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Abstract  
 

Background: The COVID-19 pandemic remains a problem in 2021. Health protocols are needed to prevent the spread, including 
wearing a face mask. Enforcing people to wear face masks is tiring. AI can be used to classify images for face mask detection. 
There are a lot of image classification algorithm for face mask detection, but there are still no studies that compare their 
performance.  
Objective: This study aims to compare the classification algorithms of classical machine learning. They are k-nearest neighbors 
(KNN), support vector machine (SVM), and a widely used deep learning algorithm for image classification which is 
convolutional neural network (CNN) for face masks detection.  
Methods: This study uses 5 and 3 cross-validation for assessing the performance of KNN, SVM, and CNN in face mask 
detection.  
Results: CNN has the best average performance with the accuracy of 0.9683 and average execution time of 2,507.802 seconds 
for classifying 3,725 faces with mask and 3,828 faces without mask images. 
Conclusion: For a large amount of image data, KNN and SVM can be used as temporary algorithms in face mask detection due 
to their faster execution times. At the same time, CNN can be trained to form a classification model. In this case, it is advisable 
to use CNN for classification because it has better performance than KNN and SVM. In the future, the classification model can 
be implemented for automatic alert system to detect and warn people who are not wearing face masks.  
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I. INTRODUCTION 

The COVID-19 pandemic became a major global problem in 2020. To date, it cannot be predicted when the 
COVID-19 pandemic will be fully under control. Vaccines are underway but the effectiveness cannot be fully assured. 
The implementation of health protocols is still the most effective way to prevent the transmission, such as by wearing 
face masks. People are obliged to wear a mask in public places. However, there are still people who do not adhere to 
health protocols. An autonomous system can be developed to detect unmasked people and alert them. 

Classification methods include k-nearest neighbours (KNN) [1], support vector machine (SVM) [2], and deep 
learning (DL) [3]. Convolutional neural network (CNN) is a popular DL algorithm for image classification. CNN is 
like a traditional neural network because it consists of neurons that can learn. Each neuron will receive an input and 
perform operations; and these are connected in a network [4]. CNN has several stages of operation, namely 
convolutional layers, pooling layers, and fully connected layers. CNN is designed to handle input with a two-
dimensional shape. Each layer in the network is composed of multi two-dimensional planes, and each plane consists 
of multi-independent neurons. Neurons that are in two adjacent layers will be connected to each other [5]. CNN is 
leading in the field of image recognition [6] . 
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There are many studies on face detection using KNN, SVM, and CNN. Reference [7] used KNN for face detection 
on low power processor and achieve 91.5% of accuracy. Reference [8] used SVM for face detection and achieve 
90.82% of accuracy. Reference [9] used SVM for face detection in YALE and ORL database and achieve 96% and 
96.5% of accuracy respectively. Reference [10] used CNN for face recognition with pose and illumination variation 
and achieve 99.5% of accuracy on AR database; and 85.13% of accuracy on FERET database. From those previous 
studies, SVM, KNN, and CNN are effective algorithms for classifying face images. Therefore, we consider comparing 
KNN, SVM, and CNN for face mask detection in the same dataset. We expect that this would result in comparable 
performance. 

The purpose of this research is to compare and analyse the performance of classic machine learning algorithms, 
which are SVM and KNN, with DL algorithm, namely CNN. The feature used for classifying face masks is the pixel 
intensity. The performance being compared includes accuracy, precision, recall, F1 score, and execution time. The 
result is expected to be useful for researchers in choosing the best and most suitable algorithm for face masks detection. 

The remaining of this paper consists of 4 parts. Chapter 1 explains the background to the research. Chapter 2 
describes the research methodology. Chapter 3 explains the results and discussion. Chapter 4 concludes the paper. 

