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Abstract 
 
Background: Literature in the peer-to-peer accommodation has put a substantial focus on 
accommodation listings' price determinants. Developing prediction models related to the 
demand for accommodation listings is vital in revenue management because accurate price 
and demand forecasts will help determine the best revenue management responses.  
Objective: This study aims to develop prediction models to determine the booking likelihood 
of accommodation listings. 
Methods: Using an Airbnb dataset, we developed four machine learning models, namely 
Logistics Regression, Decision Tree, K-Nearest Neighbor (KNN), and Random Forest 
Classifiers. We assessed the models using the AUC-ROC score and the model development 
time by using the ten-fold three-way split and the ten-fold cross-validation procedures. 
Results: In terms of average AUC-ROC score, the Random Forest Classifiers outperformed 
other evaluated models. In three-ways split procedure, it had a 15.03% higher AUC-ROC 
score than Decision Tree, 2.93 % higher than KNN, and 2.38% higher than Logistics 
Regression. In the cross-validation procedure, it has a 26,99% higher AUC-ROC score than 
Decision Tree, 4.41 % higher than KNN, and 3.31% higher than Logistics Regression.  It 
should be noted that the Decision Tree model has the lowest AUC-ROC score, but it has the 
smallest model development time. 
Conclusion: The performance of random forest models in predicting booking likelihood of 
accommodation listings is the most superior. The model can be used by peer-to-peer 
accommodation owners to improve their revenue management responses. 

  

I. INTRODUCTION 

Revenue management refers to the process of organizing or controlling prices and supplies to maximize revenue 
[1] by matching the right product to the right customer at the right time [2]. Demand level prediction can be set so 
that prices will be accepted by customers who are sensitive or insensitive to prices at a particular time [3]. 
Effectiveness can be achieved when the operation considers aspects like relatively fixed capacity; variable and 
uncertain demand; perishable inventory; a high fixed cost structure, and varying customer price sensitivity [4]. 
Revenue management has been applied in various industries like the airline, automobile rental, broadcasting, cruise 
lines, the Internet service provision, lodging and hospitality, and passenger railways; and even in the non-profit 
sector [5].  

Over sixty percent of research on revenue management focus on the hotel business contexts [6]. In the new peer-
to-peer business models that use electronic platforms to connect landlords and guests such as Airbnb, the use of 
revenue management would help landlords to increase their revenue [7]. 

Two common strategies to increase revenue are the pricing and the non-pricing strategy [8]. The former includes 
demand-based pricing, which could be efficient in providing competitive advantage in the market. However, it relies 
on the accuracy of a demand prediction [9]. A non-pricing strategy includes capacity management. Market demand 
forecast would help the decision-makers determine the allocation of capacity, whether to sell now or later, 
depending on their decision-making rules and the estimation of costumers' willingness-to-pay [10].  
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In popular peer-to-peer accommodation locations, the prices of accommodation during the holiday season, such as 
during the new year’s holiday, are always higher than in other periods. This is common because capacity remains 
the same while demand increases, so property managers search strategy to maximize the revenue by increasing the 
prices [11]. Many famous cities, such as London, implement a policy on short term rental to protect the availability 
of housing for long-term residents. The policy stated that the host listings could only rent their property to guests for 
no more than 90 nights in a year [12].  

Previous studies in peer-to-peer accommodation business context have explored various dimensions of the pricing 
issues [13]–[16]. To the best of our knowledge, articles exploring the demand for Airbnb listings are still lacking. 
Therefore, this study aims to develop prediction models for the booking likelihood. The findings can help 
accommodation hosts determine profitable pricing and the capacity strategies. To develop the prediction models, 
machine learning techniques were used, namely Logistics Regression, Decision Tree, K-Nearest Neighbors (KNN), 
and Random Forest.  

