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Abstract 
 
Background: Brain tumour categorisation can be assisted with computer-aided diagnostic (CAD) for medical applications. 
Biopsies to classify brain tumours can be costly and time-consuming. Radiologists may also misclassify brain tumour types 
when handling large amounts of data with multiple classes. In this case, technological advancements and machine learning can 
help.  
Objective: This study proposes hybrid deep learning approaches for classifying brain tumours using convolutional neural 
networks (CNN) and machine learning (ML) classifiers.  
Methods: A new 23-layer CNN architecture is developed for brain deep feature extraction from magnetic resonance imaging 
(MRI). Random forest (RF) and support vector machine (SVM) classifiers are then used to evaluate the extracted in-depth 
features from the flattened layer of the CNN model. This study is unique because it employs CNN, CNN-RF, CNN-SVM, and 
tuned Inception V3 deep learning models on multi-class brain MRI datasets. The proposed hybrid method is run on two publicly 
available datasets. 
Results: Among the four models, the CNN-RF model achieves 96.52% accuracy on the Fig share 3c dataset, while the CNN-
SVM model achieves 95.41% accuracy on the large Kaggle 4c dataset with four classes (glioma, meningioma, normal, pituitary). 
Conclusion: Experimental outcomes show that the hybrid techniques can significantly enhance the classification performance, 
especially on multi-class datasets (glioma, meningioma, normal, pituitary). This study also examines the various weight 
strategies for dealing with overfitting analytics. 
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I. INTRODUCTION 

The brain is the most vital and intricate organ, regulating the entire nervous system, with 100 billion nerve cells [1]. 
Any irregularity within this organ can lead to threatening health problems. A brain tumour constitutes abnormal brain 
cells, which vary in size and type. According to the National Brain Tumour Society, approximately 18,020 people 
died from brain tumours in 2020 [2]. A brain tumour is an imbalanced proliferation of brain cells, which can be divided 
into major or minor. Major cases arise from within cells in the brain, whereas minor cases arise from cells other than 
brain cells [3]. The two types of tumours are glioma and meningioma, with glioma being the most common [4]. 
Meanwhile, the World Health Organization (WHO) [1] divides brain tumours into four types. Minor tumours, such as 
meningioma, are classified as grades 1 and 2. The remaining grades 3 and 4, such as glioma, are cancerous and lethal. 
The vast majority of pituitary tumours are benign. Large pituitary tumours are referred to as macroadenomas. In the 
clinical method, glioma, meningioma, and pituitary tumour prevalence rates are 45%, 15%, and 15%, respectively [5].  

The treatments of brain tumours vary. Surgery is currently the most often used treatment for brain tumours since it 
has no adverse effect on the brain [6]. For imaging, magnetic resonance imaging (MRI) is often preferred over other 
techniques—such as computed tomography (CT), positron emission tomography (PET), and X-ray [7]. Manually 
analysing these images is time-consuming, labour-intensive, and prone to errors [8]. To overcome this limitation, an 
computer-aided diagnostic (CAD) system must be implemented to reduce the workload for brain MRI categorisation 
by physicians and specialists. 
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Methods for automatic brain tumour categorisation include inter- and intra-form, textural, and intensity alterations, 
but these remain ineffective. Traditional machine learning (ML) algorithms depend on handmade attributes, making 
them costly and non-sustainable. Deep learning methods can obtain valuable attributes and provide greater 
effectiveness but require massive labelled training data. A supervised learning model can outperform them but often 
produces an over-fitted model inappropriate for another extensive database. To address these challenges, the current 
study employs (1) a developed CNN model and tuned Inception V3 model for feature extrication for effective and 
discriminatory high-level features from brain MRI images and (2) multiple ML classifiers to distinguish normal and 
pathological brain MRI images.  

We developed a feature descriptor method where deep features from the created CNN are computed using two ML 
classifiers. The best performing one was then chosen. The extensive evaluation is performed using the tuned pre-
trained CNN model and the developed CNN model with two ML classifiers. The two datasets are (1) Fig share 3c 
dataset with three classes (glioma, meningioma, pituitary) and (2) Kaggle 4c dataset with four classes (glioma, 
meningioma, normal, pituitary). In conclusion, the followings are the contribution of this work:  

1. The design and application of a completely automated hybrid method for brain tumour classification with (a) 
two types of CNN (the developed 23 layers CNN and tuned pre-trained Inception V3) model to extract 
profound features from brain MRI and (b) ML classifiers to efficiently distinguish the type of brain tumour. 