II. RELATED WORKS  

Jagadeeswari et al. [11] compared MobileNetV2, RESNET50, and VGG16; with Adam Optimizer, ADAGRAD, 
and SGD. Adam optimizer and MobileNetV2 resulted in the best accuracy. Han et al. [12] performed an object 
detection focusing on real time face masks detection in supermarket using single-shot detector (SSD). Vinitha et al. 
[13] used CNN with MobileNetV2 architecture, and library of OpenCV, tensorflow, keras, and Pytorch to detect 
whether people were wearing a face mask or not. Nagrath et al. [14] used SSDMNV2 (Single Shot Multibox Detector 
as a face detector and MobileNetV2) to perform real-time face masks detection. Ge et al. [15] propose LLE (Locally 
Linear Embedding) - CNNs for face masks detection. It combines two pre-trained CNNs for extracting facial regions 
before being described by LLE. Grassi et al. [16] used Discrete Cosine Transform (DCT) for feature extraction with 
Multilayer Perceptron (MLP) and RBF Neural Network as classifier. 

Nevertheless, none of these studies has tried to compare classic machine learning algorithms, namely KNN and 
SVM, with deep learning, namely CNN, to compare the performance. The performance to be analyzed is accuracy, 
precision, recall, F1 score, and execution time. According to Shustanov et al. [17], CNN requires good hardware 
specifications that affect execution time. This study tries to consider this in relation to CNN performance, when 
compared to the KNN and SVM. 

III. METHODS 

The research methodology consists of five stages, which are collecting datasets, forming classification models, 
training classification models, testing classification models, and calculating performance. Fig. 1 shows the flow of the 
research methodology.  
 

 
 
 
 

 
 

Fig 1. Research Method 

 

A. Collecting Dataset 

The dataset used in this study is a face mask images obtained from Kaggle [18]. It is public dataset which consists 
of faces with and without a mask. Fig. 2 shows examples of a face with and without a mask. The number of images 
of faces with a face mask is 3,725 and without a face mask is 3,828. Because the face mask image dataset has different 
image sizes, each image is resized to become 64x64 pixels. 
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   (a)  (b) 

Fig. 2. Example of face without masks (a) and face with masks (b) 
 

B. Forming Classification Model 

At this stage, the various parameters from the KNN, SVM, and CNN algorithms are configured. The goal is to 
determine the effect of the parameters on the algorithm performance. 

1) KNN 

The parameter configurations used in the KNN algorithm are the number of neighbours and the type of distance. 
The number of neighbours used is 5, 7, and 9, while the types of distance used are Euclidean and Minkowski. Each 
distance is tested with the number of neighbours of 5, 7, and 9. The Euclidean distance formula can be seen in (1) 
where � is the Euclidean distance, n is the number of attributes, �� is the attribute value of first dataset, �� is the 
attribute value of second dataset. Minkowski distance formula can be seen in (2) where � is the Minkowski distance, 
n is the number of attributes, �� is the attribute value of first dataset, �� is the attribute value of second dataset. 

 

�(�, �) =  �∑ (�� − ��)
��

���   (1) 

 
�(�, �) = ∑ |�� − ��

�
��� | (2) 

 

2) SVM 

The parameter configuration in SVM algorithm is the kernel types, which are Linear, Poly, and RBF. At the training 
stage, one of the best performing kernels will be selected. Linear kernel formula can be seen in (3) where x and x’ are 
two samples. Poly kernel formula can be seen in (4) where x and x’ are two samples, and d is the degree of the 
polynomial. RBF kernel formula can be seen in (5) where x and x’ are two samples.  

 
�(�, �′) = ���′  (3) 

 
�(�, ��) =  (� . �� + 1)�  (4) 

 

�(�, ��) = ��� �−
|������|�

��� � (5) 

3) CNN 

The configuration parameters in the CNN algorithm are the number of epochs, the convolution model, the type of 
activation function, the number of dense layers, and the number of batch sizes. Table 1 shows the CNN parameters. 

This study uses Keras library [19], which is an open source library for designing deep learning architecture. Keras 
can run on artificial intelligence frameworks such as TensorFlow. Currently, Keras is considered as one of the best 
machine learning libraries in Python. It also provides some of the best utilities when it comes to building models, 
processing datasets, visualising graphs, and other functions. 

