
Date Log
Copyright (c) 2025 Jurnal Ilmiah Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Response Surface Methodology for Optimized Concentration of Gum Arabic, Maltodextrin, and Whey Protein Isolate in Arthrospira platensis Phycocyanin Microcapsules
Corresponding Author(s) : Dr. R.A. Siti Ari Budhiyanti, S.T.P., M.P.
Jurnal Ilmiah Perikanan dan Kelautan, 2025: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2025)
Abstract
Graphical Abstract
Highlight Research
1. The optimal phycocyanin microcapsule formula was determined using Response Surface Methodology (RSM) and Central Composite Design (CCD).
2. The best formula consisted of 8.3% gum arabic, 11.7% maltodextrin, and 5.2% whey protein isolate, with a desirability value of 0.7656.
3. The optimized microcapsules showed high yield (81.45%), antioxidant activity (52.36%), and encapsulation efficiency (94.48%).
4. Phycocyanin retention reached 61.88%, and particle size was minimized to 205.3 nm using the optimized formulation.
5. The microcapsules exhibited uniform, spherical morphology with no cracks or clumps, suitable for food and pharmaceutical applications.
Abstract
The introduction or problem solved:
Phycocyanin is a blue-green phycobiliprotein in Arthrospira platensis known for its antioxidant properties. Due to its sensitivity to pH, temperature, light, oxygen, and moisture, protecting phycocyanin pigments often involves microencapsulation through spray drying. This process allows it to be rapidly entrapped within the microcapsule coating material, composed of gum arabic, maltodextrin, and whey protein isolate.
The objective of the study:
This study aims to determine the optimal combination of these components to optimize encapsulation performance.
Brief research methodology (including the used experimental design):
Optimization was performed using the Minitab application with Response Surface Methodology (RSM) and a Central Composite Design (CCD). The independent variables were the concentrations (%) of gum arabic, maltodextrin, and whey protein isolate, while the response variables measured included yield, phycocyanin content, antioxidant activity, encapsulation efficiency, phycocyanin retention, solubility, and particle size. Scanning electron microscopy (SEM) was used to analyze the morphology of the optimized microcapsules.
The principal result:
Minitab analysis recommended 20 potentially optimized solutions, with the highest desirability value of 0.7656. The selected optimal formula consisted of 8.3% gum arabic, 11.7% maltodextrin, and 5.2% whey protein isolate. Its predicted response values were yield 75.30%, phycocyanin content 4.55%, antioxidant activity 48.87%, encapsulation efficiency 98.98%, phycocyanin retention 68.57%, solubility 95.15%, and particle size 212.73 nm. Validation results confirmed a yield of 81.45%, phycocyanin content of 3.60%, antioxidant activity of 52.36%, encapsulation efficiency of 94.48%, phycocyanin retention of 61.88%, and a particle size of 205.3 nm. These findings indicate that the proposed solution is effective and acceptable.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Adjali, A., Clarot, I., Chen, Z., Marchioni, E., & Boudier, A. (2022). Physicochemical degradation of phycocyanin and means to improve its stability: A short review. Journal of Pharmaceutical Analysis, 12(3), 406-414.
- Adsare, S. R., & Annapure, U. S. (2021). Microencapsulation of curcumin using coconut milk whey and Gum Arabic. Journal of Food Engineering, 298 (September 2020).
- Agustina, S., Aidha, N. N., Oktarina, E., & Setiawati, I. (2020). Production process of virgin coconut oil (Vco) emulsion with phycocyanin as antioxidant. Industrial Biopropal, 11(2), 95.
- Akdeniz, B., Sumnu, G., & Sahin, S. (2017). The effects of maltodextrin and gum Arabic on encapsulation of onion skin phenolic compounds. Chemical Engineering Transactions, 57, 1891-1896.
- Aminikhah, N., Mirmoghtadaie, L., Shojaee-Aliabadi, S., Khoobbakht, F., & Hosseini, S. M. (2023). Investigation of structural and physicochemical properties of microcapsules obtained from protein-polysaccharide conjugate via the Maillard reaction containing Satureja khuzestanica essential oil. International Journal of Biological Macromolecules, 252(August).
- Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2007). Effects of process variables on the denaturation of whey proteins during spray drying. Drying Technology, 25(5), 799-807.