2. A presentation of a three-step technique: (a) retrieving deep features by using two CNN models 
(the developed CNN and tuned Inception V3) for effective information retrieval and superior observation, 
and (b) grading of the optimum features employing tailored ML models, and (c) integrating them to develop 
a hybrid model for cutting-edge brain tumour classification using brain MRI. 

3. The implementation of the method (CNN models and different ML classifiers) on two datasets (Fig share 3c 
and Kaggle 4c). 

4. This method requires fewer pre-processing complexities. 
5. The improvement of the overfitting issue of the model is analysed using the weight initialisation technique. 

The rest of the paper is structured as follows: Section 2 lists the relevant paper works; Section 3 provides a brief 
explanation of the proposed methodology; Section 4 discusses the results of the proposed hybrid method; Section 5 
presents the discussion; and Section 6 provides the conclusion.  

II. LITERATURE  REVIEW  

This section reviews the deep and machine learning models for MRI brain tumour categorisation in past research. 
Table 1 depicts the strategies for computerised brain MRI classification associated with the enhanced traditional ML 
and deep learning methods. 

The deep learning (DL) method has been widely employed for brain MRI categorisation in the last decade [9]. 
Because the attribute extrication and categorisation stages are built into conscience, the DL technique does not require 
handcrafted features. The DL technique involves a dataset, which may require further processing, and then prominent 
features are chosen [10]. A fundamental problem in MRI categorisation is minimising the gap between high-level 
sensory data detected by the human assessor and low-level sensory data acquired by the MRI machine. CNN can be 
utilised as an extractor to collect crucial attributes for the categorisation task to eliminate the semantic gap. In the 
preliminary and thicker layers, CNN models extricate primary and secondary elements, respectively. CNN extract 
profound features from brain MRI automatically. The primary convolutional block extracts feature from brain MRI 
such as edges and corners. These features are then combined in the next layer to produce high-level features. The 
extracted features from brain MRI are used to identify various image representation levels and capture relevant 
information such as image labels (class).  

 Researchers have employed CNNs to categorise brain MRI and evaluated their suggested methods on brain tumour 
datasets [11] [12][13]. Khawaldeh et al. [14] developed a CNN model for classifying the normalcy and abnormality 
of brain MRI to detect high-grade and low-grade glioma tumours. They developed their network upon the Alex-Net 
CNN architecture, achieving 91% accuracy. Afshar et al. [15] built a model for brain tumour categorisation by using 
capsule networks with 64 maps of MRI brain data, producing 86.56% accuracy. Charfi et al. [16] used histogram 
equalisation to segment images with PCA to reduce the dimension. Their accuracy was 90% based on the feed-forward 
neural network classifier. Despite the volume of work done throughout this area, a standard and robust solution to 
categorise brain MRI remains to be established. 

Citak et al. [17] proposed three deep learning algorithms: multi-layer perceptron, logistic regression, and SVM. The 
SVM with linear kernel classification model acquired 93% accuracy on the MRI dataset. Past research has also used 
CNN models to classify brain lesions [18]. The architectures of these CNNs extract attributes from brain MRI through 
convolution and pooling processes. Pan et al. [19] suggested a CNN algorithm in their work to inspect MRI brain 



Islam & Munira  
 Journal of Information Systems Engineering and Business Intelligence, 2022, 8 (2), 162-174 

164 
 

tumour images, indicating that CNN sensitivity and specificity were 18% more than the ANN. Díaz et al. [20] 
developed a multi-pathway CNN framework for automatically segmenting glioma, meningioma, and pituitary brain 
tumours. They tested their suggested model against an openly accessible T1-weighted contrast-enhanced MRI dataset, 
gaining 97.3% accuracy. However, their learning environment was rather costly. 

In conclusion, as seen in past research, the accuracy of categorising brain MRI using deep learning approaches is 
much higher than classical ML techniques. However, deep learning models require vast data for training to outperform 
classic ML techniques. Furthermore, the previously stated approaches have limitations that should be addressed before 
being applied to brain tumour classification: only evaluating binary classification MRI image datasets and overlooking 
multi-class datasets [21]. Kang et al. [5] developed a CNN-based model for classifying brain tumours using multi-
class datasets. However, the accuracy is lower, and the computation time is not reasonable. 