 



Naufal, Kusuma, Prayuska, Yoshua, Lauwoto, Dinata, & Sugiarto 
 Journal of Information Systems Engineering and Business Intelligence, 2021, 7 (1), 56-66 

59 
 

 
 
The activation function at the two convolutions and dense stages in the first layer is the Rectified Linear Unit 

(ReLu). The ReLu activation function formula can be seen in (6). x is the value inputted into the activation function. 
 

�(�) = max(0, �)     (6) 
 

The activation function on the second dense layer (output layer) is softmax. The softmax activation function formula 
can be seen in (7). �� is the input value from the previous layer, � is the number of labels, and � is the order of the 
labels. 

�(��) =  
���

∑ �
���

�

      (7) 

The epoch used during the training process is 50. The optimizer for updating the edge weight for each layer is Adam 
Optimizer. The batch size is 8. 

 
4) Computer Specifications 
All classification models that are formed, the training and testing process are executed on a computer with following 

specification Intel® Core™ i3-3220 CPU @ 3.30GHz (4 CPUs), 8192 MB of RAM, Windows 10 Education 64 bit, 
AMD Radeon HD 5500 Series, and 1 GB GPU Total Memory. This specification information is important because it 
affects the performance of the execution time. 

C. Training 

At the training and testing stages, the dataset is divided into two parts with the proportion of 80% of training and 
20% of testing for the first experiment; and 66.66% of training and 33.33% of testing for the second experiment. So 
that the number of cross validations is 5 and 3. The distribution of training and testing data is generated randomly. 

Training is carried out for the KNN, SVM, and CNN algorithms using the parameters described in the previous 
sub-chapter. In the CNN algorithm, there is data augmentation to enrich the variation of the dataset. The more varied 
the training dataset, the more useful it is to avoid overfitting. The types of data augmentation are horizontal flip, shear 
range, and zoom range. The data augmentation was performed using Keras library [19]. 

Horizontal flip is used to duplicate the training dataset by rotating the image by 90 degrees. Shear range [10] 
performs a shear transformation, which is used to rotate the image to a certain degree according to the parameter. 
Zoom range is used to enlarge an image into a certain size according to the parameters. 

D. Testing 

The testing stage is carried out to validate the model that has been formed at the training stage. Testing is done at 
each cross validation for the KNN, SVM, and CNN algorithms. Testing using cross validation aims to see whether the 
model built on the algorithm has a stable performance or not. 

In the CNN algorithm, validation is carried out in each epoch using data testing. If there is a model in a particular 
epoch that has the best performance, that model is saved. The best model store uses checkpoints in Keras library. 

E. Performance Calculation 

At this stage, the process of calculating the performance of the testing phase in each algorithm is carried out. The 
performance metrics used are accuracy, precision, recall, F1 score, and the execution time of the training and testing 
process. Each algorithm with its respective parameters is calculated for its performance in each cross validation. The 

TABLE 1 
CNN PARAMETERS 

Parameters Tensor Shape Description 

Convolution-1 (62, 62, 32) Filter Size = 3x3. Activation = ReLu 
MaxPooling-1 (31, 31, 32) Pool Size = 2 
Convolution-2 (29, 29, 32) Filter Size = 3x3. Activation = ReLu 
MaxPooling-2 (14, 14, 32) Pool Size = 2 
Flatten  (6272) - 
Dense Input (128) Activation = ReLu 
Dense Output (3) Activation = Softmax 
Optimizer 
Number of epoch 

- 
- 

Adam 
50 

Batch Size - 8 
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parameter in an algorithm that has the best performance will be selected and then compared with another algorithm 
that has the best performance. 

Equation (8) shows the calculation accuracy, which is used to calculate the total of True Positive (TP) and True 
Negative (TN) divided by the total of TP, TN, False Positive (FP), and False Negative (FN). 

