
Date Log
Copyright (c) 2025 Jurnal Ilmiah Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Marine Heatwaves in Eastern Tropical Indian Ocean Basin: Long-Term Trend and Climate Variability
Corresponding Author(s) : Mukti Trenggono
Jurnal Ilmiah Perikanan dan Kelautan, 2025: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2025)
Abstract
Graphical Abstract

Highlight Research
- The basin has warmed consistently since the 1980s, with rising frequency, duration, and extent of events, most severe south of Java.
- Seasonal weakening of wind mixing during the Southeast Monsoon and transition months prolongs events, though daily intensity remains relatively stable.
- El Niño and positive Indian Ocean Dipole phases trigger basin-wide thermal anomalies, underscoring large-scale climatic control over event occurrence and strength.
- Reduced latent heat loss, enhanced surface thermal radiation, and weaker winds limit ocean cooling, reinforcing persistent surface warming and prolonged heatwaves.
Abstract
Marine heatwaves in the Eastern Tropical Indian Ocean occur when sea surface temperature remains above its historical average for several consecutive days or weeks, disrupting marine ecosystems, affecting primary productivity, and reducing fishery yields through habitat degradation and altered species distribution. Despite their growing frequency and impact, the spatial and temporal variability of these events in the region remains poorly understood. This study examined their distribution, intensity, and long-term evolution, along with their relationship to regional climate variability, using high-resolution sea surface temperature data. Detection was performed at each grid point following the method of Hobday and key metrics were calculated to describe event duration and intensity. Empirical Orthogonal Function analysis was applied to identify dominant spatial patterns and temporal modes of variability. Results showed that these marine heatwaves occur about three times annually, with more frequent and prolonged events south of Java than west of Sumatra. Most were moderate in duration and intensity, peaking at around 3.25 days per month during the monsoonal transition, while the strongest intensities appeared in the Southeast Monsoon. Over the past decade, cumulative annual intensity increased significantly, showing a positive trend of 18.88 ± 8.33 °C days per decade. The dominant spatial mode revealed intensified events south of Java, while a secondary mode indicated an increase after the early 2000s. These findings demonstrate a growing intensification of marine heatwaves in the Eastern Tropical Indian Ocean, driven by reduced ocean heat loss and enhanced surface net thermal radiation, highlighting their potential to exacerbate thermal stress on regional fisheries and marine ecosystems under ongoing climate change.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Andriyono, S. (2018). Overview of Indonesia fisheries sector: Java and Bali island. International Journal of Life Sciences & Earth Sciences, 1(1):39-48.
- Caputi, N., Kangas, M., Denham, A., Feng, M., Pearce, A., Hetzel, Y., & Chandrapavan, A. (2016). Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecology and Evolution, 6(11):3583-3593.
- Dalton, S. J., Carroll, A. G., Sampayo, E., Roff, G., Harrison, P. L., Entwistle, K., Huang, Z., Salih, A., & Diamond, S. L. (2020). Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. Science of the Total Environment, 71(18):1-12.
- Das, D., & Mohanty, S. (2025). Progressing of marine heat wave events over the tropical Indian Ocean and its underlying mechanisms. Deep Sea Research Part II: Topical Studies in Oceanography, 219(1):1-12.
- Feng, X., & Shinoda, T. (2019). Air-sea heat flux variability in the southeast Indian Ocean and its relation with Ningaloo Niño. Frontiers in Marine Science, 6(1):1-15.
- Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560(7):360-364.
- Gao, X., Li, G., Liu, J., & Long, S. M. (2022). The trend and interannual variability of marine heatwaves over the Bay of Bengal. Atmosphere, 13(3):1-13.
- Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., & Blankenship, D. D. (2019). The climate data toolbox for Matlab. Geochemistry, Geophysics, Geosystems, 20(7):3774-3781.
- Gupta, A. S., Thomsen, M., Benthuysen, J. A., Oliver, E., Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Kirkpatrick, S. P., Moore, P. J., Rodrigues, R. R., Scannell, H. A., Taschetto, A. S., Ummenhofer, C. C., Wernberg, T., & Smale, D. A. (2020). Drivers and impacts of the most extreme marine heatwave events. Nature, 10(1):1-15.
