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Abstract 
 
Background: Handwriting recognition becomes an appreciable research area because of its important practical applications, 
but varieties of writing patterns make automatic classification a challenging task. Classifying handwritten digits with a higher 
accuracy is needed to improve the limitations from past research, which mostly used deep learning approaches.  
Objective: Two most noteworthy limitations are low accuracy and slow computational speed. The current study is to model a      
Convolutional Neural Network (CNN), which is simple yet more accurate in classifying English handwritten digits for different 
datasets. Novelty of this paper is to explore an efficient CNN architecture that can classify digits of different datasets accurately.  

Methods: The author proposed five different CNN architectures for training and validation tasks with two datasets. Dataset-1 
consists of 12,000 MNIST data and Dataset-2 consists of 29,400-digit data of Kaggle. The proposed CNN models extract the 

features first and then performs the classification tasks. For the performance optimization, the models utilized stochastic gradient 
descent with momentum optimizer.  

Results: Among the five models, one was found to be the best performer, with 99.53% and 98.93% of validation accuracy for 

Dataset-1 and Dataset-2 respectively. Compared to Adam and RMSProp optimizers, stochastic gradient descent with momentum 
yielded the highest accuracy.  
Conclusion: The proposed best CNN model has the simplest architecture. It provides a higher accuracy for different datasets 
and takes less computational time. The validation accuracy of the proposed model is also higher than those of in past works.  
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I. INTRODUCTION 

Handwriting plays an important role in everyday life, not only as a medium of communication, but also for legal 
documentation. Each person has inherent writing patterns. This diversity often makes it difficult to recognize and read 
[1]. Different computer-based recognition systems are thus applied to identify the correct handwritten information. 
Several deep learning algorithms were already applied in the handwriting recognition research area. They provide 
better performance than conventional ways and take less time to recognize, especially when a large amount of dataset 
is involved. Some significant, practical applications of this research include signature verification of bank check, 
vehicle plate detection, digit classification from images, information extraction from historical documents [2] and so 
on. This recognition process uses handwritten images as a dataset. Firstly, features from the image are extracted and 
then classification is performed. Characters, numbers, cursive texts are mainly used in this recognition process [3]. 
Automatic classification technique is challenging to be applied in this area due to the high variety of individual writing 
patterns.   

Recognition or classification process is done from text images and, thus, is known as optical character recognition 
[4]. This plays a crucial role in many applications, especially for commercial purposes. Various datasets are used for 
recognition in this research paradigm [4]. Different authors have used different methods to classify various digits and 
characters. Authors in [5] used convolutional neural networks to recognize Kannada, a south Indian character. 497 
classes were included in the experiment dataset. AlexNet was used for training and the accuracy obtained was 92% 
from handwritten text. Another CNN model was used for Devanagari numerical recognition by authors in [6] and their 
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proposed model combined Genetic Algorithm (GA) with CNN. Data pre-processing was used, and so was feature 
extraction before training. The obtained accuracy was 96.06%. Authors in [7] used GA and support vector machines 
for the classification of Bangla numeric digits. Features were extracted using Genetic Algorithms and the dataset was 
trained by support vector machine (SVM) classifier. The proposed model yielded 97.70% accuracy using a total of 
6,000 data. A combination of Restricted Boltzmann Machine (RBM) and CNN was implemented by the author in [8] 
for handwriting recognition of Arabic digit. Two phases were proposed: first, meaningful features were extracted from 
the dataset and then Arabic digits were classified by CNN classifier. The accuracy reached 98.59%.  

Another DNN based Bangla handwritten digit classification work had been done by authors in [9]. They worked 
with more than 85,000 image data and emphasized on the pre-processing steps. Five pre-processing steps were used 
before CNN training. Their proposed model consisted of six convolutional layers and two dense layers. The validation 
accuracy obtained was 98.57%. Another magnificent work was done by authors in [10] as they worked with five 
different types of language data to test the accuracy of their model. Raw data were firstly normalised and then five 
CNN layers were used, which was similar to the pre-trained DNN LeNet-5. They found that the experimental accuracy 
was 98.38% for Bangla digits, 97.2% for Oriya digits, 98.54% for Devanagari digits, 96.5% for Telugu digits and 
99.1% for English digits. Authors in [11] presented a Korean Hangul recognition using deep CNN. Their architecture 
was composed of three main layers: convolutional layer, max-pooling layer and classification layer and they used two 
datasets. They observed the accuracy of 95.96% for SERI95a dataset and 92.92% for PE92 dataset. In this way, authors 
of different papers found different numerical classification accuracy by implementing various methods. In the case of 
English digit recognition, some false predictions seem to have lowered the accuracy.  