 

�������� =  
�����

�����������
      (8) 

 
Equation (9) shows the calculation formula of Precision, which is calculated by dividing TP by the total of TP and 

FP. 
 

��������� =  
��

�����
      (9) 

 
Equation (10) shows the calculation formula for recall, which is calculated by dividing TP by the total of TP and 

FN. 
 

������ =
��

�����
      (10) 

 
Equation (11) shows the calculation formula of the F1 score, which is calculated by dividing the multiplication of 

Precision with Recall and the addition of Precision and Recall. 
 

�1 ����� =
��������� � ������

����������������
      (11) 

 

IV. RESULTS 

The results of face mask detection using the KNN, SVM, and CNN algorithms were obtained and compared in 
terms of performance and execution time.  

A. Test Results of KNN Algorithm 

Table 2 shows the test results of the KNN algorithm with the specified distance and neighbours’ parameters. Dist 
is the type of distance, NN is the Number of neighbours, AVG is the average metric value, and AVG Perf is the sum 
of the average metric accuracy, precision, recall, and F1 score divided by 4. AVG Perf is used to see the overall 
average performance metric. 

It can be seen that there is no significant difference in performance with the parameters used in the KNN. However, 
in this study 5 KNNs with the Euclidean distance type which had an AVG Perf of 0.8115 were chosen to be compared 
with the SVM and CNN algorithms because they had the best AVG Perf. 

B. Test Results of the SVM Algorithm 

Table 3 shows the test results on the SVM algorithm. There is a significant difference in performance between 
kernels. It can be seen that the SVM algorithm with the RBF kernel type has the best AVG Perf, which is 0.8721. 
Furthermore, the SVM performance with the Linear kernel will be compared with the KNN and CNN algorithms. 

C. Test Results of CNN Algorithm 

Table 4 shows the test results on the CNN algorithm. The performance produced by CNN is relatively good, which 
has AVG Perf 0.9683. From each cross-validation, the performance generated by CNN is also quite stable. All 
performance metrics yield values above 0.96. 

D. Performance Comparison 

Table 5 shows the comparison results of performance metrics from the KNN, SVM, and CNN algorithm. The KNN 
and SVM algorithm use the parameters with best performance as described in the previous section. It can be seen that 
CNN has the best performance compared to the KNN algorithm with the number of neighbours 5 and SVM with the 
RBF kernel. CNN has the best accuracy, precision, recall, and F1 score. Fig. 3 and Fig. 4 shows a graph of the 
performance comparison of the KNN, SVM, and CNN algorithms for 5 and 3 cross-validation respectively. 
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The gap between the KNN and SVM algorithm is around 0.062. Meanwhile, the gap between CNN and KNN and 
CNN with SVM is 0.1552 and 0.0968, respectively. The difference in performance between KNN and SVM is not far 
enough, but KNN and SVM show a significant gap compared to CNN. 

 

 

 
 
 

TABLE 2 
TEST RESULT OF KNN 

Dist NN Metric 

5-Cross Validation  
(80% Train 20% Test) 

3-Cross Validation  
(66.66% Train 33.33% 

Test) AVG 
AVG 
PERF 

1 2 3 4 5 1 2 3 

E
U

C
L

ID
E

A
N

 