 
TABLE 1 

WORK INVOLVED IN THE CLASSIFICATION OF BRAIN TUMOURS 
Authors Classification 

Type/Motive 
Techniques 
Used 

Dataset Method of 
Classification 

Method of 
Feature 
Extraction 

Accuracy 
of the 
Model 

[22]  Binary (normal and 
abnormal) 

Classical 
Machine 
Learning-based 
Techniques 

71 MRI Feed-forward 
neural network 

DWT 95.8% 

[23]  Classification 
(Glioma, 
Meningioma, and 
Pituitary) 

 
 
Deep learning-
based 
techniques 

3064 T1 weighted 
MRI 

CNN CNN 94.39% 

[12]  Binary (normal and 
abnormal) 

220 MRI CNN CNN 94.5% 

[5]  Multi- 
classification 

Three datasets 
(large dataset 3264 
MRI) 

ML classifiers Pre-trained CNN 
networks 

93.72% 
(large 
dataset) 

 

III. METHODS 

The framework of the proposed method is outlined in this section. Then, the details of the major components are 
explained in the subsequent sections. Fig. 1 depicts the workflow of the proposed methodology. The images are pre-
processed (thresholding, cropping, resizing, and rescaling) before being fed into the CNN models. Two CNN models 
are used to extract deep features from brain MRI. The first is the newly created CNN model, and the second is the 
tuned Inception V3 model with the transfer learning approach. The ML classifiers then analyse the retrieved deep 
attributes.  

This section includes the following major components: dataset collection, data pre-processing, CNN architecture, 
RF classifier, SVM, the tuned Inception V3 model, and training specifications of the proposed model. 
 

Fig. 1 The working flow of the proposed methodology 

 

A. Dataset Collection  

The image datasets are obtained from [21] and [24]. The first dataset, Fig share 3c, contains T1 weighted data from 
233 patients, and the second dataset, Kaggle 4c, contains 3264 MRI images. There are 1426 gliomas, 708 
meningiomas, and 930 pituitary class images in the Fig share 3c dataset. The number of gliomas, meningiomas, 
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normal, and pituitary class images in the Kaggle 4c dataset is 926, 937, 500, and 901, respectively. The image height 
and width in each dataset are 512 pixels. Table 2 displays the properties of the two image datasets. 

 
TABLE 2 

ATTRIBUTES OF THE DATASETS 

Dataset Names Number of Class Training Testing Validation Total 
Fig share 3c 3 2343 460 261 3064 
Kaggle 4c 4 2480 653 131 3264 

 

B. Data Pre-processing 

Minimal pre-processing is carried out to enhance the MRI images as input. Fig. 2 depicts the pre-processing steps, 
which include thresholding, cropping, resizing, and rescaling. An example is as follows: 
 

 
                                             (a)                                       (b)                                    (c)                                   (d) 

 Fig. 2 Pre-processed images (a) Original MRI data; (b) Threshold image; (c) Contoured image; (d) Cropped image 

1)  Image Thresholding 
To remove any noise in the original picture dataset, the threshold of the original image is first applied, followed by 

erosion and dilation. 
  

2)  Image Cropping 
    The cropping of the image is as follows: 

• Step 1: The brain MRI images’ threshold contours are mapped, and the largest contour is selected; 
• Step 2: The contour comprising four edges’ extreme points is plotted. The contour is essentially a NumPy 

array that contains the coordinates of the points on the map (x, y); 
• Step 3: The extreme locations are used to crop the brain MRI. 

 
3)  Image Resizing 

To reduce the computational cost of the original image size, the cropped image is resized to the preferred size of 
[224,224,3]. 