The novelty of this work is to evaluate an efficient model for English handwritten digit classification by improving 
the classification accuracy and minimizing the computational time of the computer vision recognition system. A 
shallow five CNN architectures are proposed to obtain the best model. The ideal model is the simple one but with fast 
computation. Traditional classification methods undergo pre-processing [12] and image segmentation time before the 
classification process. Again, pre-trained networks of transfer learning contain a sizable number of layers and thus 
take more time to compute vast layers [13]. There is a trade-off between computational time and accuracy [14], but 
simplex CNN models are considered capable in classifying more accurately with less consuming time.  

The remaining parts of this paper are as follows. Section II presents concise discussion of related work and 
background study of CNN. Section III describes the proposed methodology. Section IV presents the obtained results. 
Section V presents the analysis and the comparison. Finally, Section VI concludes the overall work.  

II. LITERATURE REVIEW  

In the present research area, Deep Neural Network (DNN) is a well-recognized application for image recognition, 
object classification, speech recognition and others [8]. It has the ability to provide higher classification accuracy. 
Authors in [15] proposed a CNN-based model for handwritten digit recognition from MNIST dataset and their model 
consisted of eight layers. They claimed that their proposed architecture is able to provide an improved accuracy of 
98.85% within 8569 seconds. Another CNN model was presented for MNIST dataset in the same manner by authors 
in [16] in which CNN models consisted of seven layers. This model included one input and one output layer with five 
hidden layers in the middle. The best accuracy was evaluated by varying the number of hidden layers from the model 
and number of epochs and finally the best-obtained accuracy was 99.21% within 15 numbers of epochs.  

A minimal model for handwritten digit recognition based on CNN was presented by authors in [17]. They 
maintained that their minimal model reduced the mathematical computation for recognition from MNIST dataset. 
Their model is similar to LetNet5 and obtained 99.5% accuracy. A CNN model of simplified version was proposed 
for MNIST database by authors in [18] and they compared their simplified model with LeNet-1, LeNet-5. They 
showed that their model was able to reduce the error rate by 0.7% which is lower than other networks. Three different 
approaches: DNN, DBN, CNN were proposed by authors in [1] for digit recognition. Before neural network training, 
pre-processing, segmentation, and feature extraction were performed. They found the best accuracy of 98.08% from 
the DNN approach.  

Seven layers CNN model was proposed by authors in [19] for MNIST dataset. They found the 95.7% test accuracy 
within 500 epochs from their proposed CNN model. The combined architecture of CNN along with Deeplearning4j 
(DL4J) was presented for MNIST dataset recognition by authors in [4]. They avoided any kind of pre-processing steps 
and obtained 99.21% accuracy from their model. Another recognition system with Multilayer Perceptron (MLP) was 
proposed for MNIST dataset by authors in [20]. For training purposes, they used back-propagation and for validation 
purposes, they used feed forward networks. They evaluated the best result by varying the number of iterations. They 
used 5,000 data and obtained 99.32% accuracy within 250 iterations. For automatic handwritten digit detection from 
MNIST dataset, authors in [21] proposed a four layer CNN model. This simplified model was trained for different 
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epochs and finally 98% accuracy was obtained. Another effective classifier is Support Vector Machine (SVM) which 
was used for MNIST dataset recognition [22] [23]. A composition of CNN and SVM system was proposed [20] for 
MNIST dataset recognition. Features from the digit images were extracted using CNN; and SVM was utilized for 
image classification at the output layer. Their proposed method applied a pre-processing step before CNN application 
and achieved accuracy of 99.28%.  

Past deep learning research shows that it is an excellent performance provider for image classification, as well as 
for handwriting classification [9]. CNN is a part of deep learning technique. Basic CNN structure consists of one input 
layer, manifold hidden layers and one output layer. Image classification using CNN includes two main stages: 
extraction of image features and classification [17]. CNN building blocks accommodate some important layers, and 
the descriptions are given as follows.  