- Arpagaus, C., John, P., Collenberg, A., & Rütti, D. (2017). Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries (April Issue).
- Ayu, F. W., Rosidah, U., & Priyanto, G. (2016). Making Instant Green Chili Sambal with Foam Mat Drying Method. Proceedings of the National Seminar on Suboptimal Lands.
- Chaiklahan, R., Chirasuwan, N., & Bunnag, B. (2012). Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47(4), 659-664.
- Charve, J., & Reineccius, G. A. (2009). Encapsulation performance of proteins and traditional materials for spray dried flavors. Journal of Agricultural and Food Chemistry, 57(6), 2486-2492.
- Chittapun, S., Jonjaroen, V., Khumrangsee, K., & Charoenrat, T. (2020). C-phycocyanin extraction from two freshwater cyanobacteria by freeze thaw and pulsed electric field techniques to improve extraction efficiency and purity. Algal Research, 46 (October 2019).
- Cilek, B., Luca, A., Hasirci, V., Sahin, S., & Sumnu, G. (2012). Microencapsulation of phenolic compounds extracted from sour cherry pomace: Effect of formulation, ultrasonication time and core to coating ratio. European Food Research and Technology, 235(4), 587-596.
- Colla, L. M., Bertol, C. D., Ferreira, D. J., Bavaresco, J., Costa, J. A. V., & Bertolin, T. E. (2016). Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder. Brazilian Journal of Biology, 77(2), 332-339.
- Dewi, E. N., Purnamayati, L., & Kurniasih, R. A. (2017). Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. IOP Conference Series: Earth and Environmental Science, 55(1).
- Dewi, E N, Purnamayati, L., & Kurniasih, R. A. (2017). Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. IOP Conference Series: Earth and Environmental Science, 55.
- Dewi, Eko Nurcahya, Purnamayati, L., & Kurniasih, R. A. (2016). Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Journal of Technology, 78(4-2), 45-50.
- Diaz, D. I., Beristain, C. I., Azuara, E., Luna, G., & Jimenez, M. (2015). Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. Journal of Microencapsulation, 32(3), 247-254.
- Faieta, M., Corradini, M. G., Di Michele, A., Ludescher, R. D., & Pittia, P. (2020). Effect of Encapsulation Process on Technological Functionality and Stability of Spirulina Platensis Extract. Food Biophysics, 15(1), 50-63.
- Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524-532.
- Gad, A. S., Khadrawy, Y. A., El-Nekeety, A. A., Mohamed, S. R., Hassan, N. S., & Abdel-Wahhab, M. A. (2011). Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition, 27(5), 582-589.
- Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., Khodaiyan, F., & Razavi, S. H. (2012). Development of an optimal formulation for oxidative stability of walnut-beverage emulsions based on gum arabic and xanthan gum using response surface methodology. Carbohydrate Polymers, 87(2), 1611-1619.
- Hasna, T., Anandito, B. K., Khasanah, L. U., Utami, R., & Manuhara, G. J. (2018). Effect of maltodextrin and whey combination as wall material on the characteristics of cinnamon (Cinnamomum burmanii) oleoresin microencapsule. Agritech, 38(3), 259-264.
- Hasrini, R. F., Zakaria, F. R., Adawiyah, D. R., & Suparto, I. H. (2017). Microencapsulation of crude palm oil with maltodextrin and soy protein isolate. Journal of Food Technology and Industry, 28(1), 10-19.
- Ho, T. M., Ton, T. T., Gaiani, C., Bhandari, B. R., & Bansal, N. (2021). Changes in surface chemical composition relating to rehydration properties of spray-dried camel milk powder during accelerated storage. Food Chemistry, 361 (December 2020), 130136.
- İlter, I., Koç, M., Demirel, Z., Conk Dalay, M., & Kaymak Ertekin, F. (2021). Improving the stability of phycocyanin by spray dried microencapsulation. Journal of Food Processing and Preservation, 45(7), 0-2.
- Iqbal, M. N., & Hadiyanto, H. (2020a). Experimental investigation of phycocyanin microencapsulation using maltodextrin as a coating material with spray drying method. Proceedings of 2nd International Conference on Chemical Process and Product Engineering 2019.
- Iqbal, M. N., & Hadiyanto, H. (2020b). Experimental investigation of phycocyanin microencapsulation using maltodextrin as a coating material with spray drying method. AIP Conference Proceedings 2197, 100002 (2020), November 2019.
- Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavors and oils during spray drying. Drying Technology, 26(7), 816-835.
- Khalifa, I., Li, M., Mamet, T., & Li, C. (2019). Maltodextrin or gum Arabic with whey proteins as wall-material blends improved the stability and physiochemical characteristics of mulberry microparticles. Food Bioscience, 31(1).
- Kurniasih, R. A., Purnamayati, L., Amalia, U., & Dewi, E. N. (2018a). Formulation and characterization of phycocyanin microcapsules within maltodextrin- alginate. Agritech, 38(1), 23-29.
- Kurniasih, R. A., Purnamayati, L., Amalia, U., & Dewi, E. N. (2018b). Formulation and characterization of phycocyanin microcapsules within maltodextrin-alginate. Agritech, 38(1), 23-29.
- Laokuldilok, T., & Kanha, N. (2017). Microencapsulation of black glutinous rice anthocyanins using maltodextrins produced from broken rice fraction as wall material by spray drying and freeze drying. Journal of Food Processing and Preservation, 41(1), 1-10.
- Liang, R., Huang, Q., Ma, J., Shoemaker, C. F., & Zhong, F. (2013). Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 33(2), 225-233.
- Lodhi, D. S., Panwar, A. S., Golani, P., Verma, M., Jain, N., & Nagdev, S. (2021). Microencapsulation technology a holistic approach in the field of pharmaceutical sciences a review. International Journal of Pharmaceutical Sciences Review and Research, 71(2), 83-89.
- Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D. S., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I., & Wang, H. (2020). Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules, 152, 1125-1134.
- Mishra, P., Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252-258.
- Mohd Nawi, N., Muhammad Idayu, I., & Marsin Mohd, A. (2014). The physicochemical properties of microwave assisted encapsulated anthocyanins from Ipomoea batatas as affected by different wall materials. Food Science & Nutrition, 3(2), 91-99.
- Nascimento, A. P. S., Carvalho, A. J. de B. A., Lima, M. dos S., Barros, S. L., Ribeiro, S., Pasqualli, M., Lisboa, H. M., & Barros, A. N. (2023). Enhancing Antioxidant Retention through Varied Wall Material Combinations in Grape Spray Drying and Storage. Antioxidants, 12(9), 1-18.
- Newsome, A. G., Culver, C. A., & Van Breemen, R. B. (2014). Nature's palette: The search for natural blue colorants. Journal of Agricultural and Food Chemistry, 62(28), 6498-6511.
- Nthimole, C. T., Kaseke, T., & Fawole, O. A. (2022). Encapsulation and characterization of raspberry juice powder for multiple applications in the food industry. Acta Horticulturae, 1349, 679-684.
- Pan-utai, W., & Iamtham, S. (2020). Enhanced microencapsulation of C-phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technology and Biotechnology, 58(4), 423-432.
- Pradeep, H. N., & Nayak, C. A. (2019). Enhanced stability of C-phycocyanin colorant by extrusion encapsulation. Journal of Food Science and Technology, 56(10), 4526-4534.
- Purba, B. M. (2013). Antioxidant activity of Sargassum sp. encapsulated with combination of gum Arabic and maltodextrin (Thesis). Gadjah Mada University.
- Purnama, F. N. W., Agustini, T. W., & Kurniasih, R. A. (2020). The effect of different temperatures on the stability of phycocyanin on Spirulina platensis microcapsule. IOP Conference Series: Earth and Environmental Science, 530(1).
- Purnamayati, L., Dewi, E. N., & Kurniasih, R. A. (2018). Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperatures. IOP Conference Series: Earth and Environmental Science, 116(1).
- Purnamayati, Lukita, Dewi, E. N., & Kurniasih, R. A. (2016). Physical Characteristics of Spirulina Phycocyanin Microcapsules at Different Concentrations of Coating Materials. Journal of Agricultural Product Technology, 9(1), 1-8.
- Purnomo, W., Khasanah, L. U., & Anandito, B. K. (2014). Effect of maltodextrin, carrageenan and whey combination ratio on microencapsulant characteristics of teak leaf (Tectona Grandis L. F.) natural colorant. Journal of Food Technology Applications, 3(3), 121-129.
