	3.1	(Ramadan et al., 2017)	
Republic of Montenegro	0.00161 - 0.0198	0.00109 - 0.00775	(Andjelic et al., 2003)	
Wanasa Beach, Kuwait	4.21	1.02	(Abbas et al., 2020)	
Cirebon Waters	0.0014 - 0.0033	0.0069 - 0.0082	This research	

 Table 1. Radioactivity concentration in Cirebon coastal water

	Sediment Radioactivity Concentration (Bq/kg)		Seawater Radioactivity Concentration (Bq/L)		
Elemen	²²⁶ Ra	²³² Th	²²⁶ Ra	²³² Th	
Mean	25.05 ± 0.7982	27.8 ± 1.8526	0.0025 ± 0.0006	0.0073 ± 0.0005	
Range	23.75 – 25.94	24.47 – 28.89	0.0014 - 0.0033	0.0069 - 0.0082	

software. Spatial distribution maps generated using *Ocean Data View* revealed slightly elevated activities at offshore stations, suggesting lateral sediment transport dominates over direct inputs from the CFPS dis

charge. Variations in the concentration of natural radioactivity ²²⁶Ra and ²³²Th were detected from samples in the Cirebon Coastal Waters area facing the CFPS (Figures 4 and 5). Figure 3 presents a spectrum sample

Figure 4. Distribution map of ²²⁶Ra in Cirebon waters (a) sediments (b) waters.

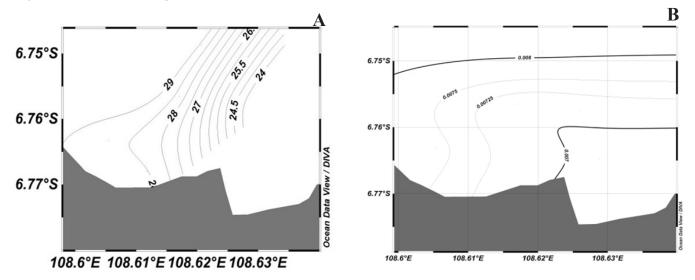


Figure 5. Distribution map of ²³²Th in Cirebon waters (a) sediments (b) waters.

from the Gamma Spectrometer, which shows energy peaks of radionuclides as described in the methods. Figures 4 and 5 illustrate the distribution patterns of the natural radionuclides ²²⁶Ra and ²³²Th in the waters of Cirebon, highlighting distinct behaviours in sediment and water. In Figure 4b, it is evident that the concentration of ²²⁶Ra tends to be higher in the southern part of the study area, which is closer to the coastline. Near the shore, the concentration reaches 0.003 Bq kg⁻¹, while at the farthest point from the land, it is recorded at 0.002 Bq kg⁻¹. The concentration of ²²⁶Ra in the water column is lower than that of ²³²Th (Figures 4b and 5b). In contrast, Figure 5b indicates that ²³²Th concentrations are relatively higher at locations farther from the shore, reaching up to 0.008Bq kg⁻¹, compared to 0.007 Bq kg⁻¹ near the coast. Both radionuclides exhibit a similar trend, with their concentrations in sediments being higher than in the water column, as shown in Figures 4 and 5. However, they also display relatively uniform concentration values across the study area. This uniformity may be attributed to differences in the origin and mobility of the two radionuclides in the marine environment.

3.1.2 Influence of depth

Figure 6 illustrates the relationship between depth and the concentrations of radioactivity for ²²⁶Ra (a) and ²³²Th (b) in sediment. Each point on the graphs corresponds to a specific sampling station at a given depth. The data suggest that there is no linear relationship between depth and radionuclide concentration in the sediment. However, points 1 and 5, which represent the shallowest depths, along with point 3, the deepest station, show relatively similar levels of radioactivity for both ²²⁶Ra and ²³²Th.

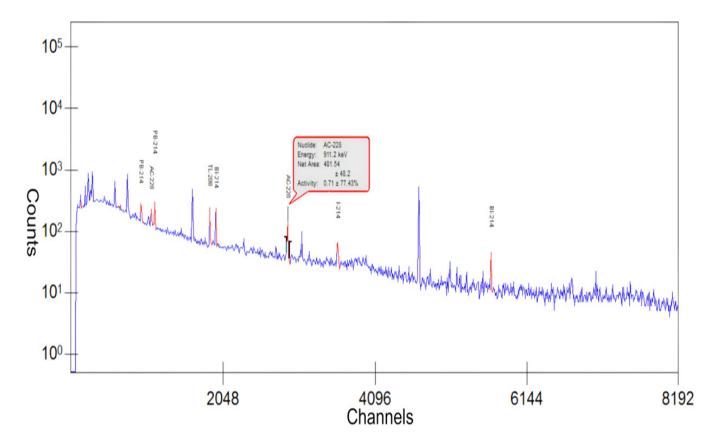
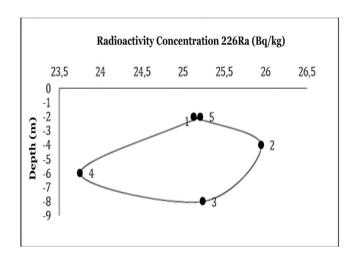
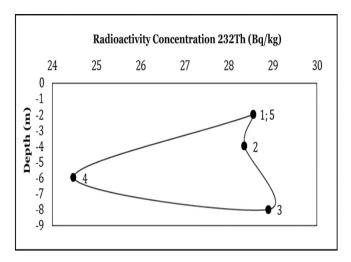




Figure 3. Sampel spectrum of gamma spectrometer.

Figure 6. Graph of the relationship between the concentration of radioactivity in sediments at each station (•) and the depth (a) ²²⁶Ra and (b) ²³²Th.