A. Input Layer  

This layer is the first layer of the CNN blocks. Input layer looks through the input images for the next blocks of 
CNN [17]. It represents the image data as a three-dimensional matrix and defines the input layer neurons from this 
information.  

B. Convolution Layer  

In this layer, filters are applied to extract the features from images [24] [25]. Various sizes and numbers of filters 
can be applied in this layer as necessary. These filters are also known as convolution kernels. Convolution operation 
performs the between input images and filters [17] [25]. It creates a feature map. The mathematical operation [16] is 
seen on (1). 

����(�, �) = �(�, �)⨂�(�, �) 

where, ⨂ = convolution operation, �(�, �)= expressing input image matrix, �(�, �) = filter or kernel function.   

 
Fig. 1 Visualization of convolution layer [26]  

 

Fig. 1 demonstrates how the filter or kernel moves across the input image and performs the convolution operation 
in this layer. This operation produces an integer value, and this process is continued for the full image. This result is 
passed to the next layer.    

C. Batch Normalization Layer  

In order to adjust, scale of the input layer, a purpose batch normalization layer has been used. This layer speeds up 
the training process. It helps the network to gain stability. It is relatively similar to the dropout layer, which is applied 
before the activation layer.  

D. ReLU Activation Layer 

Different types of activation functions are employed in deep learning. Sigmoid activation function is responsible 
for overlooking the image information and for that, most of the network uses the ReLU layer. ReLU or Rectified 
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Linear Unit is a non-linear activation function that is simple to use and performs faster. The mathematical expression 
[19] is seen on (2). Equation (2) is representing the ReLU function, which is represented graphically in Fig. 2. 

y= f(x) = max (0,ℷ�) 

 

Fig. 2 Graphical representation of ReLU function which is expressed in equation [27] 

E. Pooling Layer 

Pooling layer is the process of shrinking data volume of the previous network layer [15] and accelerated the network 
computation. It is employed within two convoluted layers to reduce the dimensional [28]. Generally, two types of 
pooling are added to the network: max-pooling and average pooling [15] [28]. The max-pooling layer takes the highest 
value from convoluted output and diminishes the size. This process is also known as down-sampling [29]. It can be 
shown from the following Fig. 3. In Fig. 3, the filter size, and the stride size both are kept the same 2×2, taking the 
highest value from the sub-region [29].  
 

 

Fig. 3 Visualization of max-pooling layer [28] 

F. Softmax Layer or Activation Function 

Softmax is a logical approach which can be used for a multi-class classifier [17]. This function is mainly used in 
the final layers for classification and provides the probabilistic output for the final layer. The mathematical expression 
[30] is seen on (3).  

�(�)� =  
���

∑ ����
���

 

where, � = input vector, �� = elements of input vector,  ��� = standard exponential, K= number of classes.  

G. Fully Connected Layers  

This layer is the arrangement of a normal neural network or feed-forward network [28]. In this layer, each node is 
directly connected to the past and next layers [29] [31]. A fully connected layer leans the feature from its previous 
layer. One or more fully connected layers can exist. The last FC layer is commonly known as the output layer, which 
predicts the desired classes. This part is included in the CNN classification that works after the feature extraction.  

The proposed CNN architecture is slightly different and novel from earlier approaches for the handwritten English 
digit recognition with different datasets. The proposed CNN model is better than others and simpler, as well as less 
time-consuming. To manifest the effectiveness, two datasets were used. The improved accuracy shows that the 
automated CNN classifier of the proposed method is an effective approach.  
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III. METHODS 

The proposed model uses CNN for classification of handwritten digit recognition. Five architectures are presented 
to explore the best performance. In this section of data specification, architecture details and model parameters are 
described in more details.  

A. Data Details  

For this handwritten classification experiment, MNIST dataset [32] (Dataset-1) and a handwritten dataset from 
‘Kaggle’ [33] (Dataset-2) were used. The datasets consist of 10 English digits (0-9) of different writers. From these 
datasets, 12,000 image data of MNIST and 29,400 image data of Dataset-2 were used for the experiment. The digit 
images of MNIST dataset are at the size of 28 × 28 pixels and the digit images of Dataset-2 are at the size of 60× 60 
pixels. A portion of the experimental datasets are shown below in Fig. 4. 
 