- Purwaningsih, D., Whyllies, A. A. B., & Megaputera, I. (2013). Formulation of cocoa bean (Theobroma cacao L.) ethanol extract preparation as a natural antioxidant candidate through microencapsulation technology with spray-drying method. Electronic Proceedings of PIMNAS, 2001, 1-8.
- Purwoto, H., & Christi A, G. J. (2017). Optimization of edible film formula based on cassava starch amylopectin and carrageenan. Industrial Assessment Scientific Magazine, 11(1), 31-40.
- Ribeiro, J. S., & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocolloids, 112 (July 2020).
- Sablania, V., Bosco, S. J. D., Rohilla, S., & Shah, M. A. (2018). Microencapsulation of Murraya koenigii L. leaf extract using spray drying. Journal of Food Measurement and Characterization, 12(2), 892-901.
- Sadiah, I., Indiarto, R., & Cahyana, Y. (2022). Characteristics and phenolic compounds of microcapsules of moringa leaf extract (Moringa oleifera) with combination of Maltodextrin and Whey Protein Isolate. Journal of Agricultural Industrial Technology, 32(3), 273-282.
- Santana, A. A., Cano-Higuita, D. M., De Oliveira, R. A., & Telis, V. R. N. (2016). Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chemistry, 212, 1-9.
- Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science and Emerging Technologies, 39, 101-112.
- Stănciuc, N., Oancea, A. M., Aprodu, I., Turturică, M., Barbu, V., Ioniţă, E., Râpeanu, G., & Bahrim, G. (2018). Investigations on binding mechanism of bioactives from elderberry (Sambucus nigra L.) by whey proteins for efficient microencapsulation. Journal of Food Engineering, 223, 197-207.
- Tedjakusuma, F., & Widyaningrum, D. (2024). Investigating the stability of encapsulated phycocyanin at acidic conditions using whey protein isolate as a wall material. IOP Conference Series: Earth and Environmental Science, 1302(1).
- Timilsena, Y. P., Haque, M. A., & Adhikari, B. (2020). Encapsulation in the food industry: A brief historical overview to recent developments. Food and Nutrition Sciences, 11(06), 481-508.
- Ton, N. M. N., Tran, T. T. T., & Le, V. V. M. (2016). Microencapsulation of rambutan seed oil by spray-drying using different protein preparations. International Food Research Journal, 23(1), 123-128.
- Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the maillard reaction: Structure and biological activity. Food Chemistry, 128(3), 573-584.
- Wyasu, G., & Okereke, N. (2012). Improving the film forming ability of gum Arabic. Journal of Natural Product and Plant Resourse, 2(2), 314-317.
- Yousefi, S., Kavyanirad, M., Aminifar, M., Weisany, W., & Mousavi Khaneghah, A. (2022). Yogurt fortification by microencapsulation of beetroot extract (Beta vulgaris L.) using maltodextrin, gum arabic, and whey protein isolate. Food Science and Nutrition, 10(6), 1875-1887.
- Yuliawaty, S. T., & Susanto, W. H. (2015). Effect of drying time and maltodextrin concentration on the chemical physics and organoleptic characteristics of Noni Leaf Instant Drink (Morinda citrifolia L). In Journal of Food and Agroindustry (Vol. 3, Issue 1, pp. 41-51).
- Yunilawati, R., Yemirta, Y., Cahyaningtyas, A. A., Aviandharie, S. A., Hidayati, N., & Rahmi, D. (2018). Optimization of spray drying process in purple sweet potato anthocyanin encapsulation. Journal of Chemistry and Packaging, 40(1), 17.
- Zhang, Z.-H., Yu, B., Xu, Q., Bai, Z., Ji, K., Gao, X., Wang, B., Aadil, R. M., Ma, H., & Xiao, R. (2022). The physicochemical properties and antioxidant activity of spirulina (Artrhospira platensis) chlorophylls microencapsulated in different ratios of gum Arabic and whey protein isolate. Food, Multidisciplinary Digital Publishing Institute.
- Zhang, Z. H., Yu, B., Xu, Q., Bai, Z., Ji, K., Gao, X., Wang, B., Aadil Muhammad, R., Ma, H., & Xiao, R. (2022). The physicochemical properties and antioxidant activity of spirulina (Artrhospira platensis) chlorophylls microencapsulated in different ratios of gum Arabic and whey protein isolate. Foods.