3.2 Discussion

3.2.1 ²²⁶Ra and ²³²Th behaviour

The presence of ²²⁶Ra in the seawater column may drive its concentration in sediments of Cirebon waters, which are dominated by fine silt sand (Muslim *et al.*, 2024; A. A. Ramadan and Diab, 2013; Ramasamy *et al.*, 2011). Fine silt sand has a wider layer

of adsorption than other larger sediment fractions, so it can bind more elements according to the coarse-grained size (Yii et al., 2007; Alviandini et al., 2019; Pappa et al., 2016; Patiris et al., 2016). In addition, high activity values at some station points may also be associated with radionuclide sources originating from fly ash as waste from CFPS activities (Pandit et al., 2011) stated that natural radionuclides in fly ash

are two to five times higher than raw coal, so stations close to CFPS activities around Cirebon waters have the potential to obtain higher activity values. (Pandit et al., 2011) stated that natural radionuclides in fly ash are two to five times higher than in raw coal, so stations close to CFPS activities around Cirebon waters have the potential to obtain higher activity values. The activity value of ²²⁶Ra is influenced by the chemical properties of the element (Marwoto et al., 2019), such as its high solubility in sediment (Ramasamy et al., 2011; Suresh et al., 2011; Alfonso et al., 2014; Al-Absi et al., 2016; Alviandini et al., 2019; Fallah et al., 2019; Suliman and Alsafi, 2021); volatility; and condensation (Hasani et al., 2014). 226Ra is mobile (Papaefthymiou et al., 2017) and undergoes chemical reduction, and it can be deposited in sediments (Zheng et al., 2002; Papaefthymiou et al., 2017).

Song et al. (2017) stated that the farther away the pollutant source, the smaller the concentration of radium radioactivity because it is affected by the process of dilution and radioactive decay. The detection of ²²⁶Ra in Cirebon waters is related to the highly soluble nature of ²²⁶Ra in water (Khandaker et al., 2015; Suliman and Alsafi, 2021), the ability to maintain its presence after being released into seawater (Charette et al., 2007), the process of dissolution and desorption in water (Kiro et al., 2014), the decay of the parent nuclide in seawater (Yi et al., 2019) and the dissolution of mineral grains containing radium (Kraemer et al., 2014). The horizontal distribution of ²²⁶Ra in Cirebon Coastal Waters was higher in waters close to the pollutant source and lower as the distance from the source increased. The high concentration of ²²⁶Ra in some stations may be associated with the nearest station position to CFPS Cirebon. The waste products from CFPS are known to be a natural source of radionuclides that enter the environment (Cevik et al., 2007; Papp et al., 2002). In accordance with the statement of Bhangare et al. (2014), coal-fired CFPS releases natural radionuclides during the combustion process that can cause high radioactivity.

The value of ²³²Th activity can be associated with geochemical properties (Ramasamy *et al.*, 2011; Suresh *et al.*, 2011; Alfonso *et al.*, 2014; Alviandini *et al.*, 2019). Thorium is insoluble in seawater (Jurina *et al.*, 2013; Suresh *et al.*, 2011), and it is often associated with solid materials (El-Taher and Madkour, 2011; Alfonso *et al.*, 2014; Ravisankar *et al.*, 2015; Al-Absi *et al.*, 2016; Papaefthymiou *et al.*, 2017; Fallah *et al.*, 2019), so the thorium activity value obtained in sediments was higher. The presence of ²³²Th may be influenced by sediment properties in Cirebon waters, which are dominated by silt sand. Grain size with fine texture has a larger surface area (Ramadan and Diab,

2013; Ramasamy et al., 2011), so it can bind stronger elements than coarse-grained size (Yii et al., 2007; Alviandini et al., 2019; Pappa et al., 2016; Patiris et al., 2016). Pandit et al. (2011) stated that natural radionuclides in fly ash are two to five times higher than in raw coal. We may assume that the CFPS Cirebon activity may generate potentially higher radionuclide activity values around the Cirebon coastal water.

Thorium is a reactive particle (Lippold et al., 2012; Santschi et al., 2006) of a larger size (Kenny et al., 2019; Rehman et al., 2013) that can be removed quickly in the water column, then it is deposited in the sediments (Lippold et al., 2012). Thorium is insoluble in water or almost completely insoluble (Khandaker et al., 2015; Suliman and Alsafi, 2021) and easily dissolves in non-polar substances (Cotton and Wilkinson, 1988 in Ma et al., 2016). These phenomena are also related to the location of Cirebon waters, located in the northern coastal waters of Java, making the area widely used for shipping activities (Nurkhasanah et al., 2019) and becoming an international gateway to the region (Jaelani, 2016; Muslim et al., 2024). Cirebon City has a port that plays an active role in national and international trade, which cannot be separated from shipping activities (Astuti, 2018). It is assumed that the high concentration of ²³²Th radioactivity at station 3 was influenced by shipping activities that can cause sediment resuspension in these waters. It is well known that the resuspension process is one of the sources of radionuclides detected in seawater (Darabi-Golestan et al., 2017; Muslim et al., 2024; El-Saharty, 2013).

3.2.2 Distribution of ²²⁶Ra and ²³²Th

The highest concentration of ²²⁶Ra radioactivity was detected at a depth of (-6 m), while the highest concentration of ²³²Th radioactivity was detected at a depth of (-8 m). Water depth affects the resuspension and deposition of radionuclide material (Marwoto et al., 2019). In addition, depth also affects particle sedimentation time. Putra and Nugroho, (2017) in Pawitra et al. (2022) stated that sediment distribution correlated with depth, while the deeper sediment is relatively finer. Finer sediment particles are found in suspension over a longer time and distance. In line with the increase in the weight of sediment particles, particles are likely to quickly settle in areas close to the source (Ikhwan et al., 2015; Selim et al., 2022). According to Kurniawan et al. (2014) and Marwoto et al. (2019), water conditions, such as current speed and bathymetry, result in continuous stirring. The stirring potentially caused sediment resuspension and provided radionuclides bound to sand-textured sediments into the air. The release of radionuclides from sediments reduced the activity value of radionuclides in sediments (Muslim *et al.*, 2015; Marwoto *et al.*, 2019).