  
(a) (b) 

Fig. 4 Exhibition of a part of experimental (a) MNIST dataset (b) Handwritten digit dataset or Dataset-2 

                
TABLE 1 

DATA ARRANGEMENT OF BOTH DATASETS FOR TRAINING AND VALIDATION FOR CNN ARCHITECTURES     
Image of 
English 
Digits 
(Dataset-1) 

Number of 
data per digit 
(Dataset-1) 

Taking 
Data for 
training 
(Dataset-1) 

Taking Data 
for 
Validation 
(Dataset-1) 

Image of 
English 
Digits 
(Dataset-2) 

Number of 
data per digit 
(Dataset-2) 

Taking Data 
For training 
(Dataset-2) 

Taking Data for 
Validation 
(Dataset-2) 

0     1200 900 300 0 2940 2352 588 

1 1200 900 300 1 2940 2352 588 

2 1200 900 300 2 2940 2352 588 

3 1200 900 300 3 2940 2352 588 

4 1200 900 300 4 2940 2352 588 

5 1200 900 300 5 2940 2352 588 

6 1200 900 300 6 2940 2352 588 

7 1200 900 300 7 2940 2352 588 

8 1200 900 300 8 2940 2352 588 

9 1200 900 300 9 2940 2352 588 

 
Total Used Data 
= 12,000 

Total 
training data 
= 9,000 

Total 
validation data 
= 3,000 

 
Total Used 
Data = 29400  

Total training 
data = 23520 

Total validation 
data = 5880 

 
Table 1 shows how training and validation data are split for the CNN architectures. From the total 12,000 MNIST 

data, 9,000 data were used for training of the network and 3,000 data were used for validation. Again, from total used 
of 29,400 data from Dataset-2, 23,520 data were used for training of the network and 5,880 data were used for 
validation.  

B. Proposed Five CNN Architectures 

Five different CNN architectures are proposed for handwritten digit classification to explore the best accuracy 
which is shown in Fig. 5. These proposed models are simpler than the pre-trained deep network and less time-
consuming. Pre-trained network architecture refers to the saved model of a network, which is already trained with an 
immense amount of image data. It requires fine-tuning before being used. Pre-trained networks are built-in models 
and users do not need to establish network models for their own problem. GoogleNet, AlexNet, VGG16, LetNet 5, 
ResNet 50 are the most popular pre-trained networks. At first, MNIST data were inputted at the networks for 
experiment. Then, the experiment was done for the Kaggle digit dataset. SGD is a superior optimizer, which shows 
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faster performance. Network’s parameters are kept the same for all CNN architectures, which are presented in Table 
2.  

  

  
(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 5 The proposed five CNN architectures for handwritten digit classification: (a) Architecture 1 (b) Architecture 2 (c) Architecture 3 (d) 
Architecture 4 (e) Architecture 5 

 
Here, Fig. 5(a) is architecture 1, where the network consists of three consecutive convolutional layers, one pooling 

layer and finally output layer. Fig. 5(b) has the same structure as Fig. 5(a) but the main difference is the filter size and 
the number of each layer. Fig. 5(c) consists of two convolutional layers, two pooling layers and two fully connected 
layers, where the final FC layer is the output layer. Fig. 5(d) consists of three convolutional layers, two pooling layers 
and three fully connected layers. The last CNN architecture of Fig. 5(e) consists of four convolutional layers, two 
pooling layers and two fully connected layers. The 1st convolutional layer used 32 filters, the 2nd convolutional layer 
used 64 filters, the 3rd convolutional layer employed 84 filters and the last convolutional layer used 124 filters. 
Different numbers of FC layers and max-pooling layers were used in the models to observe the effect. 

 
TABLE 2 

PROPOSED CONVOLUTION NEURAL NETWORK PARAMETERS  

Parameters Values 

Optimizer Stochastic Gradient Descent with Momentum ‘sgdm’ 

Learning rate 0.01 

Epochs 10 

Maximum Iterations 700 

Validation Frequency 30 
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(a) (b) 

(c) (d) 

 
(e) 

Fig. 6 Accuracy and loss graph of training progress in case of MNIST dataset: (a) Architecture 1 (b) Architecture 2 (c) Architecture 3 (d) 
Architecture 4 (e) Architecture 5 

C. Algorithm 

General algorithm for this proposes classification process is described below dataset step by step:  
Step 1: Epoch number= 10, total number of classes= 10 
Step 2: Input image dimension 28×28 (For MNIST Dataset) 
Step 3: Input digit images loading from MNIST dataset 
Step 4: Data splitting: training data = (9000,28,28,1) and validation data = (3000,28,28,1) (For MNIST Dataset) 
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Step 5: Creation of CNN model 
Step 6: Network training 
Step 7: Observation of validation accuracy and loss.  