- Zhao, M., Li, L., Cao, W., Wang, Z., Chu, Q., Bhandari, B., Ren, G., & Duan, X. (2023). Effects of different drying methods on the properties, stability, and controlled release of Cornus officinalis flavonoids microparticles. Journal of Food Science, 88(6), 2313-2324.
- Zheng, J., Inoguchi, T., Sasaki, S., Maeda, Y., Mccarty, M. F., Fujii, M., Ikeda, N., Kobayashi, K., Sonoda, N., & Takayanagi, R. (2013). Phycocyanin and phycocyanobilin from spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 304(2), 110-120.
References
Adjali, A., Clarot, I., Chen, Z., Marchioni, E., & Boudier, A. (2022). Physicochemical degradation of phycocyanin and means to improve its stability: A short review. Journal of Pharmaceutical Analysis, 12(3), 406-414.
Adsare, S. R., & Annapure, U. S. (2021). Microencapsulation of curcumin using coconut milk whey and Gum Arabic. Journal of Food Engineering, 298 (September 2020).
Agustina, S., Aidha, N. N., Oktarina, E., & Setiawati, I. (2020). Production process of virgin coconut oil (Vco) emulsion with phycocyanin as antioxidant. Industrial Biopropal, 11(2), 95.
Akdeniz, B., Sumnu, G., & Sahin, S. (2017). The effects of maltodextrin and gum Arabic on encapsulation of onion skin phenolic compounds. Chemical Engineering Transactions, 57, 1891-1896.
Aminikhah, N., Mirmoghtadaie, L., Shojaee-Aliabadi, S., Khoobbakht, F., & Hosseini, S. M. (2023). Investigation of structural and physicochemical properties of microcapsules obtained from protein-polysaccharide conjugate via the Maillard reaction containing Satureja khuzestanica essential oil. International Journal of Biological Macromolecules, 252(August).
Anandharamakrishnan, C., Rielly, C. D., & Stapley, A. G. F. (2007). Effects of process variables on the denaturation of whey proteins during spray drying. Drying Technology, 25(5), 799-807.
Arpagaus, C., John, P., Collenberg, A., & Rütti, D. (2017). Nanocapsules formation by nano spray drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries (April Issue).
Ayu, F. W., Rosidah, U., & Priyanto, G. (2016). Making Instant Green Chili Sambal with Foam Mat Drying Method. Proceedings of the National Seminar on Suboptimal Lands.
Chaiklahan, R., Chirasuwan, N., & Bunnag, B. (2012). Stability of phycocyanin extracted from Spirulina sp.: Influence of temperature, pH and preservatives. Process Biochemistry, 47(4), 659-664.
Charve, J., & Reineccius, G. A. (2009). Encapsulation performance of proteins and traditional materials for spray dried flavors. Journal of Agricultural and Food Chemistry, 57(6), 2486-2492.
Chittapun, S., Jonjaroen, V., Khumrangsee, K., & Charoenrat, T. (2020). C-phycocyanin extraction from two freshwater cyanobacteria by freeze thaw and pulsed electric field techniques to improve extraction efficiency and purity. Algal Research, 46 (October 2019).
Cilek, B., Luca, A., Hasirci, V., Sahin, S., & Sumnu, G. (2012). Microencapsulation of phenolic compounds extracted from sour cherry pomace: Effect of formulation, ultrasonication time and core to coating ratio. European Food Research and Technology, 235(4), 587-596.
Colla, L. M., Bertol, C. D., Ferreira, D. J., Bavaresco, J., Costa, J. A. V., & Bertolin, T. E. (2016). Thermal and photo-stability of the antioxidant potential of Spirulina platensis powder. Brazilian Journal of Biology, 77(2), 332-339.
Dewi, E. N., Purnamayati, L., & Kurniasih, R. A. (2017). Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. IOP Conference Series: Earth and Environmental Science, 55(1).
Dewi, E N, Purnamayati, L., & Kurniasih, R. A. (2017). Physical characteristics of phycocyanin from spirulina microcapsules using different coating materials with freeze drying method. IOP Conference Series: Earth and Environmental Science, 55.
Dewi, Eko Nurcahya, Purnamayati, L., & Kurniasih, R. A. (2016). Antioxidant activities of phycocyanin microcapsules using maltodextrin and carrageenan as coating materials. Journal of Technology, 78(4-2), 45-50.