The results of radionuclide activity values obtained in Cirebon waters near CFPS are compared with other studies (national and international). The range of ²²⁶Ra and ²³²Th activity values in Cirebon waters is much lower than the values reported in South Kalimantan, Central Sulawesi, Banda Sea, South Sulawesi Coast, Tanjung Jati Jepara, and Bangka Island Coast, Nansha Sea, Russian Barents Sea, Aliağa Bay, İzmir, Turkey, Potenga Sea, Bangladesh, and Baltic Sea. However, based on the comparison with other studies (national and international), the highest activity value is found in the coastal area of Bangka Island. The high activity value is due to the tin mining activity and geological formations (Prihatiningsih et al., 2012). Tin ore contains uranium and thorium that bind to various minerals (Prihatiningsih et al., 2012), so it has the potential to increase natural radionuclides ²²⁶Ra and ²³²Th in the environment around the coast of Bangka Island.

Differences in activity values are influenced by geological formations (Salahel and Vesterbacka, 2012; Ravisankar et al., 2015; Yasmin et al., 2018), the process of deposition of radionuclides and heavy minerals along the coastline at high tide (Alshahri, 2017; Zorer, 2019; Wais and Najam, 2021), chemical properties (Onjefu et al., 2017; Ramasamy et al., 2011), physical, and geochemical properties and their environment (Agbalagba and Onoja, 2011; Al-Trabulsy et al., 2011; El-Taher and Madkour, 2011; Alfonso et al., 2014; Al-Absi et al., 2016; Ravisankar et al., 2015; Uosif et al., 2016; Zakaly et al., 2019). Differences in particle size distribution also affect the variation of natural radionuclide activity values in marine sediments (Jurina et al., 2013; Ravisankar et al., 2015; Ulyantsev et al., 2023). The amount of radionuclide accumulation in marine sediments depends on the chemical properties of the radionuclide, the physical and chemical properties of the sediment: sediment type, grain size, and organic content, and geography: flow direction and flow rate (Khuntong et al., 2015; Muslim et al., 2024).

In Southeast Asian regions, such as Indonesia and Vietnam, the radioactivity concentration of ²²⁶Ra ranged from 0.00703 Bq/L to 0.65 Bq/L, and ²³²Th ranged from 0.00162 Bq/L to 0.14 Bq/L. The highest radioactivity concentration was found in Indonesia's Muria Peninsula region. The candidate area of a nuclear power plant on the Muria Peninsula (Asmara, 2020), a power plant in Tanjung Jati (Kurniawan *et al.*, 2014), and mining activities that are potential resources on the Muria Peninsula (Wiyono dan Sunarto, 2016) are known to be natural sources of radioactivity in the region. The detection of ²²⁶Ra and ²³²Th in Vietnam

is attributed to mining activities that are well known to produce radioactive elements in the form of dust (Csavina et al., 2012). The Rare Earth Elements (REE) mining activities are well known to spread in Vietnam, especially in northern Vietnam (Van et al., 2019). In West Asian regions such as Oman, Turkey, and Kuwait, radioactivity concentrations of ²²⁶Ra ranged from 0.0022 Bg/L to 4.21 Bg/L, and ²³²Th ranged from 0.00289 Bq/L to 2.17 Bq/L. The high concentration of radioactivity detected in the Oman region is related to mining activities, which were the most common industrial activities in the region (Palanivel and Victor, 2020). Potential natural sources of radionuclides in Turkey originate from plutonic and volcanic rocks that are common in certain areas of Turkey (Temizel et al., 2020). Plutonic rock types such as granodiorite and granite are also found in other areas of Turkey (Kaygusuz et al., 2021). Plutonic rocks are rock types with high levels of natural radioactivity (Yalcin et al., 2020).

Moving to the European region, Montenegro has higher radioactivity concentrations of ²²⁶Ra, ranging from 0.00161 Bq/L to 0.08, and ²³²Th, of 0.00109 Bq/L to 0.10 Bq/L. Montenegro is a region with many rocks, e.q. sediments, metamorphic, and magmatic rocks were highly associated with thorium (Dragovic et al., 2006). Moreover, the coastal part of Montenegro has active volcanoes such as Mount Lovcen (Žebre and Stepisnik, 2014) and Mount Orjen (Woodward et al., 2014). It may contribute to the concentration of ²²⁶Ra and ²³²Th radioactivity in Montenegro. Moving to northern Africa, the ²²⁶Ra and ²³²Th radioactivity concentrations found in Egypt were 5.4 Bq/L and 3.1 Bq/L. Egypt is known to have a phosphate rock industry with a smaller activity level, which affects the level of radioactivity (Abbady et al., 2005). The concentration activity of radionuclide detected in Cirebon coastal waters tends to be lower than the concentration activity value of radionuclide in seawater samples from several regions of the world.

4. Conclusion

Based on the research conducted in the coastal waters of Cirebon near CFPS, it was concluded that the concentration of ²²⁶Ra and ²³²Th radioactivity detected in the sediment is higher than in the water column. These higher concentrations of them in sediment may indicate higher accumulation processes of them in sediment. The radionuclides' activity monitoring should be provided to ensure they are managed according to government regulations and decrease further impact on biota and humankind.

Acknowledgement

The authors are grateful for the technical support of the Marine Radioecology Group Research at the Research Center for Radiation Safety and Metrology Technology – National Nuclear Energy Agency, which has now changed to the Research Center for Safety, Metrology, and Nuclear Quality Technology – National Research and Innovation Agency and Marine Science Department, Faculty of Agriculture, University of Lampung.

Authors' Contributions

All authors have contributed to the research project. Each author's contribution is as follows: MM; Conceptualization, Supervision, Writing – original draft, review & editing, resources, formal analysis. WRP; conceptualization, funding acquisition, resources, methodology, writing – original draft, review & editing. MNY; investigation, formal analysis, resources, methodology. YP; investigation, formal analysis, resources, methodology. ADP; writing – original draft, formal analysis, visualization. SMA; writing – original draft, formal analysis, visualization. MM; investigation, formal analysis, resources. DIPP; investigation, formal analysis, resources. AW; formal analysis, methodology.