II.  LITERATURE  REVIEW 

Previous studies in peer-to-peer accommodation business have explored various dimensions of the pricing issues 
[13]–[16]. Many of them use the Airbnb business context as a case study. Exploring price determinants using the 
hedonic pricing model is popular in the property market [17]. Later, this method is also applied in Airbnb listings 
business context to find the price determinants [18]–[20]. Variables related to the price include the environment, the 
social aspect, the accessibility, and the spillover impacts [21]. A study from [22] involved twelve countries in the 
Caribbean and macro-financial data. A study from [23] involved eleven cities in the US and focused on how 137 
amenities factors influence pricing. The characteristic of the city may also be used as price determinants [24]. 
Another study comparing Airbnb listings characteristics explain how pricing was different between urban city and 
sun-beach holiday destinations  [25]. The study about price determinants of Airbnb listings also uses the market 
demand to explain the price [26]. Another study uses text data from the guest's reviews to know the guests’ 
sentiments [27].  

A study using sequential Bayesian [28] aims to understand the booking probability of listings and to know the 
posterior distribution. Demand forecast is an essential part of revenue management [29] because it maximizes 
revenue gain [30]. In a restaurant business, demand forecast figures can minimize operating costs [31]. Revenue 

optimization measures should be implemented after establishing an accurate demand forecasting system [32].  
The type of prediction model influences the forecast accuracy. In the revenue management context, there are 

three different models for forecasting the booking process [33], i.e., (1) historical booking models that focus on the 
total booking figures, (2) advanced booking models that focus on elapsed reservations aspect, and (3) the 
combination between historical booking model and advanced booking model. The historical booking models employ 
same-day, last year, moving average, exponential smoothing, and other time-series forecasting methods. The 
advanced booking models use a classical pickup, advanced pickup, synthetic booking curve, and other time-series 
approaches. The combined model uses regression and weighted average of historical and advanced booking 
forecasts. 

Table 1 gives an overview of three studies that analyze forecasting topics using time series data in the hotel 
industry. The first study compared different forecasting methods to predict the booking reservation and room 
occupancy accurately [34]. The second study used various forecasting methods and concluded that the pickup, 
moving average, and exponential smoothing models was the best. The third study compared different forecasting 
methods using hotel occupancy data (three different room types) [35]. Another analyzed the time series method [36] 
and used monthly observations of hotel and motel guest’ nights in New Zealand. The results show that Holt-Winters 
method and ARMA model were better than the Box-Jenkins seasonal-autoregressive–moving-average (SARMA) 
model.  

The target variables in the previous study were guest arrival, hotel occupancy, and duration of stay. The current 
study aims to predict whether an accommodation listing will be booked or not.  In terms of method, Logistics 
Regression is relatively easy to use and does not need any hyper-parameter optimization setup. The model can also 
compete with more sophisticated machine-learning models [37]. A Decision Tree model is a non-parametric 
approach that can adapt to any kind of dataset and can deal with nonlinear relationships well [38].  KNN is a popular 
algorithm among the top 10 algorithms in data mining [39] due to its simplicity and significant performance [40]. 
Lastly, the Random Forest is an improvement of the Decision Tree by combining several Decision Trees, which then 
provides good predictions, and tends not to overfit because it is compatible with large numbers [41]. 
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TABLE 1  
REVIEWED STUDIES ON FORECASTING IN THE HOTEL INDUSTRY USING TIME SERIES DATA 

Article Model Forecasted 
Value 

Methods Business 
Context 

[33] Time series Guest's arrival Simple exponential smoothing; moving average; linear regression; logarithmic; linear 
regression; additive or pickup; multiplicative; holt's double exponential smoothing 

Hotel 

[34] Time series Hotel occupancy TBATS, DSHW, BATS, Standard HW model, Same day of the last year (SdLy), average 
of same-day of last three years (ASdL3y) 

Hotel 

[35] Time series Guest nights Holt winters and Box-Jenkins ARMA SARMA Hotel 

III. METHOD 

Fig. 1 shows the working framework in this study. It is adapted from the standard method to build a predictive 
analytics model [42]. There are five stages: collecting data; selecting relevant predictor variables; determining the 
potential prediction method; evaluating, validating, and selecting the best prediction model; and finally reporting the 
research result. 