Diaz, D. I., Beristain, C. I., Azuara, E., Luna, G., & Jimenez, M. (2015). Effect of wall material on the antioxidant activity and physicochemical properties of Rubus fruticosus juice microcapsules. Journal of Microencapsulation, 32(3), 247-254.
Faieta, M., Corradini, M. G., Di Michele, A., Ludescher, R. D., & Pittia, P. (2020). Effect of Encapsulation Process on Technological Functionality and Stability of Spirulina Platensis Extract. Food Biophysics, 15(1), 50-63.
Fernandes, R. V. D. B., Borges, S. V., & Botrel, D. A. (2014). Gum arabic/starch/maltodextrin/inulin as wall materials on the microencapsulation of rosemary essential oil. Carbohydrate Polymers, 101(1), 524-532.
Gad, A. S., Khadrawy, Y. A., El-Nekeety, A. A., Mohamed, S. R., Hassan, N. S., & Abdel-Wahhab, M. A. (2011). Antioxidant activity and hepatoprotective effects of whey protein and Spirulina in rats. Nutrition, 27(5), 582-589.
Gharibzahedi, S. M. T., Mousavi, S. M., Hamedi, M., Khodaiyan, F., & Razavi, S. H. (2012). Development of an optimal formulation for oxidative stability of walnut-beverage emulsions based on gum arabic and xanthan gum using response surface methodology. Carbohydrate Polymers, 87(2), 1611-1619.
Hasna, T., Anandito, B. K., Khasanah, L. U., Utami, R., & Manuhara, G. J. (2018). Effect of maltodextrin and whey combination as wall material on the characteristics of cinnamon (Cinnamomum burmanii) oleoresin microencapsule. Agritech, 38(3), 259-264.
Hasrini, R. F., Zakaria, F. R., Adawiyah, D. R., & Suparto, I. H. (2017). Microencapsulation of crude palm oil with maltodextrin and soy protein isolate. Journal of Food Technology and Industry, 28(1), 10-19.
Ho, T. M., Ton, T. T., Gaiani, C., Bhandari, B. R., & Bansal, N. (2021). Changes in surface chemical composition relating to rehydration properties of spray-dried camel milk powder during accelerated storage. Food Chemistry, 361 (December 2020), 130136.
İlter, I., Koç, M., Demirel, Z., Conk Dalay, M., & Kaymak Ertekin, F. (2021). Improving the stability of phycocyanin by spray dried microencapsulation. Journal of Food Processing and Preservation, 45(7), 0-2.
Iqbal, M. N., & Hadiyanto, H. (2020a). Experimental investigation of phycocyanin microencapsulation using maltodextrin as a coating material with spray drying method. Proceedings of 2nd International Conference on Chemical Process and Product Engineering 2019.
Iqbal, M. N., & Hadiyanto, H. (2020b). Experimental investigation of phycocyanin microencapsulation using maltodextrin as a coating material with spray drying method. AIP Conference Proceedings 2197, 100002 (2020), November 2019.
Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Encapsulation efficiency of food flavors and oils during spray drying. Drying Technology, 26(7), 816-835.
Khalifa, I., Li, M., Mamet, T., & Li, C. (2019). Maltodextrin or gum Arabic with whey proteins as wall-material blends improved the stability and physiochemical characteristics of mulberry microparticles. Food Bioscience, 31(1).
Kurniasih, R. A., Purnamayati, L., Amalia, U., & Dewi, E. N. (2018a). Formulation and characterization of phycocyanin microcapsules within maltodextrin- alginate. Agritech, 38(1), 23-29.
Kurniasih, R. A., Purnamayati, L., Amalia, U., & Dewi, E. N. (2018b). Formulation and characterization of phycocyanin microcapsules within maltodextrin-alginate. Agritech, 38(1), 23-29.
Laokuldilok, T., & Kanha, N. (2017). Microencapsulation of black glutinous rice anthocyanins using maltodextrins produced from broken rice fraction as wall material by spray drying and freeze drying. Journal of Food Processing and Preservation, 41(1), 1-10.
Liang, R., Huang, Q., Ma, J., Shoemaker, C. F., & Zhong, F. (2013). Effect of relative humidity on the store stability of spray-dried beta-carotene nanoemulsions. Food Hydrocolloids, 33(2), 225-233.