- Harvell, C. D., Montecino-Latorre, D., Caldwell, J. M., Burt, J. M., Bosley, K., Keller, A., Heron, S. F., Salomon, A. K., Lee, L., Pontier, O., Pattengill-Semmens, C., & Gaydos, J. K. (2019). Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Science Advances, 5(1):1-9.
- Hayashida, H., Matear, R. J., & Strutton, P. G. (2020). Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Global Change Biology, 26(9):4800-4811.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, M., Geer, A., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. D., Rozum, I., Vamborg, F., Villaume, S., & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999-2049.
- Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Gupta, A. S., & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141(2)1:227-238.
- Holbrook, N. J., Claar, D. C., Hobday, A. J., McInnes, K. L., Oliver, E. C. J., Gupta, A. S., Widlansky, M. J., & Zhang, X. (2020). ENSO‐driven ocean extremes and their ecosystem impacts. 409-428.
- Holbrook, N. J., Scannell, H. A., Gupta, A. S., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J., Moore, P. J., Perkins-Kirkpatrick, S. E., Smale, D. A., Straub, S. C., & Wernberg, T. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications, 10(1):1-13.
- Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., & Zhang, H. M. (2021). Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. Journal of Climate, 34(8):2923-2939.
- IPCC. (2023). IPCC Sixth Assessment Report - Synthesis Report. In Intergovernmental Panel on Climate Change, 2023.
- Iskandar, M. R., Ismail, M. F. A., Arifin, T., & Chandra, H. (2021). Marine heatwaves of sea surface temperature off south Java. Heliyon, 7(12):1-8.
- Ismail, M. F. A. (2021). Characteristics of marine heatwaves off West Sumatra derived from high-resolution satellite data. Journal of Hunan University Natural Sciences, 48(6):130-136.
- Ismail, M. F. A., Ribbe, J., Arifin, T., Taofiqurohman, A., & Anggoro, D. (2021). A census of eddies in the tropical eastern boundary of the Indian Ocean. Journal of Geophysical Research: Oceans 126(6):1-9.
- Ismail, M. F. A., Budiman, A. S., Basit, A., Yulihastin, E., Sofiati, I., & Mujiasih, S. (2024). Cross-shelf transport of high chlorophyll-a coastal waters by frontal eddies in the South of Java Sea. Kuwait Journal of Science, 51(4):1-9.
- Liang, K., Qiu, Y., Lin, X., Lin, W., Ni, X., & He, Y. (2024). An increase in Autumn marine heatwaves caused by the Indian Ocean dipole in the Bay of Bengal. Journal of Climate, 37(17):4523-4539.
- Li, Y., Guo, Y., Zhu, Y., Kido, S., Zhang, L., & Wang, F. (2022). Variability of heat content and eddy kinetic energy in the southeast Indian Ocean: Roles of the Indonesian throughflow and local wind forcing. Journal of Physical Oceanography, 52(11):2789-2806.
- McAdam, R., Masina, S., & Gualdi, S. (2023). Seasonal forecasting of subsurface marine heatwaves. Communications Earth and Environment, 4(1):1-11.
- Oliver, E. C. J., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J., Holbrook, N. J., Schlegel, R. W., & Gupta, A. S. (2021). Marine heatwaves. Annual Review of Marine Science, 13(1):313-342.
- Oliver, E. C. J., Burrows, M. T., Donat, M. G., Gupta, A. S., Alexander, L. V., Perkins-Kirkpatrick, S. E., Benthuysen, J. A., Hobday, A. J., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., & Smale, D. A. (2019). Projected marine heatwaves in the 21st century and the potential for ecological impact. Frontiers in Marine Science, 6(1):1-12.
- Pearce, A. F., & Feng, M. (2013). The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. Journal of Marine Systems, 111-112(3):139-156.
- Pujiana, K., & McPhaden, M. J. (2020). Intraseasonal Kelvin Waves in the Equatorial Indian Ocean and their propagation into the Indonesian Seas. Journal of Geophysical Research: Oceans, 125(5):1-25.