5 ACC 0.7988 0.8127 0.8140 0.8192 0.8126 0.8125 0.8022 0.7974 0.8087 

0.8115 
PREC 0.8143 0.8238 0.8228 0.8321 0.8301 0.8296 0.8151 0.8102 0.8223 

REC 0.7988 0.8127 0.8140 0.8192 0.8126 0.8125 0.8022 0.7974 0.8087 

F1SCORE 0.7971 0.8100 0.8121 0.8174 0.8096 0.8095 0.8002 0.7946 0.8063 

7 ACC 0.8001 0.8008 0.8140 0.8099 0.8066 0.8086 0.7994 0.7942 0.8042 

0.8073 
PREC 0.8157 0.8130 0.8257 0.8235 0.8253 0.8266 0.8172 0.8079 0.8194 

REC 0.8001 0.8008 0.8140 0.8099 0.8066 0.8086 0.7994 0.7942 0.8042 

F1SCORE 0.7984 0.7976 0.8116 0.8079 0.8033 0.8053 0.7967 0.7912 0.8015 

9 ACC 0.8001 0.8008 0.8140 0.8099 0.8066 0.8086 0.7994 0.7942 0.8042 

0.8080 
PREC 0.8143 0.8238 0.8228 0.8321 0.8301 0.8296 0.8151 0.8102 0.8223 

REC 0.8001 0.8008 0.8140 0.8099 0.8066 0.8086 0.7994 0.7942 0.8042 

F1SCORE 0.7984 0.7976 0.8116 0.8079 0.8033 0.8053 0.7967 0.7912 0.8015 

M
IN

K
O

W
S

K
I 

5 ACC 0.7988 0.8127 0.8140 0.8192 0.8126 0.8125 0.8022 0.7974 0.8087 

0.8110 
PREC 0.8143 0.8238 0.8228 0.8321 0.8301 0.8296 0.8151 0.8102 0.8223 

REC 0.7988 0.8127 0.8140 0.8127 0.8126 0.8125 0.8022 0.7974 0.8079 

F1SCORE 0.7971 0.8100 0.8121 0.8100 0.8096 0.8095 0.8002 0.7946 0.8054 

7 ACC 0.8001 0.8008 0.8140 0.8099 0.8066 0.8086 0.7994 0.7942 0.8042 

0.8067 
PREC 0.8157 0.8130 0.8257 0.8235 0.8253 0.8266 0.8172 0.8079 0.8194 

REC 0.8001 0.8008 0.8140 0.8008 0.8066 0.8086 0.7994 0.7942 0.8031 

F1SCORE 0.7984 0.7976 0.8116 0.7976 0.8033 0.8053 0.7967 0.7912 0.8002 

9 ACC 0.8001 0.8008 0.8140 0.8099 0.8066 0.8086 0.7994 0.7942 0.8042 

0.8074 
PREC 0.8143 0.8238 0.8228 0.8321 0.8301 0.8296 0.8151 0.8102 0.8223 

REC 0.8001 0.8008 0.8140 0.8008 0.8066 0.8086 0.7994 0.7942 0.8031 

F1SCORE 0.7984 0.7976 0.8116 0.7976 0.8033 0.8053 0.7967 0.7912 0.8002 

  
TABLE 3 

TEST RESULT OF SVM 

Kernel Metric 

5-Cross Validation  
(80% Train 20% Test) 

3-Cross Validation 
(66.66% Train 33.33% Test) AVG 

AVG  
PERF 

1 2 3 4 5 1 2 3 

LINEAR 

ACC 0.8451 0.8418 0.8498 0.8583 0.8722 0.85068 0.84869 0.84029 0.8509 

0.8505 
PREC 0.8467 0.8418 0.8499 0.8583 0.8583 0.85079 0.84907 0.84080 0.8494 

REC 0.8451 0.8418 0.8498 0.8583 0.8722 0.85068 0.84869 0.84029 0.8509 

F1SCORE 0.8451 0.8418 0.8498 0.8583 0.8721 0.85069 0.84866 0.84012 0.8508 

POLY 

ACC 0.7684 0.7737 0.7829 0.7623 0.802 0.75576 0.75814 0.75765 0.7701 

0.7719 
PREC 0.7949 0.781 0.7902 0.7792 0.7792 0.77061 0.78058 0.77460 0.7813 

REC 0.7684 0.7737 0.7829 0.7623 0.802 0.75576 0.75814 0.75765 0.7701 

F1SCORE 0.7644 0.7708 0.7808 0.7585 0.7996 0.75150 0.75332 0.75279 0.7665 

RBF 

ACC 0.8756 0.8676 0.8584 0.8788 0.8808 0.86378 0.88125 0.86770 0.8717 

0.8721 
PREC 0.8757 0.8701 0.8636 0.8801 0.8801 0.86655 0.88274 0.86884 0.8735 

REC 0.8756 0.8676 0.8584 0.8788 0.8808 0.86378 0.88125 0.86770 0.8717 

F1SCORE 0.8755 0.8677 0.8582 0.8787 0.8808 0.86366 0.88113 0.86769 0.8717 
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Fig 3. Performance Comparison Graph for 5-Cross Validation 
 