 
4)  Image Rescaling 

The images are rescaled for features ranging from 0 to 1, with a pixel having a maximum value of 255 and a 
minimum value of 0. Equation (1) is used for rescaling, with X denoting the MRI data. 
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C.   CNN Model Architecture 

Convolution using the resized MRI brain input image is achieved using a filter (3 × 3)that generates a feature map. 
This filter is used in conjunction with ‘valid’ padding and strides= (1,1). Fig. 3 depicts the suggested CNN design. 
The CNN model consists of five convolutional 2D layers, four max-pool 2D layers, one average pool 2D layer, five 
batch normalisation layers, four dropout layers, one flattened layer, and three dense layers. The total number of layers 
is 23.  
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Fig. 3 Proposed CNN architecture model 

 
TABLE 3 

ALL THE LAYERS IN THE CNN MODEL WITH PARAMETERS AND ACTIVATION 
Number of Layers Names of layer Activation shape Parameters 

1 Input Layer 224 × 224 × 3 0 
2 1st Conv2D layer (3 × 3 filter) 222 × 222 × 16 448 
3 MaxPool 2D (4 × 4 filter) 55 × 55 × 16 0 
4 Batch Normalization 55 × 55 × 16 64 
5 2nd Conv2D layer( 3 × 3 filter) 53 × 53 × 32 4640 
6 MaxPool 2D (2 × 2 filter) 26 × 26 × 32 0 
7 Batch Normalization 26 × 26 × 32 128 
8 Dropout (0.3) 26 × 26 × 32 0 
9 3rd Conv2D layer( 3 × 3 filter) 24 × 24 × 64 18,496 

10 MaxPool 2D (2 × 2 filter) 12 × 12 × 64 0 
11 Batch Normalization 12 × 12 × 64 256 
12 Dropout (0.25) 12 × 12 × 64 0 
13 4th Conv2D layer( 3 × 3 filter) 10 × 10 × 128 73,856 
14 AvgPool 2D (2 × 2 filter) 5 × 5 × 128 0 
15 Batch Normalization 5 × 5 × 128 512 
16 Dropout (0.25) 5 × 5 × 128 0 
17 5th Conv2D layer( 3 × 3 filter) 3 × 3 × 128 1,47,584 
18 MaxPool 2D (2 × 2 filter) 1 × 1 × 128 0 
19 Batch Normalization 1 × 1 × 128 512 
20 Dropout (0.25) 1 × 1 × 128 0 
21 Flatten layer 128 0 
22 Dense1 (128) layer 128 16,512 
23 Dense 2(32 neurons with 

regularise 0.0001) 
32 4128 

24 Dense 3 (class number× 1 
neurons with regularise 0.0001) 

4 132 

TOTAL 2,67,268 
 

The created CNN model comprises five convolutional blocks followed by classification layers. The classification 
layers consist of one flattened and three dense layers. Except for the first convolutional block, each contains one 
convolutional layer, one pooling layer, and one batch normalisation layer, followed by a dropout layer. There is no 
dropout layer in the first convolutional block. The initial Conv2D layer generates 16 feature maps of  222 × 222, 
which are subsequently fed into the max-pool 2D layer. Using the max-pool layer decreases the dimensionality to 
55 × 55 while retaining the critical information. The batch normalisation layer’s 16 feature maps are then sent into 
the convolutional layer of the second convolutional block, which yields 32 feature maps. Fig. 4 depicts the 32 feature 
maps produced by the second convolutional layer. This feature extraction procedure is carried on to the fifth 
convolutional block. More specific features are extracted as each block proceeds. The deep features are then flattened, 
followed by three dense layers. Table 3 displays the CNN model’s layer parameters for each layer. At the last dense 
layer (Dense 3), the activation and parameters are shown for Kaggle 4c dataset. 
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Fig. 4 Second feature maps of 32 filters 

D.   Random Forest Classifier 

     Random forest is a versatile supervised algorithm for classification. This method is composed of two random 
processes. The first is a random training set selection, and the second is induced by the tree-building process [25]. The 
following is the random forest classifier algorithm: 
Step 1: The number of random estimators is selected. 
Step 2: For every estimator, a decision tree is created. 
Step 3: For each decision tree, a prediction result is created. 
Step 4: Voting is carried out for each decision result. 
Step 5: The forecasted outcome with the most votes is chosen as the final result. 
     In this established model, many estimators are set up, along with various random states. The final value (number 
of estimator=33, random state= 40) is chosen based on the highest accuracy. 

E.   Support Vector Machine Classifier 

SVM is a learning system that uses regularisation to accomplish linear learning in non-linear domains [26]. The 
support vector machine technique aims to find a hyperplane in an N-dimensional space that recognises relationships 
between data points, where N is the number of features. The radial basis function achieves maximum accuracy among 
the various kernel functions. The SVM algorithm’s two hyperparameters, degree (C) and gamma, are set to multiple 
values, and the final value (C=2, gamma=auto) is chosen based on the highest accuracy. 