- Sandaruwan, J. W. N. D., Zhou, W., Cheung, P. K. Y., Du, Y., & Wang, X. (2023). Characteristics and formation of two leading marine heatwave modes in the North Indian Ocean during summer and their implications for local precipitation. Journal of Climate, 36(10):3385-3402.
- Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Dexter, K. F., & Oliver, E. C. J. (2021). Marine cold-spells. Progress in Oceanography, 198(9):1-16.
- Thomsen, M. S., Mondardini, L., Alestra, T., Gerrity, S., Tait, L., South, P. M., Lilley, S. A., & Schiel, D. R. (2019). Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Frontiers in Marine Science, 6(1):1-10.
- Trouet, V., & Oldenborgh, G. J. V. (2013). KNMI climate explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Research, 69(1):3-13.
- Wang, D., Xu, T., Fang, G., Jiang, S., Wang, G., Wei, Z., & Wang, Y. (2022). Characteristics of marine heatwaves in the Japan/East Sea. Remote Sensing, 14(4):24-27.
- Wang, X., Liu, J., Zhang, R., Zhang, Y., Zhou, Z. Q., & Han, Q. (2024). Trend and interannual variability of summer marine heatwaves in the tropical Indian ocean: Patterns, mixed layer heat budget, and seasonal prediction. Weather and Climate Extremes, 44(2):1-15.
- Wang, Y., & Zhou, Y. (2024). Seasonal dynamics of global marine heatwaves over the last four decades. Frontiers in Marine Science, 11(1):1-10.
- Wei, X., Li, K. Y., Kilpatrick, T., Wang, M., & Xie, S. P. (2021). Large-scale conditions for the record-setting Southern California marine heatwave of August 2018. Geophysical Research Letters, 48(7):1-9.
- Xu, J., Lowe, R. J., Ivey, G. N., Jones, N. L., & Zhang, Z. (2018). Contrasting heat budget dynamics during two La Niña marine heat wave events along Northwestern Australia. Journal of Geophysical Research: Oceans, 123(2):1563-1581.
- Yao, Y., & Wang, C. (2021). Variations in summer marine heatwaves in the South China Sea. Journal of Geophysical Research: Oceans, 126(10):1-20.
- Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J., & Zinke, J. (2017). Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Scientific Reports, 7(1):1-10.
- Zhang, Y., Du, Y., Feng, M., & Hu, S. (2021). Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical Indian Ocean during 2015-2016 and 2019-2020. Geophysical Research Letters, 48(21):1-12.
References
Andriyono, S. (2018). Overview of Indonesia fisheries sector: Java and Bali island. International Journal of Life Sciences & Earth Sciences, 1(1):39-48.
Caputi, N., Kangas, M., Denham, A., Feng, M., Pearce, A., Hetzel, Y., & Chandrapavan, A. (2016). Management adaptation of invertebrate fisheries to an extreme marine heat wave event at a global warming hot spot. Ecology and Evolution, 6(11):3583-3593.
Dalton, S. J., Carroll, A. G., Sampayo, E., Roff, G., Harrison, P. L., Entwistle, K., Huang, Z., Salih, A., & Diamond, S. L. (2020). Successive marine heatwaves cause disproportionate coral bleaching during a fast phase transition from El Niño to La Niña. Science of the Total Environment, 71(18):1-12.
Das, D., & Mohanty, S. (2025). Progressing of marine heat wave events over the tropical Indian Ocean and its underlying mechanisms. Deep Sea Research Part II: Topical Studies in Oceanography, 219(1):1-12.
Feng, X., & Shinoda, T. (2019). Air-sea heat flux variability in the southeast Indian Ocean and its relation with Ningaloo Niño. Frontiers in Marine Science, 6(1):1-15.
Frölicher, T. L., Fischer, E. M., & Gruber, N. (2018). Marine heatwaves under global warming. Nature, 560(7):360-364.
Gao, X., Li, G., Liu, J., & Long, S. M. (2022). The trend and interannual variability of marine heatwaves over the Bay of Bengal. Atmosphere, 13(3):1-13.
