
Date Log
Copyright (c) 2025 Jurnal Ilmiah Perikanan dan Kelautan

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
1. Copyright of the article is transferred to the journal, by the knowledge of the author, whilst the moral right of the publication belongs to the author.
2. The legal formal aspect of journal publication accessibility refers to Creative Commons Atribusi-Non Commercial-Share alike (CC BY-NC-SA), (https://creativecommons.org/licenses/by-nc-sa/4.0/)
3. The articles published in the journal are open access and can be used for non-commercial purposes. Other than the aims mentioned above, the editorial board is not responsible for copyright violation
The manuscript authentic and copyright statement submission can be downloaded ON THIS FORM.
Characterization of Agar Extracted from Farmed Gracilaria sp. via Different Alkaline and Temperature Treatments
Corresponding Author(s) : Siti Noorain Roslan
Jurnal Ilmiah Perikanan dan Kelautan, 2025: IN PRESS ISSUE (JUST ACCEPTED MANUSCRIPT, 2025)
Abstract
Graphical Abstract

Highlight Research
- 7% NaOH gave the highest agar yield (13.54%) and gel strength (49.53 g/cm²).
- High alkali and heat reduced phytochemical content.
- FTIR showed structural degradation at elevated temperatures.
- Nutritional profile suggests similarity to Gracilaria changii.
Abstract
The growing industrial demand for agar underscores the need for efficient, sustainable extraction methods that ensure both high yield and product quality. However, optimizing key processing parameters for agar extraction from farmed Gracilaria sp. remains a challenge due to variations in species composition, cultivation environment, and extraction practices. Current production often relies on empirical or non-standardized conditions, leading to inconsistencies in gel strength, color, and purity that affect industrial applicability. This study examines the properties of agar extracted from an unidentified Gracilaria species, with characteristics closely matching Gracilaria changii. Using different NaOH concentrations (3%, 5%, 7%) and temperatures (70°C, 80°C, 90°C), the effects on agar yield, gel strength, color, water retention capacity (WRC), and structure were analyzed. The highest agar yield (13.54%) was obtained at 90°C with 7% NaOH, while the best gel strength (49.53 g/cm²) was recorded at 80°C under the same alkali concentration. FTIR confirmed polysaccharide features but revealed degradation at higher temperatures. Overall, 7% NaOH was identified as the optimal alkali concentration, balancing high yield and desirable gel properties. These findings offer valuable insights for enhancing agar extraction efficiency from Gracilaria sp. and advancing standardization in industrial agar production.
Keywords
Download Citation
Endnote/Zotero/Mendeley (RIS)BibTeX
- Agustika, D. K., Sari, M. I., & Anggraini, T. (2022). Influence of sample state on FTIR spectral quality: A case study on polysaccharides. Journal of Applied Spectroscopy, 89(2):307-315.
- AOAC International (2012). Official methods of analysis of AOAC international (19th ed.) AOAC International.
- Armisen, R., & Galatas, F. (1987). Production, properties and uses of agar. Production and utilization of products from commercial seaweeds. FAO Fisheries Technical Paper 288:1-57.
- Armisen, R., & Galatas, F. (2009). 4-Agar.Woodhead Publishing Series in Food Science Technology and Nutrition Handbook of Hydrocolloids (2nd ed.) Woodhead Publishing.
- Basyuni, M., Puspita, M., Rahmania, R., Albasri, H., Pratama, I., Purbani, D., Aznawi, A. A., Mubaraq, A., Mustaniroh, S. S. A., Menne, F., Rahmila, Y. I., Salmo, S. G. S., Susilowati, A., Larekeng, S. H., Ardli, E., & Kajita, T. (2024). Current biodiversity status, distribution, and prospects of seaweed in Indonesia: A systematic review. Heliyon, 10(10):1-14.
- Bixler, H. J., & Porse, H. (2011). A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology, 23(3):321-335.