 

 

Fig. 5 Added layers in the inception V3 model 

F.   Tuned Inception V3 

Transfer learning is utilised in this pre-trained Inception V3 model, where the last fully connected layer and the 
classification layer are frozen. Inception V3 is used among several pre-trained models because it improves 
performance with less computational weight than deep nets. The input image size is changed to a pre-processed input 
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image shape, i.e., [224,224,3]. Then seven layers are added, as shown in Fig. 5. Other combinations of extra layers 
are also used, chosen based on the model’s performance. 

G.  Training Specifications of Proposed Model  

The presented CNN model is trained using the ‘Adam’ optimizer as it combines the RMSprop and AdaGrad 
algorithms to maintain the sparse gradients. ‘He-uniform’ kernel weight initialisation is used in the proposed CNN 
model, which results in a non-overfitted model rather than a pre-trained ‘ImageNet’ InceptionV3 model. In ‘he-

uniform’ weight initialisation, a uniform distribution is used with the limit�
�

������ �� ����� ����� �� ������
. Early 

stopping criteria are employed with patience six and maximum mode. Table 4 depicts the training parameter 
configuration for the proposed approach. 
 

TABLE 4 
TRAINING PARAMETER CONFIGURATION 

Parameter Value/Types 
Input size 224 × 224 × 3 
Epochs 60 
Optimiser ‘Adam’ 
Learning rate 0.001 
Loss function Sparse Categorical Cross entropy 
Weight initialiser He-uniform 
Kernel regularise 0.0001 

IV. RESULTS 

The experimental results are acquired from the two datasets (Fig share 3c and Kaggle 4c) to categorise brain 
tumours. This study uses a pre-trained Inception V3 model in addition to the custom-developed CNN model. On the 
ImageNet [27] dataset, the weight of the bottleneck layers of the pre-trained Inception V3 model is frozen. Two 
machine learning classifiers are utilised, i.e., random forest and support vector machine (RBF kernel). The proposed 
approach is implemented in python, and the GPU is used for training. 

A. Performance Evaluation 

Various matrices are used to evaluate the performance. The confusion matrix displays the correct and incorrect 
estimation of classes in a tabular style. For the Fig share 3c dataset, Table 5 illustrates the confusion matrix of the 
CNN-RF model. Table 6 depicts the confusion matrix of the CNN-SVM model used in this experiment on the Kaggle 
4c dataset. 
 

TABLE 5 
CONFUSION MATRIX OF CNN-RF MODEL ON FIG SHARE 3C DATASET 

 Predicted 

 Glioma Meningioma Pituitary 

Actual Glioma 204 9 1 

Meningioma 2 102 2 

Pituitary 1 1 138 

 
TABLE 6 

CONFUSION MATRIX OF CNN-SVM ON KAGGLE 4C DATASET 

                      Predicted 
   Actual Glioma Meningioma Normal Pituitary 
Glioma 176 9 0 0 
Meningioma 3 176 2 7 
Normal 3 1 94 2 
Pituitary 0 3 0 177 

 
Other performance metrics can be constructed from the confusion matrix to describe the model's performance. 

Precision, recall, specificity, and F1 score are essential metrics that can be determined using the equations below: 

��������� =
��

� �� ��
                 (2) 

 

������ =
��

�� � ��
                  (3) 
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�1 − ����� =
�× ��������� × ������

���������� ������
        (5) 

 
 ������ ����� =  ������ +  ���������� − 1           (6) 

 
      where, TP, FP, TN, and FN represent the number of classified cases of true positives, false positives, true 

negatives, and false negatives, respectively. 
 

TABLE 7 
EVALUATION OF THE MODELS ON THE FIG SHARE 3C DATASET 

Performance Classes Tuned Inception V3 model CNN model CNN-RF model CNN-SVM model 

Precision Glioma 0.88 0.99 0.99 0.97 

Meningioma 0.86 0.85 0.91 0.91 

Pituitary 0.87 0.99 0.98 0.97 
Recall Glioma 0.93 0.93 0.95 0.97 

Meningioma 0.63 0.99 0.96 0.91 
Pituitary 0.98 0.97 0.99 0.99 

F1-score Glioma 0.90 0.96 0.97 0.97 
Meningioma 0.73 0.91 0.94 0.91 
Pituitary 0.92 0.98 0.98 0.98 