 
 
 
 

 

Fig. 1 The Research Framework 

 

A. Airbnb listings data collection 
In this study, we utilize available listing data from the InsideAirbnb.com platform and the doogal.co.uk [43]. 

InsideAirbnb.com is a website that uses a web scraping technique to gather data from the Airbnb website and it 
provides open data to the public. In this research, we used the Airbnb listings data from December 2018 consisting 
of 77,096 Airbnb listings and 96 data variables. Several listings were removed from the dataset because they 
indicated illogical inferences, i.e., the listings were booked for an entire year, duplicate records or missing values. 
The filtered dataset consists of 53,514 listings. Another dataset used was doogal.co.uk platform, which provides 
information about the London stations. Table 2 shows the descriptive statistics of the datasets. 

TABLE 2 

DESCRIPTIVE STATISTICS OF THE DATASETS 

Data Attributes Statistics Raw Data Filtered Data 
Airbnb listing data Number of Records Count 77.096 53.514 

 Number of Property listing Count 77.096 53.514 

 Number of Hosts Count 50.098 31.925 
Airbnb calendar data Number of Records Count 28.139.675 53.514 

 Period Min 12/7/2018 12/31/2018 

  Max 12/31/2018 12/31/2018 
Station data Number of stations Count 652 610 

B. Choice of variables 
The predictor variables were based on the findings of previous studies [28] [7] but five predictor variables, 

namely the number of neighboring listings, available neighboring listings, house rules, property description, and the 
number of listing pictures were excluded from this study because of data and computing limitations. Instead, we 
added other variables such as total host listings, host verifications, accommodates, the guests included, minimum 
nights, and maximum nights. The host total listing variable indicates if the host is professional or not. If a host has 
more than one listing, we categorized the host as professional [26]. The more professional the host is, the better the 
services. The host verification variables indicate the reliability. Tables 3 shows the detailed information on the 
predictor variables. 
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TABLE 3 

CHOICE OF PREDICTOR VARIABLE 

Category Variables/ Data Types Variable Description 

Property Function Bedrooms/Integer The quantity of bedrooms for listing 
Bed/Integer The quantity of bed per bedroom for listing 
Bathroom/Double The quantity of bathroom for listing 
Amenities/Integer The quantity of amenities for listing 
Internet/Integer 1 means with internet and 0 without internet 
Kitchen/Integer 1 means with kitchen and 0 without a kitchen 
Experiences offered /Integer Family, business, romantic, social, or standard 
Property type/Integer Apartment, host and townhouse, B&B-guesthouse-hostel, or others 
Room type/Integer Shared room, private room, or entire home/apartment 
Bed type/Integer Real bed, couch/futon, or others 

Location Tube station (km)/Double Listing to the nearest tube station (distance in km) 
The city center (km)/Double Listing to city center (distance in km) 

Ease of booking Instant reservation/Integer 1 means with instant reservation and 0 without instant reservation 
Refund policy/Integer 1 means with refund policy and 0 without a refund policy 
Guest verification required/Integer 1 means need guest verification and 0 no need guest verification 

Price Price/Double Price for rent a listing per night 
Security deposit/Double Security deposit to book the listing 
Cleaning fee/Double Cleaning fee after booking the listing 
Fee for extra person (£)/Double Fee for extra person (£) 
Weekly discount/Integer 1 means a weekly discount and 0 no weekly discount 
Monthly discount/Integer 1 means a monthly discount and 0 no monthly discount 

Platform signal Superhost/ Integer 1 means host is superhost and 0 not superhost 
Host with verified ID/Integer 1 means with host verified ID and 0 hosts not verified 

Host Signal Description/Integer 1 means the description of space and 0 no description 
Host profile/Integer 1 means with host profile and 0 no-host profile 
Host total listings/Integer The total listings per host.  
Host verification/Integer Number of sources that is verified by Airbnb, such as email, identity card, and so on.  

