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Abstract  
 
Background: Multi-output Time series forecasting is a complex problem that requires handling interdependencies and 
interactions between variables. Traditional statistical approaches and machine learning techniques often struggle to predict such 
scenarios accurately. Advanced techniques and model reconstruction are necessary to improve forecasting accuracy in complex 
scenarios. 
Objective: This study proposed an Encoder-Decoder network to address multi-output time series forecasting challenges by 
simultaneously predicting each output. This objective is to investigate the capabilities of the Encoder-Decoder architecture in 
handling multi-output time series forecasting tasks.  
Methods: This proposed model utilizes a 1-Dimensional Convolution Neural Network with Bidirectional Long Short-Term 
Memory, specifically in the encoder part. The encoder extracts time series features, incorporating a residual connection to 
produce a context representation used by the decoder. The decoder employs multiple unidirectional LSTM modules and Linear 
transformation layers to generate the outputs each time step. Each module is responsible for specific output and shares 
information and context along the outputs and steps. 
Results: The result demonstrates that the proposed model achieves lower error rates, as measured by MSE, RMSE, and MAE 
loss metrics, for all outputs and forecasting horizons. Notably, the 6-hour horizon achieves the highest accuracy across all 
outputs. Furthermore, the proposed model exhibits robustness in single-output forecast and transfer learning, showing 
adaptability to different tasks and datasets.   
Conclusion: The experiment findings highlight the successful multi-output forecasting capabilities of the proposed model in time 
series data, with consistently low error rates (MSE, RMSE, MAE). Surprisingly, the model also performs well in single-output 
forecasts, demonstrating its versatility. Therefore, the proposed model effectively various time series forecasting tasks, showing 
promise for practical applications. 
 
Keywords: Bidirectional Long Short-Term Memory, Convolutional Neural Network, Encoder-Decoder Networks, Multi-output forecasting, 
Multi-step forecasting, Time-series forecasting 
 
Article history: Received 13 July 2023, first decision 14 September 2023, accepted 5 October 2023, available online 28 October 2023 

  

I. INTRODUCTION  

Time series regression poses challenges with increasingly complex decision-making, particularly in real-world 
scenarios. These challenges could be the lack of available data, the issue of missing data, and the required 
considering the relationships between variables [1], [2]. The multi-dimensional data and long-term forecasting also 
add to the problem's complexity. However, the statistical approaches and the classical machine learning techniques 
are struggling to meet the growing demands of modern complex problems. They lacked flexibility in handling 
varying numbers of series and time steps, managing missing values, and inability to capture non-linear temporal 
dependencies. Therefore, it requires advanced techniques and careful reconstruction of the model to ensure accurate 
prediction and the challenges in complex problems. 

Deep Learning (DL) has revolutionized the field of pattern recognition, surpassing human-level accuracy in 
automatically recognizing patterns in spatial and temporal data [3]. DL has proven its capability to tackle complex 
problems that were beyond the reach of traditional machine-learning algorithms. This breakthrough captivated the 
interest of practitioners facing vast amounts of data across various domains. The success in computer vision, natural 
language processing, and speech recognition have demonstrated the versatility and potentiality to address various 
domain problems, including the time series analysis task.  
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Deep Learning (DL), a novel learning-based method, has recently been applied to time series analysis, with 
applications ranging from solar power forecasting, weather forecasting, electricity load forecasting, electricity price 
forecasting, and financial prediction [2]. This method utilizes fundamental or technical analysis to extract relevant 
textual information and analyze historical data, making it suitable for time series forecasting tasks. It offers the 
ability to capture complex patterns, support multivariate inputs, and adapt to varying levels of complexity. For 
example, Wang et al. [4] used a temporal convolutional network (TCN) consisting of a one-dimensional 
Convolutional Neural Network (CNN) for short-term load forecasting in the electric power market, Bandara et al.[5] 
employed time series clustering techniques combined with Recurrent Neural Networks (RNNs) for subgroup 
modeling, and Zerveas et al. utilized Transformer-based frameworks for unsupervised representation learning of 
multivariate time series [6]. These examples demonstrated the effectiveness of DL in tackling diverse time series 
analysis tasks. Furthermore, it opens opportunities and further explorations of another widely-used architecture in 
DL, such as Encoder-Decoder architecture. Encoder-Decoder architecture was initially designed for language 
translation tasks [7]. However, Encoder-Decoder networks have succeeded in various sequence-related tasks such as 
dense estimation, anomaly detection, gas distribution mapping, and disease classification [8]–[11].  