IV. RESULTS 

MATLAB 2018a was used for this experiment environment, which was done in Core i5-7200U processor laptop. 
The proposed five different architectures were run in MATLAB for both datasets separately with respectable 
parameters (Table 2). After the CNN architectures are successfully implemented, the simulation provides worthwhile 
values of the validation graph. The simulation took some time for training. The validation graphs and loss graphs are 
provided in Fig. 6, where all the parameters are kept the same for each architecture. Then, the accuracies were observed 
for different datasets.     

Fig. 6 presents the training, the validation accuracy, and the loss contingency of the proposed five CNN models, 
where MNIST dataset was used. Fig. 6 (a), Fig. 6(b), Fig. 6(c), Fig. 6(d), Fig. 6(e) indicate the training, the validation 
accuracy, and the loss contingency of the proposed architecture 1, architecture 2, architecture 3, architecture 4 and 
architecture 5, respectively. The blue line in the graph indicates the training progression, the black dot line indicates 
the validation accuracy, and the red line indicates the loss of data in progression of the inputted MNIST dataset. Fig. 
6(e) demonstrates less data loss than other architecture graphs and so, it provides the best performance for the 
classification.  

The validation accuracy and loss of the proposed CNN models for handwritten digit recognition are recorded in the 
following Table 3. This table is presented to help explore the best result and to show the best model among all proposed 
models.  

 TABLE 3 
VALIDATION ACCURACY OF PROPOSED FIVE CNN MODELS  

Proposed 
CNN models 

Validation 
Accuracy 

(Dataset-1)  

Error 
Rate 

(Dataset-
1) 

No. of 
iterations 

(Dataset-1) 

Epochs 
(Dataset-

1) 

Validation 
Accuracy 

(Dataset-2) 

Error Rate 
(Dataset-2) 

No. of 
iterations 

(Dataset-2) 

Epochs 
(Dataset

-2) 

Architecture 1        96.92% 3.0% 700 10 96.0% 4.0% 915 10 
Architecture 2 97.7% 2.3% 700 10 96.8% 3.2% 1140 10 
Architecture 3 99.0% 1.0% 510 10 98.2% 1.8% 630 10 
Architecture 4 99.1% 0.9% 700 10 98.3% 1.7% 990 10 
Architecture 5 99.53% 0.47% 720 10 98.93% 1.07% 870 10 

 

Fig. 7 Graphical representation of the validation accuracy of the proposed CNN models 

 
Table 3 displays clearly that among the five proposed simplified CNN models, architecture 5 yielded the best 

validation accuracy of 99.53% (in case of MNIST dataset) and 98.93% (in case of Dataset-2), which are high enough 
for handwritten digit classification. This architecture 5 CNN model reduced the error rate up to 0.4% (in case of 
MNIST dataset), which means this CNN model can classify the handwritten English digits efficiently. Architecture 5 
performed better than others and the MNIST dataset provided the best result through architecture 5. The network took 
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15 minutes 41 seconds to obtain the validation accuracy to work with MNIST dataset and 65 minutes 47 seconds for 
the Kaggle dataset. Increment of the network layer is responsible for the higher computational time to obtain the 
accuracy [4] [11] [15]. Again, the traditional recognition processes are also time-consuming for several processing 
stages [8][37].  

Fig. 7 shows the validation performance of proposed five CNN architectures and among them, architecture 5 
resulted in the highest accuracy. Again, the MNIST dataset provided a higher accuracy than Dataset-2. Fig. 8 presents 
the graphical representation of error rates of the proposed CNN models for both datasets. It shows that the error is 
reduced gradually up to 0.47% in case of MNIST dataset or Dataset-1. Architecture 5 resulted in less error rate, which 
means it can classify the handwritten digits more accurately.  
 

 
Fig. 8 Graphical representation of the error rates of the proposed CNN models 

 
 

 
 

 
 
 

Fig. 9 is the confusion matrix of architecture 5 for MNIST dataset, which shows that this model can achieve the 
highest accuracy of 99.5% (i.e., round off of 99.53%) for ten-class classification. The diagonal values represent the 
individual class accuracy.  