Conflict of Interest

We declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Declaration of Artificial Intelligence (AI)

We affirm that no artificial intelligence (AI) tools, services, or technologies were employed in the creation, editing, or refinement of this manuscript. All content presented is the result of the independent intellectual efforts of the authors, ensuring originality and integrity.

Funding Information

This research was financially supported by the National Nuclear Energy Agency – Center for Radiation Safety and Metrology Technology Project No: 4/KMR/I/2020.

References

Abbady, A. G. E., Uosif, M. A. M., & El-Taher, A. (2005). Natural radioactivity and dose assessment for phosphate rocks from Wadi El-Mashash and El-Mahamid Mines, Egypt. *Journal of Envi*

- ronmental Radioactivity, 84(1):65-78.
- Abbas, Y. M., Helal, A. E. I., Salama, S., Mansour, N. A., & Seoud, M. S. (2020). Studies on the nuclear activities effects and it's impact on the marine life of the Arabian Gulf Region. *Nuclear and Radiation Physics*, 138(1):54018-54030
- Agbalagba, E. O., & Onoja, R. A. (2011). Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. *Journal of Environmental Radioactivity*, 102(7):667-671.
- Akram, M., Qureshi, R. M., Ahmad, N., Solaija, T. J., Mashiatullah, A., Ayub, M. A., & Irshad, S. (2005). Determination of natural and artificial radionuclides in sea water and sediments off Gwadar Coast, Arabian Sea. *The Nucleus*, 41(1):3221-3230.
- Al-Absi, E., Manasrah, R., Wahsha, M., & Al-Makahleh, M. (2016). Radionuclides levels in marine sediment and seagrass in the northern Gulf of Aqaba, Red Sea. *Fresenius Environmental Bulletin*, 25(9):3461-3474.
- Alfonso, J. A., Pérez, K., Palacios, D., Handt, H., LaBrecque, J. J., Mora, A., & Vásquez, Y. (2014). Distribution and environmental impact of radionuclides in marine sediments along the Venezuelan coast. *Journal of Radioanalytical and Nuclear Chemistry*, 300(1):219-224.
- Alshahri, F. (2017). Radioactivity of ²²⁶Ra, ²³²Th, ⁴⁰K and ¹³⁷Cs in beach sand and sediment near to desalination plant in eastern Saudi Arabia: Assessment of radiological impacts. *Journal of King Saud University Science*, 29(2):174-181.
- Al-Trabulsy, H. A., Khater, A. E. M., & Habbani, F. I. (2011). Radioactivity levels and radiological hazard indices at the Saudi coastline of the Gulf of Aqaba. *Radiation Physics and Chemistry*, 80(3):343-348.
- Alviandini, N. B., Muslim, M., Prihatiningsih, W. R., & Wulandari, S. Y. (2019). NORM activity on sediment basement in the waters of PLTU Tanjung Jati Jepara Water and its relation to sediment grain size and TOC. *Eksplorium*, 40(2):115-126.
- Andjelic, T., Svrkota, N., Zekic, R., Vukotic, P., & Jovanovic, S. (2003, October). Protection of the environment from the effects of ionizing radiation. International Conference. Stockholm (Sweden). 313p.
- Anggarini, N. H., Iskandar, D., & Stefanus, M. (2018). Study of increasing of natural radionuclides due

- to fly ash discharge at around Labuan power plant. *Jurnal Sains dan Teknologi Nuklir Indonesia*, 19(1):29-40.
- Antović, N. M., & Ivanka, A. (2014). Transfer of radionuclides from seawater, sediment and mud with detritus to the mullet species *Liza aurata* (Mugilidae). *The Montenegrin Academy of Sciences and Arts Glasnik of the Section of Natural Sciences*, 20(1-4):147-158.
- Aryanti, C. A., Suseno, H., Muslim, M., Prihatiningsih, & W. R., Yahya, M. N. (2021). Concentration of natural radionuclide and potential radiological dose of 226Ra to marine organism in Tanjung Awar-Awar, Tuban coal-fired power plant. *Jurnal Segara*, 17(3):195-206.
- Asmara, Q. (2020). Evaluation of the PLTN development process in Muria Peninsula, Jepara Regency, Central Java. *Neo Politea Jurnal Ilmiah Administrasi Negara*, 1(1):31-41.
- Astuti, N. F. (2018). Cirebon harbor: A socio-economic study of the coastal communities in 1969-1995 periods. *Jurnal Prodi Ilmu Sejarah*, 3(1):14-27.
- Bhangare, R. C., Tiwari, M., Ajmal, P. Y., Sahu, S. K., & Pandit, G. G. (2014). Distribution of natural radioactivity in coal and combustion residues of thermal power plants. *Journal of Radioanalytical and Nuclear Chemistry*, 300(1):17-22.
- Central Bureau of Statistics. (2021). Production data of fishery products in Cirebon district. BPS Cirebon.
- Cevik, U., Damla, N., & Nezir, S. (2007). Radiological characterization of cayirhan coal-fired power plant in Turkey. *Fuel*, 86(16):2509-2513.
- Charette, M. A., Gonneea, M. E., Morris, P. J., Statham, P., Fones, G., Planquette, H., Salter, I., & Garabato, A. N. (2007). Radium isotopes as tracers of iron sources fueling a southern Ocean phytoplankton bloom. *Deep-Sea Research Part II: Topical Studies in Oceanography*, 54(18):1989-1998.
- Chau, N. D., Dulinski, M., Jodlowski, P., Nowak, J., Rozanski, K., Sleziak, M., & Wachniew, P. (2011). Natural radioactivity in groundwater a review. *Isotopes in Environmental and Health Studies*. 47(4):415-437.
- Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., & Sáez, A. E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. *Science of the Total Environment*, 433(17):58-73.