Accuracy (%) 87% 95.43% 96.52% 95.8% 

 
TABLE 8 

EVALUATION OF THE MODELS ON THE KAGGLE 4C DATASET 

Performance Classes Tuned Inception V3 model CNN model CNN-RF model CNN-SVM model 

Precision Glioma 0.87 0.95 0.96 0.97 

Meningioma 0.87 0.94 0.90 0.93 

Normal 0.92 0.98 0.98 0.98 

Pituitary 0.89 0.87 0.92 0.95 
Recall Glioma 0.86 0.95 0.92 0.95 

Meningioma 0.84 0.86 0.94 0.94 
Normal 0.87 0.89 0.86 0.94 
Pituitary 0.96 0.99 0.97 0.98 

F1-score Glioma 0.87 0.95 0.94 0.96 
Meningioma 0.85 0.89 0.92 0.93 
Normal 0.89 0.93 0.91 0.96 
Pituitary 0.92 0.93 0.95 0.97 

Accuracy (%) 88.21% 93% 93.11% 95.41% 

 
     Tables 7 and 8 illustrate the class-wise performance matrices for Fig share 3c dataset and Kaggle 4c datasets, 
respectively. The bold text in the table represents the highest accuracy obtained among all the models. Based on the 
experimental results of all the models, the highest accuracy model is chosen from both datasets. The weighted 
performance measure of the best model on each dataset is presented in Table 9. 
 

TABLE 9 
PERFORMANCE OF PROPOSED METHOD ON BOTH DATASETS 

Dataset Proposed method Weighted F1 score (%) Weighted Specificity (%) Accuracy (%) Youden Index 

Fig share 
3c 

CNN-RF 96.6 98.1 96.52 94.2 

Kaggle 4c CNN-SVM 95.4 97.8 95.41 93.2 

 
Table 9 depicts that CNN-RF outstands other models in Fig share 3c dataset, and CNN-SVM outstands other models 

in the Kaggle 4c dataset. The following observations are drawn from the results: 
1)  Observation 1: 
Table 5 shows that the meningioma class has the highest number of misclassified images in the Fig share 3c dataset, 

resulting in a lower recall, precision, and F1 score for the meningioma class in Table 7. 
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    Analysis: The meningioma class has the highest number of misclassified photos. This is due to the fewer samples 
of this class in the dataset and the lack of class-specific data augmentation used to balance the dataset. 

2)  Observation 2: 
     SVM with RBF kernel outperforms other classifiers in larger datasets (Kaggle 4c). 
    Analysis: Table 8 shows that the CNN-SVM model with RBF kernel performs better on the Kaggle 4c dataset, 

which is larger than the Fig share 3c dataset. This is because the number of characteristics in each data point can easily 
cope with the number of training samples. 
   3)  Observation 3: 

      On both datasets, the deep features derived from the CNN model outperform the tuned Inception V3 model, 
which is based on transfer learning. 

    Analysis: This is because the deep features extracted from the CNN model can assure smooth decision boundaries 
on the testing samples. 

 
  4)  Observation 4: 

     From Table 9, it is observed that the weighted specificity value is high in each dataset. 
      Analysis: High specificity indicates that samples with no brain tumour are more accurately identified. 

 
B.  Analysis of CNN model 

Analysis of the developed CNN model is executed to learn which layers of the CNN model contribute the most to 
overall model performance. Table 10 summarises the results of the trial (Kaggle 4c dataset). The greatest acquired 
accuracy model’s time complexity is also noted. The following can be deduced from Table 10: 
 

TABLE 10 
ANALYSIS OF CNN MODEL LAYERS (KAGGLE 4C DATASET) 

CNN Layers CNN CNN-RF CNN-SVM Time Complexity(sec) 

Without 4th convo block 91.12 86.37 92.64* 304* 

Without 6,10,19,20 no layer 87.44 86.06 91.42* 426* 

Without 3rd convo block 92.0 88.51 93.26* 290* 

Without 5thconvo block 89.58 87.44 93.72* 296* 

 
1)  Observation 1: 
     When some layers (such as max-pooling) from the second and fifth convolutional blocks are changed, all models 

underperform. This indicates that these layers are more influential. 
     Analysis: The max-pooling layer has no learnable parameters, but it decreases the feature dimension while 

preserving important information. As a result, the temporal complexity rises with the loss of accuracy. 
 