 
TABLE 4 

FOR DIFFERENT OPTIMIZERS VALIDATION ACCURACY OF BEST CNN MODEL (USING MNIST DATASET OR DATASET-1) 
SGDM (Scottish Gradient 
Descent with Momentum) 

Adam RMSProp (Root Mean Square Propagation) 

99.53% 98.33% 98.03% 

 
The CNN model performance firmly depends on network optimizer. Reduced data loss, higher accuracy and less 

convergence time are the fundamental reasons for using optimizers. Various optimizers exist. Stochastic Gradient 
Descent (SGD) is the most used optimizer in deep learning as it is faster. Computational redundancy can be avoided 
by (SGD) optimizer [28]. By adding the ‘momentum’ parameter with SGD algorithm, optimization acceleration is 
achieved [28]. Adaptive moment estimation is known as ‘Adam’ optimizer [28], which is an improved version of 
stochastic gradient algorithm [28]. Adam optimizer is efficient and less memory-consuming [34]. It carries both 
AdaGrad and RMSProp feature combinations [34]. Continuously, per weight of squared gradients are calculated by 
moving average in root mean square propagation or RMSProp optimization [35]. It can improve the network 
performance by calibration. The proposed best CNN model is achieved for the classification with SGD optimizer. For 
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experimental purposes, two other optimizers were applied to the best CNN model (architecture 5) with 0.01 learning 
rate to explore the performance, which is shown in Table 4. That model provides 98.33% accuracy when the network 
used ‘Adam optimizer’ and 98.03% accuracy when the network implemented ‘RMSProp optimizer’. This experiment 
observation confirms that SGD optimizer provides the best validation accuracy for this network model.  

 
TABLE 5 

EFFECT OF DIFFERENT EPOCH VALIDATION ACCURACY OF BEST CNN MODEL (USING MNIST DATASET) 
Epoch Total Iterations Completed Iterations Validation Accuracy 

5 370 370 99.21% 
10 740 720 99.53% 
15 1110 450 99.3% 

 
Table 5 shows the effect of various epochs on the same model of architecture-5. Epoch indicates how many times 

the algorithm will work for the training datasets. Upgrade of weights is done per epoch. Theoretically, the increment 
of epoch number is able to improve the accuracy but too many epochs can cause an overfitting problem for the 
network. Table 5 also shows that when the epoch number was increased, the accuracy was increased. However, when 
the number of epochs reached a certain threshold, it was unable to fulfil the total iterations and the accuracy did not 
improve much than the previous. So, the optimum number of epochs must be set.  

 

 

Fig. 9 Confusion matrix of the validation accuracy of architecture 5 for MNIST dataset 

V. DISCUSSION 

The result of the proposed five CNN models shows that architecture 5 is the best model for the handwritten digit 
classification perfectly. This model proved the best result of 99.53% validation accuracy using the MNIST dataset. 
This best model or architecture 5 consists of four convolutional layers, two max-pooling layers and two fully 
connected layers, where the last fully connected layer is the output layer for ten-class classification. The proposed best 
result was obtained from the five CNN models and the best CNN model yielded the highest accuracy. A filter at the 
size of 3×3 remained the same for all convolutional layers in the architecture 5 CNN model. The 28×28 size of MNIST 
dataset was input to this model. 32 of 3×3 kernels were applied, and the feature maps were obtained, and then were 
convoluted again with the same size of kernel and 64 filters were added.  

The second convolution layer’s feature maps were then sub-sampled. After that, the values were passed through 84 
of 3×3 size filters. These feature maps are convoluted again with 124 of 3×3 size filters. Finally, values were used for 
sub-sampling again. Then, the feature maps were passed into a fully connected layer with 50 neurons. The final fully 
connected layer used 10 neurons for the ten-class classification. This model was trained and validated with 12,000 
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image data. The obtained accuracy was 99.53% within 10 epochs. FC layers were used for the labelling to classify 
further. The feature value was taken and passed to the next layer to make the final prediction. Max-pooling layer was 
used to reduce the feature information, which was obtained from the previous two convolution layers. It helped to 
reduce the network size and provided fast training.  