- Darabi-Golestan, F., Hezarkhani, A., & Zare, M. R. (2017). Assessment of 226Ra, 238U, 232Th, 137Cs and 40K activities from the northern coastline of Oman Sea (water and sediments). *Marine Pollution Bulletin*, 118(1):197-205.
- Dede, M., Widiawaty, M. A., Nurhanifah, N., Ismail, A., Artati, A. R. P., Ati, A., & Ramadhan, Y. R. (2020). Estimation of air quality changes based on remote satellite imagery around PLTU Cirebon. *Jambura Geoscience Review*, 2(2):1-10.
- Diab, H. M., Ramadan, A. B., Monged, M. H. E., & Shahin, M. (2019). Environmental assessment of radionuclides levels and some heavy metals pollution along Gulf of Suez, Egypt. *Environmental Science and Pollution Research*, 26(12):12346-12358.
- Dinh Chau, N., Dulinski, M., Jodlowski, P., Nowak, J., Rozanski, K., Sleziak, M., & Wachniew, P. (2011). Natural radioactivity in groundwater a review. *Isotopes in Environmental and Health Studies*, 47(4):415-437.
- Dragović, S., Janković, L., Onjia, A., & Bačić, G. (2006). Distribution of primordial radionuclides in surface soils from Serbia and Montenegro. *Radiation Measurements*, 41(5):611-616.
- El-Saharty, A. A. (2013). Radioactive survey of coastal water and sediments across Alexandria and Rashid coasts. *Egyptian Journal of Aquatic Research*, 39(1):21-30.
- El-Taher, A., & Madkour, H. A. (2011). Distribution and environmental impacts of metals and natural radionuclides in marine sediments in-front of different wadies mouth along the Egyptian Red Sea Coast. *Applied Radiation and Isotopes*, 69(2):550-558.
- El-Taher, A., Makhluf, S., Nossair, A., & Abdel Halim, A. S. (2010). Assessment of natural radioactivity levels and radiation hazards due to cement industry. *Applied Radiation and Isotopes*, 68(1):169-174.
- Fallah, M., Jahangiri, S., Janadeleh, H., & Kameli, M. A. (2019). Distribution and risk assessment of radionuclides in river sediments along the Arvand River, Iran. *Microchemical Journal*, 146(1):1090-1094.
- Garnier-Laplace, J., Copplestone, D., Gilbin, R., Alonzo, F., Ciffroy, P., Gilek, M., Agüero, A., Björk, M., Oughton, D. H., Jaworska, A., Larsson, C. M., & Hingston, J. L. (2008). Issues and practices in the use of effects data from Frederica in the Erica integrated approach. *Journal of Environmental Radioactivity*, 99(9):1474-1483.

- Hamby, D. M., & Tynybekov, A. K. (2002). Uranium, thorium, and potassium in soils along the shore of Lake Issyk Kyol in the Kyrghyz Republic. *Environmental Monitoring and Assessment*, 73(1):101-108.
- Haryati, A., Prartono, T., & Hindarti, D. (2023). Mercury (Hg) concentration in sediments of Cirebon waters, West Java during the Eastern transition season. *Jurnal Ilmu dan Teknologi Kelautan Tropis*, 14(3):321-335.
- Hasani, F., Shala, F., Xhixha, G., Xhixha, M. K., Hodolli, G., Kadiri, S., Bylyku, E., & Cfarku, F. (2014). Naturally occurring radioactive materials (NORMs) generated from lignite-fired power plants in Kosovo. *Journal of Environmental Radioactivity*, 138(1):156-161.
- Ikhwan, R., Hariadi, H., & Saputro, S. (2015). Study of bottom sediment distribution around Pekalongan river estuary, Pekalongan City, *Journal of Oceanography*, 4(3):617-624.
- Jaelani, A. (2016). Cirebon as the silk road: A new approach of heritage tourisme and creative economy. *Journal of Economics and Political Economy*, 3(2):264-283.
- Jurina, F., Ivanic, M., Troslfep-Eorbic, T., Barisic, D., Vdovic, N., & Sondp, I. (2013). Activity concentrations and distribution of radionuclides in surface and core sediments of the Neretva Channel (Adriatic Sea, Croatia). *Geologia Croatica*, 66(2):143-150.
- Kaygusuz, A., Aydınçakır, E., Yücel, C., & Atay, H. E. (2021). Petrographic and geochemical characteristics of carboniferous plutonic rocks around erenkaya (Gumushane, NE Turkey). *Journal of Engineering Research and Applied Science*, 10(2):1774-1788.
- Kenny, G. G., Schmieder, M., Whitehouse, M. J., Nemchin, A. A., Morales, L. F. G., Buchner, E., Bellucci, J. J., & Snape, J. F. (2019). A new U-Pb age for shock-recrystallised zircon from the lappajärvi impact crater, Finland, and implications for the accurate dating of impact events. *Geochimica et Cosmochimica Acta*, 245(1):479-494.
- Khandaker, M. U., Asaduzzaman, K., Nawi, S. M., Usman, A. R., Amin, Y. M., Daar, E., Bradley, D. A., Ahmed, H., & Okhunov, A. A. (2015). Assessment of radiation and heavy metals risk due to the dietary intake of marine fishes (*Rastrelliger kanagurta*) from the Straits of Malacca. *PLoS ONE*, 10(6):1371-1380.