Peer-guest signal Reviews/Integer Number of reviews for listing 
Scores rating/Double Total score from guests for listing 
Review per month/Double Review per month for a specific listing 
Months since last review/Double Months since the last review for listing 

Host's rules Accommodates/Integer The number of guests that are allowed to stay 
Guest Included/Integer The number of guests from guests that are allowed to stay 
Minimum nights/Integer The minimum number of stays for guest 
Maximum nights/Integer The maximum number of stays for guest 

Availability  Booking status/Integer 1 means listing is booked, and 0 means listing available 

C. Choice of potential methods 
The focus of this research is to develop prediction models with binary classification that can give accurate 

predictions on whether an Airbnb listing will be booked or not. Table 4 shows the prediction models employed in 
this study. Looking at the number of subordinate models in a single machine learning model, we investigate both 
ensemble models and singular models. In general, ensemble models predict more accurately than singular models 
[44]. However, this research still investigates the application of singular models due to their simplicity and 
implementation easiness. Singular models can still outperform ensemble models [37]. We used Logistic Regression, 
K-Nearest Neighbors, and Decision Trees/Classification and Regression Tree (CART). In the ensemble group, we 
used Random Forest approach.  

TABLE 4 
PREDICTION MODELS CHOICE 

Classifiers Category Classifiers by Groups Model 
Ensemble Parallel/ Bagging Random Forest 
Singular Regression Logistic regression 
 Distance K-Nearest Neighbors (KNN) 

 Trees Decision Trees and Regression Trees 

 
C.1. Logistic Regression 

Commonly, Logistic Regression is used to describe and test the hypotheses [45]. Choosing the right variables and 
avoiding the highly correlated variables must be observed when using Logistic Regression [46]. The predictor 
variables in Logistic Regression can be categorical or numerical; and the target variable of Logistic Regression is 
binary or dichotomous. Therefore, Logistic Regression cannot predict target variables of more than two classes. 
Although Logistic Regression may have several weaknesses, it can often compete with other machine learning 
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techniques, such as neural networks, support vector machine, random forest, and gradient boosting [37]. The 
formalization of logistic regression is stated as follows [45]: 

 

� = �����������(� = ������� �� ��������|� = �, � �������� ����� �� �) =
�������������⋯�����

1 + �������������⋯�����
                          (1) 

 
where: 

- � is the probability of the outcome of interest 
- � is 2.71828 (the base of the system of natural logarithms) 
- � is � intercept 
- �� is the regression coefficients 
- �� is set of predictor variables 

C.2. Decision Trees/Classification and Regression tree (CART) 
CART can solve a classification problem. Like its name, CART algorithm looks like a tree structure. It has a root 

node, leaf nodes, and branches; and several advantages, such as nonparametric, adaptive with any dataset, and can 
deal with non-linear relationship [38]. CART is an algorithm used in a decision tree [47] and it uses the Gini index 
to evaluate the split. The best score is 0, and the worst score is an equal value for each class. The formalization of 
the Gini index is stated as follows [48]: 

�(�) = �  

�

���

� �(��|�)�������

�

���,���

= 1 − �(�(��|�))�

�

���

                          (2) 

where: 
- �(�) is the estimated probability of misclassification under the Gini Index  
- ��  is the classes j 

- �� is the classes i 
- �  is probability 
- � is node 
- � is classes 

C.3. K-Nearest Neighbors (KNN) 
 KNN calculates the distance between samples and determines the class for each value. It has three essential parts; 
first, a collection of labelled objects; second, a distance between objects; third, the number of nearest neighbors. The 
formalization of the KNN classification (Euclidean distance) is stated as follows [49]: 

Dist(X, Y) =  ��(�� − ��)�

�

���

                       (3) 

where: 
- X is class for not booked 
- Y is class for booked 
- �� (i=1….N) is an attribute of sample instance X 
- �� (i=1….N) is an attribute of sample instance Y 
- � is the distance for the nearest neighbors 

C.4. Random Forest 
The ensemble method uses a Random Forest for classifiers, which consists of Decision Trees that are formed 

randomly and independently from the sampled dataset. It uses the law of large numbers, so it does not overfit and 
can be good for prediction [41]. Furthermore, it can be used for any dataset because it does not need a distribution 
assumption [38] but the weaknesses is that can be biased because the samples consist a different composition of the  
label prediction [50]. The formalization of the random forest classifier is stated as follows [51]: 
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��� = �������….������

���                          (4) 

where:  
- ��� is the score of Random Forest 
- ������ is the total number of trees used in the Random Forest 
- ��� is the score of a single tree 
- ���� is the score that most often occur 

D. Evaluation, Validation and Model Selection 
To assess the prediction performance of the models, we used two different evaluation methods, namely the ten-

folds three-way split and ten-fold cross-validation procedures [52]. In the ten-fold three-way data split procedure, we 
did two data groupings. For the first grouping, we divided the dataset into ten equal sections/folds. The dataset was 
split into ten folds, and were not equally divided. From a total of 53,514 records, we grouped the dataset for fold 
number one until fold number nine consisting of 5,352 records. Fold number ten consists of 5,346 records. The 
second grouping was more functional.  

First, the training set was used to fit the data points with the proposed model. Second, the validation set was used 

to evaluate the most accurate model trained in the training set. Third, the testing set was used to generate the final 
prediction score for each generated model. The number of data records utilized in the training, validation, and 
testing sets was adjusted based on the fold number category. If the testing was set to fold number ten (5,345 
records), the training set consisted of 42,816 records (5,352 x 8 folds) and the validation set consisted of 5,352 
records. If the testing was not set to fold number ten (5,352 records), the training set consists of 42,810 records 

(5,352 x 7 folds + 5,346 records from previously fold number ten) and the validation set consisted of 5,352 records. 
In total, there were 90 testing combinations.  

In the second procedure, the ten-fold cross-validation, we divided the data to be nine-folds for training and one-
fold for testing. In total, there were ten testing combinations. The prediction score of the evaluated models using the 
ten-fold three-way split and ten-fold cross-validation procedures were compared. The model with the highest 

prediction score was selected. In this study, the receiver operating characteristics (ROC) or simply AUC value was 
used to determine the prediction score because it was better than accuracy [53]. Mathematically, we formalize the 
AUC score as follows: 

�� =
�� − ��(�� + 1)/2

����
                          (5) 

where: 
- �� is the AUC score 
- �� is the number of negative class 
- �� is the number of positive class 
- �� is ∑ �� and �� is the rank of the i-th positive example in the ranked list 

E. Model Use and Reporting 
The performance of each model in terms of model development time and prediction score were compared. The 

best prediction model with the best prediction AUC-ROC score was selected and used to help decision-makers to 
formulate their corresponding revenue management response in a better way. 

IV. RESULTS 

Table 5 and Table 6 show the evaluation results of the constructed machine learning classification models. 
Supervised machine learning models constructed the model automatically from the training dataset. Through its 
learning algorithm, it tried to identify and construct a generalizable pattern that reflected the relationship between 
the dependent (target) and independent variables. Based on the constructed pattern, the model then could build 
predictions on the target variable based on the observed independent variables.  

To test the accuracy of the model, the prediction results of the constructed model was then compared with the 
actual value of the target variable. If the target variable was categorical, the AUC-ROC score was commonly used to 
evaluate how good the model could differentiate among different categorical variables (classes). The AUC-ROC 
score is a simple evaluation method [54] deemed better than the prediction accuracy score as an evaluation
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 TABLE 5 
EVALUATION RESULT OF TEN-FOLD THREE-WAY SPLIT PROCEDURE 

  Logistic Regression Decision trees K Nearest Neighbors Random Forest 

 