The ability of the Encoder-Decoder enables its effective utilization in the field of time series analysis. It generally 
consists of an Encoder that encodes the input to a fixed-length vector representation and then uses a Decoder to 
decode the target output sequence from the fixed vector. It could be advantageous when facing long-term forecasting 
time series, which could learn the long temporal dependencies and solve the non-linear relationship between 
variables. Many researchers have applied Encoder-Decoder architecture in various domains and cases in the context 
of time series forecasting. Du et al.[12] used a temporal attention Encoder-Decoder model in five multivariate time 
series datasets and outperformed baseline methods, demonstrating their superior forecasting performance. Laubscher 
[13] developed an Encoder-Decoder Gated Recurrent Unit (GRU) to predict future reheater metal temperatures in 
coal power stations. Zhou et al.[14] utilized the Transformers algorithm to predict long sequence time series, 
particularly in electricity consumption planning. Jin et al. [15] proposed an Attention-based Encoder-Decoder 
network with Bayesian optimization to overcome the limitations of existing electrical load forecasting methods 
when dealing with time-series data. Lyu et al. [16] used the Encoder-Decoder model to present a multi-step 
prediction for gas concentration in coal mines.  

As an increasingly complex problem in real-world cases, the need for multi-output has shown promising 
performance rather than single-output forecasting. Prior research in this domain has shown certain shortcomings that 
necessitate further exploration and research. Firstly, there exists a pressing need to address the limitations of past 
studies in handling real-world complexities, where multiple variables and factors can affect forecasted outcomes. 
This limitation compromises the practical applicability and accuracy of forecasting models [17], [18]. Secondly, 
there is a need for further investigation into integration and evaluation methods, specifically within the context of 
multi-output forecasting tasks. Predicting multiple variables allows leveraging potential correlation and 
dependencies among the variables, and the model can incorporate additional contextual information, improving 
forecasts' reliability and accuracy [19], [20]. In addition, there is a lack of exploration and validation of methods in 
the real-world scenario, where the forecasting task is important to overcome. Hence, this study addresses this 
problem by integrating Encoder-Decoder networks for multi-output time series forecasting. We propose a model that 
utilizes the Convolution Neural Network (CNN) with Bidirectional Long Short-Term Memory (LSTM) in the 
Encoder, while incorporating multiple LSTM modules and Linear transformation layers in the Decoder to generate 
target or output variables at each time step. Through the integration of these components, we aim to explore the 
capabilities of the Encoder-Decoder architecture in addressing multi-output time series forecasting and contribute 
and improve its practical applicability in the time series field.   

II. LITERATURE  REVIEW  

Many researchers have proposed combining classic machine learning and modern deep learning techniques in the 
time series forecasting task. These approaches tackle the challenges of predicting multiple outputs in time series 
data.  

Within the realm of classic machine learning, Chou et al. [21] utilized the least squares support vector regression 
(LSSVR) model with a multi-output scheme and accelerated particle swarm optimization (APSO) algorithm for 
financial time series forecasting. They used the exchange rates dataset's multivariate interval-valued time series 
(ITS) to forecast financial time trends. Talavera-Llames et al. [22] introduced a novel algorithm based on the general 
nearest neighbours procedure for time forecasting, specifically designed to handle multivariate data and make multi-
output predictions. They evaluated their model using data from the Spanish electricity market, showcasing 
remarkable improvements in terms of accuracy and execution time. Jiang et al. [23] utilized backpropagation, 
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bidirectional long short-term memory, and gated recurrent unit models for forecasting electricity price and load data 
from the Australian electricity market. They incorporated a strategy based on a multi-objective salp swarm 
algorithm and utilized a rolling forecast mechanism to handle multivariable and multi-input multi-output structures. 
Zhan et al. [24] proposed a new multivariate GBRT method, which considers the correlation among multi-outputs. 
They applied this approach to predict the longer trend of traffic speed using data extracted from three loop detectors 
in the US101-N freeway.  