- Khuntong, S., Phaophang, C., & Sudprasert, W. (2015). Assessment of radionuclides and heavy metals in marine sediments along the Upper Gulf of Thailand. *Journal of Physics: Conference Series*, 611(1):23-35.
- Kırıs, E., & Baltas, H. (2019). Sediment distribution coefficients (Kd) and bioaccumulation factors (BAF) in biota for natural radionuclides in eastern Black Sea coast of Turkey. *Microchemical Journal*, 149(1):104044-104056.
- Kiro, Y., Weinstein, Y., Starinsky, A., & Yechieli, Y. (2014). The extent of seawater circulation in the aquifer and its role in elemental mass balances: A lesson from the Dead Sea. *Earth and Planetary Science Letters*, 394(1):146-158.
- Kraemer, T. F., Wood, W. W., & Sanford, W. E. (2014). Distinguishing seawater from geologic brine in saline coastal groundwater using radium-226; an example from the Sabkha of the UAE. *Chemical Geology*, 371(1):1-8.
- Kurniawan, S., Muslim, & Suseno, H. (2014). The study of caesium-137 (137Cs) radionuclide content in sediments in the waters of the Muria Peninsula of Jepara district, *Journal of Oceanography*, 3(1):67-73.
- Lippold, J., Mulitza, S., Mollenhauer, G., Weyer, S., Heslop, D., & Christl, M. (2012). Boundary scavenging at the East Atlantic margin does not negate use of 231Pa/230Th to trace Atlantic overturning. *Earth and Planetary Science Letters*, 333(1):317-331.
- Liu, J., Peng, A., Deng, S., Liu, M., Liu, G., & Li, C. (2021). Distribution of heavy metals and radionuclides in the sediments and their environmental impacts in Nansha Sea area, South China Sea. *Marine Pollution Bulletin*, 166(1):112192-112204.
- Loeff, M. M. R. V. D., & Moore, W. S. (1999). The analysis of natural radionuclides in seawater. Chapter 13. In K. Grasshoff, K. Kremling, & M. Ehrhardt (Eds.), Methods of seawater analysis. (pp. 365-397). WILEY-VCH Verlag GmbH.
- Ma, Y., Wang, J., Peng, C., Ding, Y., He, X., Zhang, P., Li, N., Lan, T., Wang, D., Zhang, Z., Sun, F., Liao, H., & Zhang, Z. (2016). Toxicity of cerium and thorium on *Daphnia magna*. *Ecotoxicology and Environmental Safety*, 134(1):226-232.
- Malaka, M. (2019). Impact of radioactive radiation on health. *Jurnal Kajian Pendidikan Keislaman*, 11(2):199-211.

- Marwoto, J., Muslim, M., Aprilia, Z. D., Purwanto, P., & Makmur, M. (2019). Activity distribution of natural radionuclides in sediments in the waters of Sluke Rembang, Central Java. *Jurnal Kelautan Tropis*, 22(2):141-150.
- Milenkovic, B., Stajic, J. M., Stojic, N., Pucarevic, M., & Strbac, S. (2019). Evaluation of heavy metals and radionuclides in fish and seafood products. *Chemosphere*, 229(1):324-331.
- Muslim, Suseno, H., & Rafsani, F. (2015). Distribution of 137Cs radionuclide in industrial wastes effluents of Gresik, East Java, Indonesia. *Atom Indonesia*, 41(1):47-50.
- Muslim, Wulandari, S. Y., Maslukah, L., Febriansyah, I. P. I., & Prihatiningsih, W. R. (2024). Radiological impact of the operation of two steam power plants on the activity levels of ²³²Th, ²²⁶Ra and ⁴⁰K in the sediments at Semarang and Cirebon, Indonesia. *Research Square*. 1(1):1-14.
- Nurkhasanah, D., Ambariyanto, Suprijanto, J., Yulianto, B., Sunaryo, & Pusparini, N. (2019). Accumulation of heavy metals Pb, Cu, Zn in the water and sediment in Cirebon and Demak. *IOP Conference Series: Earth and Environmental Science*, 246(1):12010-12022.
- Onjefu, S. A., Taole, S. H., Kgabi, N. A., Grant, C., & Antoine, J. (2017). Assessment of natural radio-nuclide distribution in shore sediment samples collected from the North Dune Beach, Henties Bay, Namibia. *Journal of Radiation Research and Applied Sciences*, 10(4):301-306.
- Ozden, B., Guler, E., Vaasma, T., Horvath, M., Kiisk, M., & Kovacs, T. (2018). Enrichment of naturally occurring radionuclides and trace elements in Yatagan and Yenikoy coal-fired thermal power plants, Turkey. *Journal of Environmental Radioactivity*, 188(2):100-107.
- Özden, S., & Pehlivanoglu, S., A. (2021). Natural radioactivity measurements and evaluation of radiological hazards in sediment of Aliağa Bay, İzmir (Turkey). *Arabian Journal of Geosciences*, 14(1):1-14.
- Palanivel, T. M., & Victor, R. (2020). Contamination assessment of heavy metals in the soils of an abandoned copper mine in Lasail, Northern Oman. *International Journal of Environmental Studies*, 77(3):432-446.
- Pandit, G. G., Sahu, S. K., & Puranik, V. D. (2011). Natural radionuclides from coal fired thermal power plants estimation of atmospheric release and inhalation risk. *Radioprotection*, 46(6):173-179.