- Diop, C. I. K., Beltran, S., Jaime, I., & Sanz, M. T. (2022). Adjustable gel texture of recovered crude agar induced by pressurized hot water treatment of Gelidium sesquipedale industry waste stream: An RSM analysis. Foods, 11(14):1-22.
- Duarte, C. M., Wu, J., Xiao, X., Bruhn, A., & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4(1):1-8.
- Freile-Pelegrín, Y., & Robledo, D. (2008). Bioactive and gelling properties of agar from Gracilaria cornea from Yucatán, Mexico. Bioresource Technology, 99(11):4860-4865.
- Gómez-Ordóñez, E., & Rupérez, P. (2011). Effect of washing and heating on the composition and structure of dietary fiber from edible seaweeds. Food Chemistry, 125(4):1214-1220.
- Grand Growth Insights. (2025). Agar-agar market size, share, growth and industry analysis, by types (strips, powder, others), by applications covered (food & beverage, pharmaceutical, microbiological research, cosmetics, others), region insight and forecast to 2033.
- Hurtado, A. Q., Neish, I. C., & Critchley, A. T. (2019). Phyconomy: The extensive cultivation of seaweeds, their sustainability and economic value, with particular reference to important lessons to be learned and transferred from the practice of eucheumatoid farming. Phycologia, 58(5):472-483.
- Khotimchenko, S.V. (2002). Biological properties and applications of carrageenan from red algae. Biochemistry (Moscow), 67(7):851-856.
- Kumar, M., Kumari, P., Trivedi, N., Shukla, M. K., Gupta, V., Reddy, C. R. K., & Jha, B. (2011). Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. Journal of Applied Phycology, 23(5):797-810.
- Marinho-Soriano, E., Fonseca, P. C., Carneiro, M. A. A., & Moreira, W. S. C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18):2402-2406.
- Mouga, T., Almeida, M. M., Pitacas, F. I., Rodrigues, A. M., Vitoria, C., & Anjos, O. (2025). Elemental and Nutritional Characterisation with Vibrational Spectroscopy Analysis of Ulva sp., Gracilaria multipartita, and Sargassum muticum. Applied Sciences, 15(8):1-24.
- Norziah, M. H., & Ching, C. Y. (2000). Nutritional composition of edible seaweed Gracilaria changii. Food Chemistry, 68(1):69-76.
- Omar, N. N., Ibrahim, N. H., Mohamad, N. J., Achudan, S. N., & Amin, A. M. (2024). Optimization of ultrasound-assisted enzymatic extraction conditions on yield, DPPH antioxidant activity and gel strength of agar from Gracilaria fisheri. Journal of Aquatic Food Product Technology, 33(9):765-777.
- Pacheco, D., Matos, J., Afonso, C., & Cardoso, C. (2025). Application of wet‑route extraction and its potential for attaining biologically active compounds from seaweed biomass: The case-study of Gracilaria gracilis. Journal of Applied Phycology, 37(2):1-15.
- Pandya, Y. H., Bakshi, M., & Sharma, A. (2022). Agar-agar extraction, structural properties and applications: A review. The Pharma Innovation Journal, 11(6):1151-1157.
- Rasyid, A., Ardiansyah, A., & Pangestuti, R. (2019). Nutrient composition of dried seaweed Gracilaria gracilis. Ilmu Kelautan, Indonesian Journal of Marine Sciences, 24(1):1-6.
- Rawat, S., Rai, S., Sangeeta, S., Kumar, A., Ramachandran, P., Sharma, S. K., Dubey, S, K., Prakash, A., & Joshi, R. (2024). Application of plant-based hydrocolloids on the textural profile of vegan gummies supplemented with turmeric and black pepper. International Journal of Food Science, 2024(1):1-12.
- Rhim, J. W. (2012). Physical-mechanical properties of agar/k-carrageenan blend film and derived clay nanocomposite film. Journal Food Science, 77(12):66-73.
- Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3):397-430.
- Rosemary, T., Arulkumar, A., Paramasivam, S., Portocarrero, A. M., & Miranda, J. M. (2019). Biochemical, micronutrient and physicochemical properties of the dried red seaweeds Gracilaria edulis and Gracilaria corticate. Molecules, 24(12):1-14.