2) Observation 2: 
      The model performs better than other criteria without the fifth convolutional block. As a result, it may be 

concluded that this block of layers is less influential. 
     Analysis: The model performance does not degrade much because the block is changed rather than just a few 

layers. The time complexity is also lower than in the first observation. 
 

C.  Analysis of Random Forest Classifier 

 The random forest classifier is used to solve the SoftMax activation function’s failure to correctly detect the 
different viewpoints of multi-class images. This classifier can process both linear and non-linear data. Table 11 depicts 
a study of the RF classifier depending on the number of trees (Fig share 3c dataset). Table 11 shows that the model's 
performance degrades when the number of trees increases beyond 33. The number of trees chosen is significantly 
dependent on the number of characteristics. The maximum number of features is chosen as the square root of this 
experiment’s total number of characteristics. Based on this dataset (Fig share 3c), the maximum number of 
characteristics can be accommodated with 33 trees. As a result, as the number of trees increases, the model’s 
performance degrades. 
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TABLE 11 
ANALYSIS OF RF CLASSIFIER (FIG SHARE 3C) 

Number of Trees Number of random 
States 

Test Accuracy Number of Incorrectly predicted classes 

32 42 0.9609 18 
33 40 0.9652 16 
45 40 0.9522 22 
50 42 0.9478 24 

 
D.  Effects of Different Weight Techniques on Overfitting  

 The developed models are trained using various kernel weight initialisation strategies, i.e., the he-normal, glorot-
uniform, and he-uniform. Fig. 6 shows the effects of the weight techniques. Overfitting occurs when the data fits 
perfectly in the training set but performs poorly in the testing set. Fig. 6 shows that he-uniform minimises test loss and 
drives accuracy higher than the other two techniques, reducing the risk of overfitting. The weights are uniformly 
initialised in he-uniform. The CNN model achieves 95.43% accuracy, increasing to 96.52% when the RF classifier is 
employed. 
 

 

Fig. 6 Impact of various weight techniques on the CNN-RF model (fig share 3C) 

V. DISCUSSION 

The novelty of this method lies in the enhancement of the CNN model and the correct hyperparameter selection. 
This study is unique because it employs CNN, CNN-RF, CNN-SVM, and tuned Inception V3 deep learning models 
on multi-class brain MRI datasets. Two large multi-class datasets are well suited for the developed CNN architecture, 
indicating the model’s effectiveness. The enhanced models are evaluated and compared based on the accuracy and 
weighted F1 score (for uneven distribution of classes in the datasets). In the Fig share 3c dataset, the CNN-RF model 
shows the highest F1 score in Table 13 compared to the existing methods. From the majority voting in the prediction 
of each decision tree, the CNN-RF model is the most accurate (Fig share 3c). Using the he-uniform weight 
initialisation technique, l1 regularisation, and hidden neuron dropout in the CNN architecture solves the overfitting 
problem. Among the four deep learning models, the CNN-RF model is the best for the Fig share 3c dataset and the 
CNN-SVM model for the Kaggle 4c dataset. Table 12 compares the computational complexity of the proposed 
methods to the existing ones. The pre-processing operations are less complex than manual segmentation [30]. 
Compared to the method in [5], the number of parameters is low, but the accuracy is high. 

 
TABLE 12 

COMPARISON OF THE PROPOSED MODELS’ COMPUTATIONAL COMPLEXITY WITH EXISTING MODELS 
References Pre-processing Layer Feature Extraction Kernel Parameter Classifie

r 
Accuracy 

[30] Manual segmentation  - 2D DWT, 2D 
Gabor filter 

- -   BPNN 91.9% 

[5] Thresholding+ 
Cropping+ Resizing 
rescaling+ 
augmentation 

(82 + 50+ 7 
convo 
block) 

(DenseNet-169 + 
Shufflenet + 
MnasNet) 

- 20M +299M 
+3.9M 

SVM 93.72% 

[15] - 6 Caps Net 32, 64 - FC     86.56% 
Proposed 
method 

Thresholding+ 
Cropping+resizing+ 
rescaling 

  23 CNN 16, 32, 64 
128, 128 

2,67,268 RF 
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96.52% 
95.43% 

 