- Papaefthymiou, H., Gkaragkouni, A., Papatheodorou, G., & Geraga, M. (2017). Radionuclide activities and elemental concentrations in sediments from a polluted marine environment (Saronikos Gulf-Greece). *Journal of Radioanalytical and Nuclear Chemistry*, 314(3):1841-1852.
- Papp, Z., Dezso, Z., & Daroczy, S. (2002). Significant radioactive contamination of soil around a coal-fired thermal power plant. *Journal of Environmental Radioactivity*. 59(2):191-205.
- Pappa, F. K., Tsabaris, C., Ioannidou, A., Patiris, D. L., Kaberi, H., Pashalidis, I., Eleftheriou, G., Androulakaki, E. G., & Vlastou, R. (2016). Radioactivity and metal concentrations in marine sediments associated with mining activities in Ierissos Gulf, North Aegean Sea, Greece. *Applied Radiation and Isotopes*, 116(1):22-33.
- Patiris, D. L., Tsabaris, C., Anagnostou, C. L., Androulakaki, E. G., Pappa, F. K., Eleftheriou, G., & Sgouros, G. (2016). Activity concentration and spatial distribution of radionuclides in marine sediments close to the estuary of Shatt al-Arab/Arvand Rud River, the Gulf. *Journal of Environmental Radioactivity*, 157(2):1-15.
- Pawitra, M. D., Indrayanti, E., Yusuf, M., & Zainuri, M. (2022). Bed sediment distribution and ocean current patterns in Loji River Estuary, Pekalongan. *Indonesian Journal of Oceanography*, 4(3):22-32.
- Prihatiningsih, W. R., & Hudiyono, S. (2013). Marine radioecology in Muria Peninsula: Distribution and behavior study of Ra-226, Ra-228 and K-40 radionuclides in marine coastal. *Proceedings of the National Seminar on Waste Management Technology*, IX:303-310.
- Prihatiningsih, W. R., & Makmur, M. (2021). Radioactivity monitoring and radiological assessment of radionuclides at western coastal of South Sulawesi. *IOP Conference Series: Earth and Environmental Science*, 860(012012):12012-12022.
- Prihatiningsih, W. R., & Suseno, H. (2012). Concentration status of 232 Th and 226 Ra in Bangka Island coastal sediments. *Journal of Waste Management Technology*, 15(2):65-70.
- Prihatiningsih, W. R., Suseno, H., Makmur, M., Muslim, M., & Yahya, M. N. (2020). Effect of regional oceanographic processes to the distribution of radionuclides in the coasts of Kalimantan. *IOP Conference Series: Earth and Environmental Science*, 429(012014):12014-12023.
- Ramadan, A. A., & Diab, H. M. (2013). Radiological

- characterization and environmental impact in northwestern coast of Egypt. *Journal of Radioanalytical and Nuclear Chemistry*, 296(1):89-95.
- Ramadan, A. A., Salama, M. H. M., & Monged, M. H. (2017). Assessment of radiological and chemical pollutants and their effects on the marine ecosystems along the Mediterranean Sea Coast between Alexandria and Port Said City-Egypt. *Arab Journal of Nuclear Sciences and Aplications*, 50(3):131-136.
- Ramasamy, V., Suresh, G., Meenakshisundaram, V., & Ponnusamy, V. (2011). Horizontal and vertical characterization of radionuclides and minerals in river sediments. *Applied Radiation and Isotopes*, 69(1):184-195.
- Ravisankar, R., Chandramohan, J., Chandrasekaran, A., Jebakumar, J. P. P., Vijayalakshmi, I., Vijayagopal, P., & Venkatraman, B. (2015). Assessments of radioactivity concentration of natural radionuclides and radiological hazard indices in sediment samples from the East Coast of Tamilnadu, India with statistical approach. *Marine Pollution Bulletin*, 97(1):419-430.
- Rehman, H. U., Kobayash, K., Tsujimori, T., Ota, T., Yamamoto, H., Nakamura, E., Kaneko, Y., Khan, T., Terabayashi, M., Yoshida, K., & Hirajima, T. (2013). Ion microprobe U-Th-Pb geochronology and study of micro-inclusions in zircon from the Himalayan high- and ultrahigh-pressure eclogites, Kaghan Valley of Pakistan. *Journal of Asian Earth Sciences*, 63(1):179-196.
- Salahel, D. K., & Vesterbacka, P. (2012). Radioactivity levels in some sediment samples from Red Sea and Baltic Sea. *Radiation Protection Dosimetry*, 148(1):101-106.
- Santschi, P. H., Murray, J. W., Baskaran, M., Benitez-Nelson, C. R., Guo, L. D., Hung, C. C., Lamborg, C., Moran, S. B., Passow, U., & Roy-Barman, M. (2006). Thorium speciation in seawater. *Marine Chemistry*, 100(3):250-268.
- Sasongko, D. P, Supriharyono, & Setiabudi, W. (2012). Dispersion modeling of natural radio-nuclides 238 U, 232 Th, 226 Ra, 40 K in Muria Coastal Waters. *Journal of Coastal Development*, 15(2):174-188.
- Selim, T., Hesham, M., & Elkiki, M. (2022). Effect of sediment transport on flow characteristics in non-prismatic compound channels. *Ain Shams Engineering Journal*, 13(6):101771-101782.
- Siregar, G. R. S., Muslim, M., Ali, A., Rochaddi, B., & Widada, S. (2021). Analysis of absorbed dose

- rate for norm material in sediment of Banda Waters, Central Sulawesi. *Oceanika, Jurnal Riset dan Rekayasa Kelautan*, 2(1):38-52.
- Song, L., Yang, Y., Luo, M., Ma, Y., & Dai, X. (2017). Rapid determination of radium-224/226 in seawater sample by alpha spectrometry. *Journal of Environmental Radioactivity*, 171(1):169-175.
- Sukirno, Muzakky, & Taftani, A. (2003). Identification of gamma-emitting radionuclides in the Lemahabang Muria using spectrometry gamma. *Jurnal Iptek Nuklir Ganendra*, 6(2):21-27.
- Suliman, I. I., & Alsafi, K. (2021). Radiological risk to human and non-human biota due to radioactivity in coastal sand and marine sediments, Gulf of Oman. *Life*, 11(6):1-12.
- Supriyadi, L., Ali, M., & Farid Wadji, M. (2019). Strategies for improving the performance of joint business groups of fishermen in Cirebon city. *Grouper: Jurnal Ilmiah Perikanan*, 10(2):71-79.
- Suresh, G., Ramasamy, V., Meenakshisundaram, V., Venkatachalapathy, R., & Ponnusamy, V. (2011). A relationship between the natural radioactivity and mineralogical composition of the Ponnaiyar River sediments, India. *Journal of Environmental Radioactivity*, 102(4):370-377.
- Suseno, H., & Prihatiningsih, W. R. (2014). Monitoring 137Cs and 134Cs at marine coasts in Indonesia between 2011 and 2013. *Marine Pollution Bulletin*. 88(1-2):319-324.
- Taher, A., Zakaly, H. M. H., & Elsaman, R. (2018). Environmental implications and spatial distribution of natural radionuclides and heavy metals in sediments from four harbours in the Egyptian Red Sea coast. *Applied Radiation and Isotopes*, 131(1):13-22.
- Temizel, I., Arslan, M., Yücel, C., Yazar, E. A., Kaygusuz, A., & Aslan, Z. (2020). Eocene tonalitegranodiorite from the Havza (Samsun) area, northern Turkey: Adakite-like melts of lithospheric mantle and crust generated in a post-collisional setting. *International Geology Review*, 62(9):1131-1158.
- Tham, V. T. M., Ngo, N. T., Thien, T. Q., Thang, L. X., Dao, N. M., Trung, P. Q., Lan, N. T. H., & Thien, B. N. (2022). Assessing the radiological risks associated with primarily natural radioactivities of coastal seawater in northen Vietnam using the Erica software. *Nuclear Science and Technology*, 12(1):41-48.
- Uddin, S., Behbehani, M., Aba, A., & Al Ghadban, A. N. (2017). Naturally occurring radioactive ma-