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., Thyng, K. M., Gwyther, D. E., Gardner, A. S., & Blankenship, D. D. (2019). The climate data toolbox for Matlab. Geochemistry, Geophysics, Geosystems, 20(7):3774-3781.
Gupta, A. S., Thomsen, M., Benthuysen, J. A., Oliver, E., Alexander, L. V., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Kirkpatrick, S. P., Moore, P. J., Rodrigues, R. R., Scannell, H. A., Taschetto, A. S., Ummenhofer, C. C., Wernberg, T., & Smale, D. A. (2020). Drivers and impacts of the most extreme marine heatwave events. Nature, 10(1):1-15.
Harvell, C. D., Montecino-Latorre, D., Caldwell, J. M., Burt, J. M., Bosley, K., Keller, A., Heron, S. F., Salomon, A. K., Lee, L., Pontier, O., Pattengill-Semmens, C., & Gaydos, J. K. (2019). Disease epidemic and a marine heat wave are associated with the continental-scale collapse of a pivotal predator (Pycnopodia helianthoides). Science Advances, 5(1):1-9.
Hayashida, H., Matear, R. J., & Strutton, P. G. (2020). Background nutrient concentration determines phytoplankton bloom response to marine heatwaves. Global Change Biology, 26(9):4800-4811.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, M., Geer, A., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Holm, E., Janiskova, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P. D., Rozum, I., Vamborg, F., Villaume, S., & Thépaut, J. N. (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146(730):1999-2049.
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Gupta, A. S., & Wernberg, T. (2016). A hierarchical approach to defining marine heatwaves. Progress in Oceanography, 141(2)1:227-238.
Holbrook, N. J., Claar, D. C., Hobday, A. J., McInnes, K. L., Oliver, E. C. J., Gupta, A. S., Widlansky, M. J., & Zhang, X. (2020). ENSO‐driven ocean extremes and their ecosystem impacts. 409-428.
Holbrook, N. J., Scannell, H. A., Gupta, A. S., Benthuysen, J. A., Feng, M., Oliver, E. C. J., Alexander, L. V., Burrows, M. T., Donat, M. G., Hobday, A. J., Moore, P. J., Perkins-Kirkpatrick, S. E., Smale, D. A., Straub, S. C., & Wernberg, T. (2019). A global assessment of marine heatwaves and their drivers. Nature Communications, 10(1):1-13.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., & Zhang, H. M. (2021). Improvements of the daily optimum interpolation sea surface temperature (DOISST) version 2.1. Journal of Climate, 34(8):2923-2939.
IPCC. (2023). IPCC Sixth Assessment Report - Synthesis Report. In Intergovernmental Panel on Climate Change, 2023.
Iskandar, M. R., Ismail, M. F. A., Arifin, T., & Chandra, H. (2021). Marine heatwaves of sea surface temperature off south Java. Heliyon, 7(12):1-8.
Ismail, M. F. A. (2021). Characteristics of marine heatwaves off West Sumatra derived from high-resolution satellite data. Journal of Hunan University Natural Sciences, 48(6):130-136.
Ismail, M. F. A., Ribbe, J., Arifin, T., Taofiqurohman, A., & Anggoro, D. (2021). A census of eddies in the tropical eastern boundary of the Indian Ocean. Journal of Geophysical Research: Oceans 126(6):1-9.
Ismail, M. F. A., Budiman, A. S., Basit, A., Yulihastin, E., Sofiati, I., & Mujiasih, S. (2024). Cross-shelf transport of high chlorophyll-a coastal waters by frontal eddies in the South of Java Sea. Kuwait Journal of Science, 51(4):1-9.
Liang, K., Qiu, Y., Lin, X., Lin, W., Ni, X., & He, Y. (2024). An increase in Autumn marine heatwaves caused by the Indian Ocean dipole in the Bay of Bengal. Journal of Climate, 37(17):4523-4539.