38,12%

75,70%

22.09%

91,74% 84,13%
95.43%

0,00%

50,00%

100,00%

150,00%

he normal glorot uniform he uniform

M
od

el
 L

os
s 

an
d 

A
cc

u
ra

cy
 

(%
)

Weight Technique

Test loss Test Accuracy



Islam & Munira  
 Journal of Information Systems Engineering and Business Intelligence, 2022, 8 (2), 162-174 

172 
 

TABLE 13 
COMPARISON USING CLASS-SPECIFIC MATRICES (FIG SHARE 3C) WHERE G, M, P MEAN GLIOMA, MENINGIOMA, AND PITUITARY, RESPECTIVELY 

References Class Precision Recall Specificity Average F1 score 
[28] G - 96.4 96.3 - 

M - 86.0 95.5 
P - 87.3 95.3 

[29]  G 91.0 97.5 - 0.93 
M 94.5 76.8 - 
P 98.3 100 - 

[30]  G - 95.1 96.3 - 
M - 86.9 96.0 
P - 91.2 95.7 

Proposed CNN-RF G 99.0 95.0 98.8 0.96 
M 91.0 96.0 97.2 
P 98.0 99.0 99.0 

 
TABLE 14 

COMPARISON USING THE SAME FIG SHARE 3C DATASET 
References Method Accuracy (%) 
[13] CNN 84.19  
[15]  Caps Net 86.56 
[28]  BoW-SVM 91.28 
[9]  CNN 91.43 
[23]  CNN 94.39 
Proposed Method Tuned Inception V3  87.0 
Proposed Method CNN 95.43 
Proposed Method CNN-SVM 95.8 
Proposed Method CNN-RF 96.52 

 
TABLE 15 

COMPARISON USING THE SAME KAGGLE 4C DATASET 

References Method Data division Accuracy (%) 

[5]  Pre-trained features ensemble-ML 80% in training and 20% in testing  93.72 
Proposed Method Tuned Inception V3  

 
76% in training, 4% in validation, 
and 20% in testing 

88.21 
Proposed Method CNN 93 
Proposed Method CNN-RF 93.11 
Proposed Method CNN-SVM 95.41 

 
Regarding the specific three-class and four-class classification problems of brain tumours, the performance of the 

proposed method is compared to others. The suggested CNN-RF approach outperforms state-of-the-art methods across 
the board. A more detailed comparison is provided in Table 13. Based on the specificity matrix, the suggested method 
outperforms those in previous studies [28] [30]. The F1 score is also higher than the method in [29]. Table 14 shows 
that this strategy outperforms all current methods. Table 15 shows that the application on the Kaggle 4c dataset 
performs better than the method by [5] despite using an equal amount of data in the testing set. 

Nonetheless, this research is limited in terms of applicability to other datasets. Compared to the CNN architecture’s 
uniqueness and simplicity, this method may not perform well on different multi-class brain MRI datasets. 

VI. CONCLUSIONS 

This work proposes an efficient hybrid deep learning-based approach to classify the multi-class brain MRI. The 
three steps to construct the model are pre-processing, attribute extrication from CNN architecture, and classification 
of the recovered features using the RF and SVM classifiers. Image thresholding, cropping, resizing, and rescaling are 
performed in the pre-processing. To extricate deep attributes from brain MRI, this study utilised two types of deep 
CNN, a new CNN architecture and a tuned pre-trained Inception V3 model with the transfer learning approach. The 
classifiers then analyse the extricated deep attributes. This work performs detailed evaluations on two datasets (Fig 
sharing 3c and Kaggle 4c) to categorise brain MRI using two deep CNNs and two different ML (RF, SVM) classifiers. 
The findings show that the constructed CNN model outperforms the pre-trained Inception V3 model. The CNN model 
has a smooth boundary deception on testing samples. The CNN network is also simpler and faster to execute than pre-
existing pre-trained networks. Deep networks, such as Inception V3, require dedicated hardware for real-time 
performance. The CNN-RF model (96.52%) outperforms the other four models in the Fig share 3c dataset. Meanwhile, 
the CNN-SVM model (95.41%) outperforms the large Kaggle 4c dataset with four classes (glioma, meningioma, 
normal, and pituitary). Despite the efforts described in this work, some enhancements are still possible. For example, 
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regarding the misclassification of meningioma classes in Fig share 3c dataset, further research can be carried out for 
class-specific data augmentation.  
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