Not-Standardized 
Data 

Standardized Data 
Not-Standardized 

Data 
Standardized Data 

Not-Standardized 
Data 

Standardized Data 
Not-Standardized 

Data 
Standardized Data 

Fold VF MVS TS VF MVS TS VF MVS TS VF MVS TS VF MVS TS VF MVS TS VF MVS TS VF MVS TS 
1 2 0.790 0.760 2 0.799 0.770 1 0.628 0.604 1 0.627 0.604 2 0.739 0.707 2 0.793 0.759 2 0.824 0.785 2 0.824 0.785 
2 2 0.778 0.761 2 0.799 0.778 2 0.636 0.639 2 0.636 0.638 2 0.736 0.722 2 0.791 0.760 2 0.822 0.794 2 0.822 0.794 
3 2 0.794 0.778 2 0.799 0.783 1 0.629 0.626 2 0.628 0.630 2 0.740 0.723 2 0.790 0.770 2 0.817 0.804 2 0.817 0.804 
4 2 0.778 0.794 2 0.783 0.799 1 0.639 0.636 1 0.638 0.636 2 0.723 0.740 2 0.770 0.790 2 0.804 0.817 2 0.804 0.817 
5 3 0.794 0.752 3 0.799 0.766 2 0.629 0.621 3 0.630 0.610 3 0.734 0.710 3 0.790 0.754 3 0.821 0.788 3 0.821 0.788 
6 3 0.793 0.741 3 0.800 0.748 3 0.631 0.607 3 0.632 0.608 3 0.741 0.715 3 0.788 0.749 3 0.823 0.774 3 0.823 0.774 
7 3 0.786 0.708 3 0.799 0.741 3 0.650 0.603 3 0.649 0.604 3 0.742 0.682 3 0.793 0.738 3 0.826 0.765 3 0.826 0.765 
8 3 0.787 0.717 3 0.800 0.752 3 0.643 0.602 3 0.643 0.601 3 0.743 0.685 3 0.791 0.749 3 0.823 0.794 3 0.824 0.794 
9 3 0.786 0.704 3 0.800 0.741 3 0.643 0.610 3 0.643 0.610 3 0.742 0.669 3 0.794 0.741 3 0.828 0.769 3 0.828 0.769 

10 3 0.785 0.640 3 0.802 0.676 3 0.651 0.585 3 0.651 0.584 3 0.747 0.609 3 0.796 0.659 3 0.823 0.706 3 0.823 0.705 

AVG 0.775 0.739  0.781 0.755  0.699 0.672  0.699 0.672  0.758 0.725  0.779 0.751  0.803 0.773  0.803 0.773 
STD  0.006 0.040  0.004 0.027  0.008 0.021  0.008 0.021  0.003 0.045  0.003 0.032  0.003 0.028  0.003 0.028 
SPT 2.8 2.63 1.35 1.33 13.08 101.3 13.817 17.53 

VF = Validation Fold, MVS = Maximum Validation AUC-ROC Score, TS = Test AUC-ROC Score, AVG = Average AUC-ROC Score, STD = Standard Deviation, SPT = 
Sum of Processing Time in Minutes 

 
TABLE 6 

EVALUATION RESULT OF 10-FOLD CROSS VALIDATION PROCEDURE 
 

Logistic Regression Decision tree K Nearest Neighbors Random Forest 
Fold Not-Standardized 

Data 
Standardized 

Data 
Not-Standardized 

Data 
Standardized 

Data 
Not-Standardized 

Data 
Standardized 

Data 
Not-Standardized 

Data 
Standardized 

Data 
1 0.748 0.771 0.609 0.609 0.714 0.756 0.780 0.780 
2 0.750 0.779 0.620 0.619 0.727 0.764 0.800 0.799 
3 0.759 0.784 0.630 0.630 0.729 0.772 0.810 0.810 
4 0.782 0.800 0.652 0.652 0.740 0.793 0.826 0.826 
5 0.732 0.767 0.621 0.620 0.718 0.759 0.791 0.791 
6 0.714 0.748 0.611 0.611 0.713 0.751 0.777 0.777 
7 0.648 0.741 0.613 0.612 0.684 0.738 0.764 0.765 
8 0.681 0.752 0.617 0.617 0.687 0.753 0.795 0.795 
9 0.669 0.741 0.600 0.600 0.675 0.739 0.767 0.767 
10 0.626 0.675 0.580 0.580 0.606 0.658 0.703 0.703 
Average AUC-ROC  0.711 0.756 0.615 0.615 0.699 0.748 0.781 0.781 
Standard Deviation 0.052 0.034 0.019 0.019 0.039 0.036 0.034 0.034 
Model Development Time (in 
seconds) 

19.00 16.00 10.00 10.00 53.00 376.00 112.00 121.00 



Afrianto & Wasesa  
 Journal of Information Systems Engineering and Business Intelligence, 2020, 6 (2), 123-132 

130 
 

method [53].  Logistic Regression, Decision Trees, KNN, and Random Forest methods are evaluated with ten-fold 
three-way split and ten-fold cross-validation procedures.  