Lodhi, D. S., Panwar, A. S., Golani, P., Verma, M., Jain, N., & Nagdev, S. (2021). Microencapsulation technology a holistic approach in the field of pharmaceutical sciences a review. International Journal of Pharmaceutical Sciences Review and Research, 71(2), 83-89.
Mahdi, A. A., Mohammed, J. K., Al-Ansi, W., Ghaleb, A. D. S., Al-Maqtari, Q. A., Ma, M., Ahmed, M. I., & Wang, H. (2020). Microencapsulation of fingered citron extract with gum arabic, modified starch, whey protein, and maltodextrin using spray drying. International Journal of Biological Macromolecules, 152, 1125-1134.
Mishra, P., Mishra, S., & Mahanta, C. L. (2014). Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (Emblica officinalis) juice powder. Food and Bioproducts Processing, 92(3), 252-258.
Mohd Nawi, N., Muhammad Idayu, I., & Marsin Mohd, A. (2014). The physicochemical properties of microwave assisted encapsulated anthocyanins from Ipomoea batatas as affected by different wall materials. Food Science & Nutrition, 3(2), 91-99.
Nascimento, A. P. S., Carvalho, A. J. de B. A., Lima, M. dos S., Barros, S. L., Ribeiro, S., Pasqualli, M., Lisboa, H. M., & Barros, A. N. (2023). Enhancing Antioxidant Retention through Varied Wall Material Combinations in Grape Spray Drying and Storage. Antioxidants, 12(9), 1-18.
Newsome, A. G., Culver, C. A., & Van Breemen, R. B. (2014). Nature's palette: The search for natural blue colorants. Journal of Agricultural and Food Chemistry, 62(28), 6498-6511.
Nthimole, C. T., Kaseke, T., & Fawole, O. A. (2022). Encapsulation and characterization of raspberry juice powder for multiple applications in the food industry. Acta Horticulturae, 1349, 679-684.
Pan-utai, W., & Iamtham, S. (2020). Enhanced microencapsulation of C-phycocyanin from Arthrospira by freeze-drying with different wall materials. Food Technology and Biotechnology, 58(4), 423-432.
Pradeep, H. N., & Nayak, C. A. (2019). Enhanced stability of C-phycocyanin colorant by extrusion encapsulation. Journal of Food Science and Technology, 56(10), 4526-4534.
Purba, B. M. (2013). Antioxidant activity of Sargassum sp. encapsulated with combination of gum Arabic and maltodextrin (Thesis). Gadjah Mada University.
Purnama, F. N. W., Agustini, T. W., & Kurniasih, R. A. (2020). The effect of different temperatures on the stability of phycocyanin on Spirulina platensis microcapsule. IOP Conference Series: Earth and Environmental Science, 530(1).
Purnamayati, L., Dewi, E. N., & Kurniasih, R. A. (2018). Phycocyanin stability in microcapsules processed by spray drying method using different inlet temperatures. IOP Conference Series: Earth and Environmental Science, 116(1).
Purnamayati, Lukita, Dewi, E. N., & Kurniasih, R. A. (2016). Physical Characteristics of Spirulina Phycocyanin Microcapsules at Different Concentrations of Coating Materials. Journal of Agricultural Product Technology, 9(1), 1-8.
Purnomo, W., Khasanah, L. U., & Anandito, B. K. (2014). Effect of maltodextrin, carrageenan and whey combination ratio on microencapsulant characteristics of teak leaf (Tectona Grandis L. F.) natural colorant. Journal of Food Technology Applications, 3(3), 121-129.
Purwaningsih, D., Whyllies, A. A. B., & Megaputera, I. (2013). Formulation of cocoa bean (Theobroma cacao L.) ethanol extract preparation as a natural antioxidant candidate through microencapsulation technology with spray-drying method. Electronic Proceedings of PIMNAS, 2001, 1-8.
Purwoto, H., & Christi A, G. J. (2017). Optimization of edible film formula based on cassava starch amylopectin and carrageenan. Industrial Assessment Scientific Magazine, 11(1), 31-40.
Ribeiro, J. S., & Veloso, C. M. (2021). Microencapsulation of natural dyes with biopolymers for application in food: A review. Food Hydrocolloids, 112 (July 2020).