TABLE 4  
TEST RESULT OF CNN 

Metric 

Cross Validation 
(80% Train 20% Test) 

Cross Validation 
(66.66% Train 33.33% Test) AVG 

AVG 
PERF 

1 2 3 4 5 1 2 3 

ACC 0.9636 0.9702 0.9682 0.9709 0.9742 0.9631 0.9670 0.9690 0.9683 

0.9683 
PREC 0.9636 0.9702 0.9683 0.9709 0.9742 0.9631 0.9670 0.9690 0.9683 

REC 0.9636 0.9702 0.9682 0.9709 0.9742 0.9631 0.9670 0.9690 0.9683 

F1SCORE 0.9636 0.9702 0.9682 0.9709 0.9742 0.9631 0.9670 0.9690 0.9683 

 
 

TABLE 5 
PERFORMANCE COMPARISON 

Algorithm Metric 
Cross Validation Cross Validation 

AVG 
AVG  
PERF 1 2 3 4 5 1 2 3 

KNN 5  
EUCLIDEAN 

ACC 0.7988 0.8127 0.8140 0.8192 0.8126 0.8125 0.8022 0.7974 0.8087 

0.8115 
PREC 0.8143 0.8238 0.8228 0.8321 0.8301 0.8296 0.8151 0.8102 0.8223 

REC 0.7988 0.8127 0.8140 0.8192 0.8126 0.8125 0.8022 0.7974 0.8087 

F1SCORE 0.7971 0.8100 0.8121 0.8174 0.8096 0.8095 0.8002 0.7946 0.8063 

SVM RBF 

ACC 0.8756 0.8676 0.8584 0.8788 0.8808 0.8638 0.8813 0.8677 0.8717 

0.8721 
PREC 0.8757 0.8701 0.8636 0.8801 0.8801 0.8666 0.8827 0.8688 0.8735 

REC 0.8756 0.8676 0.8584 0.8788 0.8808 0.8638 0.8813 0.8677 0.8717 

F1SCORE 0.8755 0.8677 0.8582 0.8787 0.8808 0.8637 0.8811 0.8677 0.8717 

CNN 

ACC 0.9636 0.9702 0.9682 0.9709 0.9742 0.9631 0.967 0.969 0.9683 

0.9683 
PREC 0.9636 0.9702 0.9683 0.9709 0.9742 0.9631 0.967 0.969 0.9683 

REC 0.9636 0.9702 0.9682 0.9709 0.9742 0.9631 0.967 0.969 0.9683 

F1SCORE 0.9636 0.9702 0.9682 0.9709 0.9742 0.9631 0.967 0.969 0.9683 
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Fig 4. Performance Comparison Graph for 3 cross validation 

 
Table 6 shows the comparison of the training and testing execution time. The calculated execution time is the 

duration of time the training process and the testing process for each cross-validation. It can be seen that CNN has the 
longest average execution time of 2,337.34 seconds despite having the best performance. Meanwhile, KNN with 5 
neighbours shows the fastest average execution time of 203.62 seconds. SVM has an average execution time that is 
not far from the Linear KNN, which is around 309.23. 

 

 
The long execution time for CNN is because there are a lot of epochs being used, which is 50. However, based on 

the historical data on the training and testing execution time of each epoch, CNN takes an average of 50.5 seconds 
and obtains an average accuracy of 0.9. This is consistent with the nature of the neural network, which requires more 
time but has better performance metrics. 