Tables 5 shows the results for the three-way split and the comparison between data with and without the data 
standardization process. Data standardization increases the average and decreases the standard deviation prediction 
of the AUC-ROC scores of the logistic regression. KNN modelled both in the validation and testing conditions. 
However, the data standardization process did not increase the prediction AUC-ROC scores of the decision tree and 
random forest models. The decision tree had the lowest AUC-ROC score, but it had the fastest model development 
time. Furthermore, Random Forest classifier had a 15.03% higher AUC-ROC score than decision tree, 2.93 % 
higher than KNN, and 2.38% higher than Logistics Regression. Therefore, using ten-fold three-way split procedure, 
we concluded that Random Forest performed best. 

The results for the ten-fold cross-validation procedure are shown in Table 6. Fold column shows the sequencing 
fold, and the rest of the columns show the score for each technique. Lastly, the average score and standard deviation 
are at the bottom of the table. The Logistics Regression and KNN yielded a better AUC-ROC score after undergoing 
a data standardization process. The Decision Tree yielded the fastest processing time, but it yielded the lowest score. 
Random Forest classifier yielded a 26,99% higher AUC-ROC score than Decision Tree, 4.41% higher than KNN, 
and 3.31% higher than the Logistics Regression models. Therefore, using a ten-fold cross-validation procedure, we 
also concluded that the Random Forest performs best. 

V. DISCUSSION 

From the average AUC-ROC score, Random Forest models performed superior in both evaluation procedures. 
The random forest models reach 0.773 average AUC-ROC scores in a ten-fold three-way split condition and reach 
0.781 in the ten-fold cross-validation condition. From the category of the classifiers, the ensemble methods 
outperformed the singular methods, which means the ensemble methods was better than singular methods in dealing 
with bias, noise, and variance. The Decision Tree or single tree model yielded the lowest score because of the 
inaccuracy [55], but it had the fastest processing time because of their simplicity. 

The data standardization process increased the AUC-ROC score of Logistics Regression and KNN. Interestingly, 
the processing time after data standardization was reduced in Logistic Regression models. It was affected by 
outliers, and data standardization could handle the negativity of outlier cases. That was why the score increased and 
the model development time decreased in Logistics Regression models. Furthermore, the highest AUC-ROC score 
of the random forest model was in line with the findings of the earlier study [41]. There were many advantages of 
the Random Forest model, such as being able to handle outliers and noise. 

The evaluation performance methods showed different average AUC-ROC scores in the same model. The 
Random Forest and Logistics Regression yielded a higher average score in the ten-fold cross-validation method 
rather than in a ten-fold three-way split procedure. However, the other models produced a higher AUC-ROC score 
in the three-ways split procedure. Besides, the difference in the average AUC-ROC score among the models was 
higher in cross-validation methods rather than in three-ways split procedure. It means that the number of training set 
affects the testing score of each model. 

VI. CONCLUSION 

Considering the importance of demand forecasts in the revenue management context, this study analyses four 
machine learning techniques to predict the booking likelihood of accommodation listings. We evaluated the AUC-
ROC score of each model using two different evaluation methods, i.e., the ten-fold three-way split and the ten-fold 
cross-validation procedures. 

In terms of the AUC-ROC score, the Random Forest classifiers outperformed the other models, i.e., Logistics 
Regression, Decision Tree, and K-Nearest Neighbor. The Decision Tree model had the lowest AUC-ROC score, but 
it had the lowest processing time. The performance of random forest models in predicting the booking likelihood of 
accommodation listings is the most superior. The findings can inform peer-to-peer accommodation owners to 
improve their predictions and the revenue management responses. In terms of contribution to literature, this study 
informs the prediction method of the booking likelihood.  
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