Architecture 1 took the most time than others as it has a max-pooling layer after 3 consecutive convolutional layers. 
But architecture 5 has only one max-pooling layer after 2 consecutive convolutional layers. Therefore, the information 
is reduced, and less time is taken. In this way, the FC layers and max-pooling layers have an impact on the best model. 
The obtained best model results in high performance without performing any pre-processing cost. This result is much 
better than the existing classifiers.  

 
TABLE 6 

COMPARISON OF PROPOSED BEST CNN MODEL WITH OTHER EXISTING WORK ACCURACY    
References Methodology of classification Pre-processing steps existed or not Accuracy 

[36] Neural Network+ Fuzzy Logic Noise removal, centralization, normalization 56.6% 
[37] MLP Thresholding, median filter, normalization 80.00% 
[22] Histogram feature extraction+ SVM None 95.60% 
[19] CNN None 95.7% 
[38] SVM None 96.93% 
[39] HOG+ SVM Image resizing 97.25% 

[3] DNN 
Thresholding, morphological operation, slant 

correction, segmentation 
97.7% 

[21] CNN None 98% 
[40] DNN Noise reduction, segmentation 98.08% 
[41] DC-ELM None 98.43% 
[42] Active learning approach  Image resizing 98.54% 
[15] CNN None 98.85% 
[43] DCT+ SVM None 98.88% 
[10] LeNet-5 None 99.10% 
[16] CNN None 99.21% 
[4]  CNN None 99.21% 
[23] CNN+ SVM None      99.28% 
[18] CNN None 99.30% 
[44]  Gabor Filter+ CNN  None 99.32% 
[20]  MLP None 99.32% 
[45] HOG+ SVM None 99.36% 
[46] CNN Normalization 99.4% 

Proposed best model CNN None 99.53% 

 
Table 6 demonstrates that there are existing methods for classifying handwritten digits and the proposed best CNN 

model is capable of achieving 99.53% accuracy. This accuracy is enhanced compared to the previous works. There 
are several reasons. First, the proposed method does not use any pre-processing steps that mean it does not have any 
effect on the result. Next, the network modelling is the MNIST dataset. Also, CNN is one of the best feature extractor 
and classifiers among other machine learning algorithms [46]. There is a hypothesis that an enhanced layer can provide 
a better accuracy, but this must be correlative with the image size. MNIST is a well-recognized dataset and consists 
of 28 × 28 pixels image data. So, higher accuracy cannot be obtained by using an increased number of CNN layers 
[4]. For that reason, the proposed five shallow CNN models were proposed and the best model (architecture 5), which 
consists of 4 convolutional layers, was achieved.  

Architecture 5 uses the highest convolutional layers than other architecture models in a proper way to extract the 
features perfectly from an image. Much smaller networks are unable to extract features perfectly and so they result in 
a lower accuracy. Another reason for the improved accuracy is setting the proper optimizer for the network (as shown 
in Table 4). Again, a proper learning rate also affects the accuracy. All things considered, the proposed simplified 
CNN model is effective enough because it can classify the handwritten digits easily and accurately.  

Nevertheless, it should be noted that the proposed best CNN model deals only with MNIST dataset for this 
experiment purpose. Therefore, it limits the results of the experiment. Other types of dataset were not involved in the 
current study to observe the result of CNN model. Future research will benefit from working with data augmentation 
and other datasets to explore the CNN model performance in greater depth.  

VI. CONCLUSIONS 

The main concern of this work is to improve the English handwritten digit classification accuracy by using deep 
learning. Handwriting classification has various practical applications. The current research used 12,000 standard 
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MNIST images in Dataset-1 and another 29,400 handwritten data in Dataset-2 and proposed 5 different CNN models 
for classification. SGDM was used for network optimization. One of these proposed CNN models (architecture 5) has 
improved the validation accuracy to 99.53% by using MNIST standard dataset. This model consists of four 
convolutional layers, two max-pooling layers and two fully connected layers. The filter numbers of each convolutional 
layer were increased with the depth of the network. The best CNN model is simple and more accurate than other 
proposed models. The model is further trained with large unbiased datasets to enhance the validation accuracy even 
more. The best CNN model was applied with two other optimizers, but the results show that the SGDM provided the 
highest accuracy. The accuracy of the best CNN model was compared with the existing methods. The result shows 
that the proposed model is effective enough to classify handwritten digits accurately. This model is also less time-
consuming as it avoids pre-processing costs and a deep number of layers and has the capability of providing better 
results for different datasets. 
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