- Supri, S., Felicia, W. X. L., Affandy, M. A. M, Padam, B. S., Prihanto, A. A., & Rovina, K. (2025). Macroalgae-based bio-based packaging: Characteristics, green extraction methods, and applications as sustainable solutions. International Journal on Advance Science Engineering Information Technology, 15(1):249-266.
- Tatary, M., & Sarabandi, K. (2025). Optimizing agar extraction from Gracilaria corticata for industrial production. Comparing physicochemical and rheological properties of two marine sources. Carbohydrate Polymer Technologies and Applications, 10(2):1-13.
- Wen, X., Peng, C., Zhou, H., Lin, Z., Lin, G., Chen, S., & Li, P. (2006). Nutritional composition and assessment of Gracilaria lemaneiformis Bory. Journal of Integrative Plant Biology, 48(9):1047-1053.
- Zhang, X., Liu, Y., & Chen, J. (2024). Pressurized hot water extraction enhances agar yield and gel properties from Gracilaria spp. Food Hydrocolloids, 145:108217.
References
Agustika, D. K., Sari, M. I., & Anggraini, T. (2022). Influence of sample state on FTIR spectral quality: A case study on polysaccharides. Journal of Applied Spectroscopy, 89(2):307-315.
AOAC International (2012). Official methods of analysis of AOAC international (19th ed.) AOAC International.
Armisen, R., & Galatas, F. (1987). Production, properties and uses of agar. Production and utilization of products from commercial seaweeds. FAO Fisheries Technical Paper 288:1-57.
Armisen, R., & Galatas, F. (2009). 4-Agar.Woodhead Publishing Series in Food Science Technology and Nutrition Handbook of Hydrocolloids (2nd ed.) Woodhead Publishing.
Basyuni, M., Puspita, M., Rahmania, R., Albasri, H., Pratama, I., Purbani, D., Aznawi, A. A., Mubaraq, A., Mustaniroh, S. S. A., Menne, F., Rahmila, Y. I., Salmo, S. G. S., Susilowati, A., Larekeng, S. H., Ardli, E., & Kajita, T. (2024). Current biodiversity status, distribution, and prospects of seaweed in Indonesia: A systematic review. Heliyon, 10(10):1-14.
Bixler, H. J., & Porse, H. (2011). A decade of change in the seaweed hydrocolloids industry. Journal of Applied Phycology, 23(3):321-335.
Diop, C. I. K., Beltran, S., Jaime, I., & Sanz, M. T. (2022). Adjustable gel texture of recovered crude agar induced by pressurized hot water treatment of Gelidium sesquipedale industry waste stream: An RSM analysis. Foods, 11(14):1-22.
Duarte, C. M., Wu, J., Xiao, X., Bruhn, A., & Krause-Jensen, D. (2017). Can seaweed farming play a role in climate change mitigation and adaptation? Frontiers in Marine Science, 4(1):1-8.
Freile-Pelegrín, Y., & Robledo, D. (2008). Bioactive and gelling properties of agar from Gracilaria cornea from Yucatán, Mexico. Bioresource Technology, 99(11):4860-4865.
Gómez-Ordóñez, E., & Rupérez, P. (2011). Effect of washing and heating on the composition and structure of dietary fiber from edible seaweeds. Food Chemistry, 125(4):1214-1220.
Grand Growth Insights. (2025). Agar-agar market size, share, growth and industry analysis, by types (strips, powder, others), by applications covered (food & beverage, pharmaceutical, microbiological research, cosmetics, others), region insight and forecast to 2033.
Hurtado, A. Q., Neish, I. C., & Critchley, A. T. (2019). Phyconomy: The extensive cultivation of seaweeds, their sustainability and economic value, with particular reference to important lessons to be learned and transferred from the practice of eucheumatoid farming. Phycologia, 58(5):472-483.