- terial (NORM) in seawater of the Northern Arabian Gulf-baseline measurements. *Marine Pollution Bulletin*, 123(1):365-372.
- Ulyantsev, A., Ivannikov, S., Bratskaya, S., & Charkin, A. (2023). Radioactivity of anthropogenic and natural nuclides in marine sediments of the Chaun Bay, East Siberian Sea. *Marine Pollution Bulletin*, 195(1):1-9.
- Van, T. T., Bat, L. T., Nhan, D. D., Quang, N. H., Cam, B. D., & Hung, L. V. (2019). Estimation of radionuclide concentrations and average annual committed effective dose due to ingestion for the population in the Red River Delta, Vietnam. *Environmental Management*, 63(4):444-454.
- Varga, Z. (2007). Preparation and characterization of manganese dioxide impregnated resin for radionuclide pre-concentration. *Applied Radiation and Isotopes*. 65(10):1095-1100.
- Wais, T. Y., & Najam, L. A. (2021). Activity concentration of natural radionuclides in sediment of Tigris River in the city of Mosul, Iraq. *Journal of Physics: Conference Series*, 12(1):232-241.
- Widiawaty, M. A., Nurhanifah, N., Ismail, A., & Dede, Moh. (2020). The impact of Cirebon coal-fired power plants on water quality in Mundu Bay, Cirebon Regency. Sustinere: Journal of Environment and Sustainability, 4(3):144-223.
- Wiyono, J., & Sunarto. (2016). Utilization of the potential of the Muria Peninsula Region in the northern part of Jepara Regency with a geoecological approach. *Jurnal Bumi Indonesia*, 5(1):1-11.
- Woodward, J., Hughes, P., & Adamson, K. (2014). Interactions between glaciers and rivers in the Pleistocene Mediterranean. *Mediterranean Geoarchaeology Workshop*, 94(1):28-43.
- Yakovlev, E., & Puchkov, A. (2020). Assessment of current natural and anthropogenic radionuclide activity concentrations in the bottom sediments from the Barents Sea. *Marine Pollution Bulletin*, 160(1):11571-11582.
- Yalcin, F., Ilbeyli, N., Demirbilek, M., Yalcin, M. G., Gunes, A., Kaygusuz, A., & Ozmen, S. F. (2020). Estimation of natural radionuclides' concentration of the plutonic rocks in the Sakarya zone, Turkey using multivariate statistical methods. *Symmetry*, 12(6):1-18.

- Yasmin, S., Barua, B. S., Khandaker, M. U., Kamal, M., Rashid, M. A., Sani, S. F. A., Ahmed, H., Nikouravan, B., & Bradley, D. A. (2018). The presence of radioactive materials in soil, sand and sediment samples of Potenga Sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication. *Results in Physics*, 8(2):1268-1274.
- Yi, L., Dong, N., Zhang, L., Xiao, G., Wang, H., & Jiang, X. (2019). Radium isotopes distribution and submarine groundwater discharge in the Bohai Sea. *Groundwater for Sustainable Development*, 9(1):345-357.
- Yii, M. W., Zaharudin, A., & Norfaizal, M. (2007). Concentration of radiocaesium 137Cs and 134Cs in sediments of the Malaysian marine environment. *Applied Radiation and Isotopes*, 65(12):1389-1395.
- Yoho, B., Güler, E., Öztürk, B. C., & Yoho, M. D. (2023). Environmental assessment of natural radionuclides and trace elements around Seyitömer coal fired power plant. *Journal of Radioanalytical and Nuclear Chemistry*, 332(11):4819-4831.
- Yudisworo, W. D., & Heri, J. (2019). Isolation and normalization process of low pressure feed water heater repair PLTU Cirebon 1 X 660 Mw. 2nd Mechanical Engineering National Conference. 161-173.
- Zare, M. R., Mostajaboddavati, M., Kamali, M., Tari, M., Mosayebi, S., & Mortazavi, M. S. (2015). Natural radionuclides tracing in marine surface waters along the northern coast of Oman Sea by combining the radioactivity analysis, oceanic currents and the SWAN model results. *Marine Pollution Bulletin*, 92(1):201-211.
- Žebre, M., & Stepišnik, U. (2014). Reconstruction of late pleistocene glaciers on Mount Lovćen, Montenegro. *Quaternary International*, 353(2):225-235.
- Zheng, Y., Anderson, R. F., Geen, A. V., & Fleisher, M. Q. (2002). Remobilization of authigenic uranium in marine sediments by bioturbation. *Geochimica et Cosmochimica Acta*, 66(10):1759-1772.
- Zorer, Ö. S. (2019). Evaluations of environmental hazard parameters of natural and some artificial radionuclides in river water and sediments. *Microchemical Journal*, 145(1):762-766.