Sablania, V., Bosco, S. J. D., Rohilla, S., & Shah, M. A. (2018). Microencapsulation of Murraya koenigii L. leaf extract using spray drying. Journal of Food Measurement and Characterization, 12(2), 892-901.
Sadiah, I., Indiarto, R., & Cahyana, Y. (2022). Characteristics and phenolic compounds of microcapsules of moringa leaf extract (Moringa oleifera) with combination of Maltodextrin and Whey Protein Isolate. Journal of Agricultural Industrial Technology, 32(3), 273-282.
Santana, A. A., Cano-Higuita, D. M., De Oliveira, R. A., & Telis, V. R. N. (2016). Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chemistry, 212, 1-9.
Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science and Emerging Technologies, 39, 101-112.
Stănciuc, N., Oancea, A. M., Aprodu, I., Turturică, M., Barbu, V., Ioniţă, E., Râpeanu, G., & Bahrim, G. (2018). Investigations on binding mechanism of bioactives from elderberry (Sambucus nigra L.) by whey proteins for efficient microencapsulation. Journal of Food Engineering, 223, 197-207.
Tedjakusuma, F., & Widyaningrum, D. (2024). Investigating the stability of encapsulated phycocyanin at acidic conditions using whey protein isolate as a wall material. IOP Conference Series: Earth and Environmental Science, 1302(1).
Timilsena, Y. P., Haque, M. A., & Adhikari, B. (2020). Encapsulation in the food industry: A brief historical overview to recent developments. Food and Nutrition Sciences, 11(06), 481-508.
Ton, N. M. N., Tran, T. T. T., & Le, V. V. M. (2016). Microencapsulation of rambutan seed oil by spray-drying using different protein preparations. International Food Research Journal, 23(1), 123-128.
Wang, H. Y., Qian, H., & Yao, W. R. (2011). Melanoidins produced by the maillard reaction: Structure and biological activity. Food Chemistry, 128(3), 573-584.
Wyasu, G., & Okereke, N. (2012). Improving the film forming ability of gum Arabic. Journal of Natural Product and Plant Resourse, 2(2), 314-317.
Yousefi, S., Kavyanirad, M., Aminifar, M., Weisany, W., & Mousavi Khaneghah, A. (2022). Yogurt fortification by microencapsulation of beetroot extract (Beta vulgaris L.) using maltodextrin, gum arabic, and whey protein isolate. Food Science and Nutrition, 10(6), 1875-1887.
Yuliawaty, S. T., & Susanto, W. H. (2015). Effect of drying time and maltodextrin concentration on the chemical physics and organoleptic characteristics of Noni Leaf Instant Drink (Morinda citrifolia L). In Journal of Food and Agroindustry (Vol. 3, Issue 1, pp. 41-51).
Yunilawati, R., Yemirta, Y., Cahyaningtyas, A. A., Aviandharie, S. A., Hidayati, N., & Rahmi, D. (2018). Optimization of spray drying process in purple sweet potato anthocyanin encapsulation. Journal of Chemistry and Packaging, 40(1), 17.
Zhang, Z.-H., Yu, B., Xu, Q., Bai, Z., Ji, K., Gao, X., Wang, B., Aadil, R. M., Ma, H., & Xiao, R. (2022). The physicochemical properties and antioxidant activity of spirulina (Artrhospira platensis) chlorophylls microencapsulated in different ratios of gum Arabic and whey protein isolate. Food, Multidisciplinary Digital Publishing Institute.
Zhang, Z. H., Yu, B., Xu, Q., Bai, Z., Ji, K., Gao, X., Wang, B., Aadil Muhammad, R., Ma, H., & Xiao, R. (2022). The physicochemical properties and antioxidant activity of spirulina (Artrhospira platensis) chlorophylls microencapsulated in different ratios of gum Arabic and whey protein isolate. Foods.
Zhao, M., Li, L., Cao, W., Wang, Z., Chu, Q., Bhandari, B., Ren, G., & Duan, X. (2023). Effects of different drying methods on the properties, stability, and controlled release of Cornus officinalis flavonoids microparticles. Journal of Food Science, 88(6), 2313-2324.
Zheng, J., Inoguchi, T., Sasaki, S., Maeda, Y., Mccarty, M. F., Fujii, M., Ikeda, N., Kobayashi, K., Sonoda, N., & Takayanagi, R. (2013). Phycocyanin and phycocyanobilin from spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 304(2), 110-120.