From the training and testing CNN model, it can be concluded that the model used is not overfitting, because the 
accuracy generated in the training data validation is not much different from the accuracy generated when validating 
the testing data. Fig. 5 shows the loss and accuracy graph of each epoch of CNN for 5-cross validation. Fig. 6 shows 
the loss and accuracy graph of each epoch of CNN for 3-cross validation. 

TABLE 6 
EXECUTION TIME OF KNN, SVM, AND CNN IN SECOND 

Algorithm 
Cross Validation Cross Validation 

AVG 
1 2 3 4 5 1 2 3 

KNN 5  
EUCLIDEAN 

189.15 182.98 188.53 181.73 183.96 270.62 266.87 165.16 203.62 

SVM RBF 324.5 322.39 328.08 326.99 327.88 278.69 292.11 273.2 309.23 

CNN 2464.88 2662.78 2477.37 2467.79 2466.19 2036.14 2045.66 2077.93 2337.3425 
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Fig. 5. CNN Loss and Accuracy Graphics for 5-Cross Validation 
 
 

The KNN algorithm with a Euclidean distance and 5 neighbours, SVM with RBF Kernel, and CNN are classified 
as relatively stable in performance in each cross validation.  KNN, SVM, and CNN algorithms are quite feasible to 
use in classifying face mask images using only pixel intensity features. However, the CNN algorithm requires a long 
execution time in the training process. 

V. DISCUSSION 

CNN needs long time in the training process, but results in good performances. Meanwhile, KNN and SVM is 
faster, but the resulting performance is not as good as CNN. The relation between execution time and performance 
can be seen in Table 5 and 6. If researchers have good computational machine and want a good performance model, 
then CNN execution time is not a problem. KNN and SVM can be chosen if the researchers want a classification 
model that requires a relatively faster training process. 

CNN is a fairly popular algorithm for image classification, and it is proven to have the best performance compared 
to KNN and SVM for face mask detection. Long execution time is only needed at the beginning to form the CNN 
model and it is not a problem if CNN is chosen as the face mask classification algorithm. CNN can be used to form a 
classification model on face mask image dataset using a large number of training datasets. This makes the training 
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process to form a classification model long. While waiting for the CNN model forming process, researchers can use 
KNN or SVM to create a temporary classification model because the performance of the two algorithms is still good. 
After the CNN model is formed then the researchers can use it to perform face mask detection. 

 

 

Fig. 6. CNN Loss and Accuracy Graphics for 3-Cross Validation 
 
This study has been compared with previous comparative analysis of face mask detection. This study compared 

between KNN and SVN machine learning algorithms with CNN deep learning algorithm for face mask detection. 
Previous studies such as by Jagadeeswari et al. [11] and Nagrath et al. [14] compared only deep learning algorithm 
which are CNN with other architectures. This study also examines the execution time that can be useful for researchers 
as one of the consideration criteria to choose the algorithm. This was not included in the research by Jagadeeswari et 
al. [11] and Nagrath et al. [14]. 

The limitation of this study is that it uses only one CNN architecture. The recommendation for future research is to 
compare the performance of other CNN architectures such as Alex Net [20], GoogLeNet [21], VGGNet [22], ZFNet 
[23], and ResNet [24] with machine learning algorithm. In addition, the use of the image pre-processing stage can be 
useful to improve the performance of face mask detection. 

VI. CONCLUSION 

Based on the experiment result, it can be concluded that the KNN, SVM, and CNN are good algorithm for face 
mask detection using 5 cross-validations on 3,886 image data. The performance of KNN and SVM is good, each of 
which has an accuracy of 0.8115. and 0.8721. The execution time of the KNN and SVM training is also fast, which 
are 185.27 and 352.968 seconds, respectively. CNN has a better accuracy performance of 0.9683 but has a longer 
execution time of 2,507.802 seconds. 

In the case of large amounts of image data, KNN and SVM can be used as temporary algorithms in image 
classification due to their faster execution times. At the same time, CNN can be trained to form a classification model. 
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When the CNN classification model has been formed, it is advisable to use CNN for the face mask detection because 
it has better performance than the KNN and SVM. 
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