Li, Y., Guo, Y., Zhu, Y., Kido, S., Zhang, L., & Wang, F. (2022). Variability of heat content and eddy kinetic energy in the southeast Indian Ocean: Roles of the Indonesian throughflow and local wind forcing. Journal of Physical Oceanography, 52(11):2789-2806.
McAdam, R., Masina, S., & Gualdi, S. (2023). Seasonal forecasting of subsurface marine heatwaves. Communications Earth and Environment, 4(1):1-11.
Oliver, E. C. J., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J., Holbrook, N. J., Schlegel, R. W., & Gupta, A. S. (2021). Marine heatwaves. Annual Review of Marine Science, 13(1):313-342.
Oliver, E. C. J., Burrows, M. T., Donat, M. G., Gupta, A. S., Alexander, L. V., Perkins-Kirkpatrick, S. E., Benthuysen, J. A., Hobday, A. J., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., & Smale, D. A. (2019). Projected marine heatwaves in the 21st century and the potential for ecological impact. Frontiers in Marine Science, 6(1):1-12.
Pearce, A. F., & Feng, M. (2013). The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. Journal of Marine Systems, 111-112(3):139-156.
Pujiana, K., & McPhaden, M. J. (2020). Intraseasonal Kelvin Waves in the Equatorial Indian Ocean and their propagation into the Indonesian Seas. Journal of Geophysical Research: Oceans, 125(5):1-25.
Sandaruwan, J. W. N. D., Zhou, W., Cheung, P. K. Y., Du, Y., & Wang, X. (2023). Characteristics and formation of two leading marine heatwave modes in the North Indian Ocean during summer and their implications for local precipitation. Journal of Climate, 36(10):3385-3402.
Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Dexter, K. F., & Oliver, E. C. J. (2021). Marine cold-spells. Progress in Oceanography, 198(9):1-16.
Thomsen, M. S., Mondardini, L., Alestra, T., Gerrity, S., Tait, L., South, P. M., Lilley, S. A., & Schiel, D. R. (2019). Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Frontiers in Marine Science, 6(1):1-10.
Trouet, V., & Oldenborgh, G. J. V. (2013). KNMI climate explorer: A web-based research tool for high-resolution paleoclimatology. Tree-Ring Research, 69(1):3-13.
Wang, D., Xu, T., Fang, G., Jiang, S., Wang, G., Wei, Z., & Wang, Y. (2022). Characteristics of marine heatwaves in the Japan/East Sea. Remote Sensing, 14(4):24-27.
Wang, X., Liu, J., Zhang, R., Zhang, Y., Zhou, Z. Q., & Han, Q. (2024). Trend and interannual variability of summer marine heatwaves in the tropical Indian ocean: Patterns, mixed layer heat budget, and seasonal prediction. Weather and Climate Extremes, 44(2):1-15.
Wang, Y., & Zhou, Y. (2024). Seasonal dynamics of global marine heatwaves over the last four decades. Frontiers in Marine Science, 11(1):1-10.
Wei, X., Li, K. Y., Kilpatrick, T., Wang, M., & Xie, S. P. (2021). Large-scale conditions for the record-setting Southern California marine heatwave of August 2018. Geophysical Research Letters, 48(7):1-9.
Xu, J., Lowe, R. J., Ivey, G. N., Jones, N. L., & Zhang, Z. (2018). Contrasting heat budget dynamics during two La Niña marine heat wave events along Northwestern Australia. Journal of Geophysical Research: Oceans, 123(2):1563-1581.
Yao, Y., & Wang, C. (2021). Variations in summer marine heatwaves in the South China Sea. Journal of Geophysical Research: Oceans, 126(10):1-20.
Zhang, N., Feng, M., Hendon, H. H., Hobday, A. J., & Zinke, J. (2017). Opposite polarities of ENSO drive distinct patterns of coral bleaching potentials in the southeast Indian Ocean. Scientific Reports, 7(1):1-10.
Zhang, Y., Du, Y., Feng, M., & Hu, S. (2021). Long-lasting marine heatwaves instigated by ocean planetary waves in the tropical Indian Ocean during 2015-2016 and 2019-2020. Geophysical Research Letters, 48(21):1-12.