Khotimchenko, S.V. (2002). Biological properties and applications of carrageenan from red algae. Biochemistry (Moscow), 67(7):851-856.
Kumar, M., Kumari, P., Trivedi, N., Shukla, M. K., Gupta, V., Reddy, C. R. K., & Jha, B. (2011). Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. Journal of Applied Phycology, 23(5):797-810.
Marinho-Soriano, E., Fonseca, P. C., Carneiro, M. A. A., & Moreira, W. S. C. (2006). Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18):2402-2406.
Mouga, T., Almeida, M. M., Pitacas, F. I., Rodrigues, A. M., Vitoria, C., & Anjos, O. (2025). Elemental and Nutritional Characterisation with Vibrational Spectroscopy Analysis of Ulva sp., Gracilaria multipartita, and Sargassum muticum. Applied Sciences, 15(8):1-24.
Norziah, M. H., & Ching, C. Y. (2000). Nutritional composition of edible seaweed Gracilaria changii. Food Chemistry, 68(1):69-76.
Omar, N. N., Ibrahim, N. H., Mohamad, N. J., Achudan, S. N., & Amin, A. M. (2024). Optimization of ultrasound-assisted enzymatic extraction conditions on yield, DPPH antioxidant activity and gel strength of agar from Gracilaria fisheri. Journal of Aquatic Food Product Technology, 33(9):765-777.
Pacheco, D., Matos, J., Afonso, C., & Cardoso, C. (2025). Application of wet‑route extraction and its potential for attaining biologically active compounds from seaweed biomass: The case-study of Gracilaria gracilis. Journal of Applied Phycology, 37(2):1-15.
Pandya, Y. H., Bakshi, M., & Sharma, A. (2022). Agar-agar extraction, structural properties and applications: A review. The Pharma Innovation Journal, 11(6):1151-1157.
Rasyid, A., Ardiansyah, A., & Pangestuti, R. (2019). Nutrient composition of dried seaweed Gracilaria gracilis. Ilmu Kelautan, Indonesian Journal of Marine Sciences, 24(1):1-6.
Rawat, S., Rai, S., Sangeeta, S., Kumar, A., Ramachandran, P., Sharma, S. K., Dubey, S, K., Prakash, A., & Joshi, R. (2024). Application of plant-based hydrocolloids on the textural profile of vegan gummies supplemented with turmeric and black pepper. International Journal of Food Science, 2024(1):1-12.
Rhim, J. W. (2012). Physical-mechanical properties of agar/k-carrageenan blend film and derived clay nanocomposite film. Journal Food Science, 77(12):66-73.
Rinaudo, M. (2008). Main properties and current applications of some polysaccharides as biomaterials. Polymer International, 57(3):397-430.
Rosemary, T., Arulkumar, A., Paramasivam, S., Portocarrero, A. M., & Miranda, J. M. (2019). Biochemical, micronutrient and physicochemical properties of the dried red seaweeds Gracilaria edulis and Gracilaria corticate. Molecules, 24(12):1-14.
Supri, S., Felicia, W. X. L., Affandy, M. A. M, Padam, B. S., Prihanto, A. A., & Rovina, K. (2025). Macroalgae-based bio-based packaging: Characteristics, green extraction methods, and applications as sustainable solutions. International Journal on Advance Science Engineering Information Technology, 15(1):249-266.
Tatary, M., & Sarabandi, K. (2025). Optimizing agar extraction from Gracilaria corticata for industrial production. Comparing physicochemical and rheological properties of two marine sources. Carbohydrate Polymer Technologies and Applications, 10(2):1-13.
Wen, X., Peng, C., Zhou, H., Lin, Z., Lin, G., Chen, S., & Li, P. (2006). Nutritional composition and assessment of Gracilaria lemaneiformis Bory. Journal of Integrative Plant Biology, 48(9):1047-1053.
Zhang, X., Liu, Y., & Chen, J. (2024). Pressurized hot water extraction enhances agar yield and gel properties from Gracilaria spp. Food Hydrocolloids, 145:108217.