On the other hand, several studies focused on leveraging modern deep learning architectures for multi-output time 
series forecasting. Sadeque and Bui [25] introduced a deep-learning architecture for weather forecasting, specifically 
targeting wind speed, relative humidity, dew point, and temperature. They utilized a stacked Long Short-Term 
Memory (LSTM) layer, cascading the basic 1-hour-ahead model, which predicts the weather parameters for the 2 
and 3 hours ahead. Azizi et al. [26] employed various models, including Convolutional Neural Networks (CNN) and 
CNN-LSTM, to simultaneously predict solar radiation and temperature. They conducted simulations with different 
input parameters and outputs to predict solar irradiation. Qu et al. [27] proposed a multi-output and spatiotemporal 
model that combined Graph Convolution Neural Networks (GCN) and Transformers for temperature forecasting of 
grain in storage. The GCN captured the sensor's spatial correlation and topological information, while Transformer 
captured long-term and short-term temporal features and dependencies. They used a real-granary dataset from 
Shaanxi, China, and evaluated it using Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). Zhang et 
al. [28] proposed a novel hybrid deep learning model called B-CM-C3D combining 3-D Convolutional Neural 
Network, Convolutional Minimum Gate Memory Neural Network, and Variational Bayesian Neural Network. This 
combination aimed to achieve multi-step ahead probabilistic forecasting of multiple hydrological variables for 
multiple stations, demonstrating improved prediction accuracy and reduced training time compared to another 
model. Lu et al. [29] developed a spatiotemporal wind power forecasting model based on a multi-output support 
vector machine and grey wolf optimizer strategy, known as the ST-GWO-MSVM forecasting model. They utilized 
wind power data from 15 wind farms and showed that the proposed model outperformed others. 

Furthermore, additional studies addressed the limitations of existing methods and proposed innovative 
approaches. He et al. [30] address two limitations in multivariate time series forecasting methods based on attention-
based encoder-decoder models. They proposed a novel prediction framework called Dynamic Co-Attention 
Networks (DCAN) to forecast traffic volume, air quality, and domestic house datasets. The model utilizes a two-
stage variables embedding network to capture the potential semantics that integrates target and non-predictive 
variables. Wang et al. [31] introduced an attention-based recurrent neural network (RNN) model for multi-step 
prediction of target parameters using historical multivariate sensory time series. Lloret et al. [32] proposed two deep 
learning models: dilated causal convolutional (DCCN) and encoder-decoder recurrent neural network (EDRNN), for 
forecasting disaggregated freight flows. Shi and Wang [33] proposed a Convolutional-LSTM encoder-decoder 
(ConvLSTM-AE) hybrid model for multivariate output and multi-step prediction with short time intervals to predict 
agrometeorological variables such as air temperature, relative humidity, and wind speed.  

While there have been significant advancements and research in multi-output time series forecasting, which 
incorporates classic machine learning and modern deep learning models, a need for further research and 
enhancement model integration and experimental cases in real-world conditions is essential. The encoder and 
decoder model has been used to solve the time series forecasting task in various domains, however, there is a gap in 
the literature above regarding the systematic integration and evaluation of encoder-decoder networks in this context. 
Furthermore, there is a lack of exploration and validation of methods in the real-world scenario. Constructing a 
method that can work in pre-modeling and post-modeling is crucial in time series forecasting. For instance, utilizing 
a decoder to produce multiple time steps or output variables simultaneously by using encoded context representation 
can be more effective than only training the model for specific time steps at different times. Using teacher-forcing 
and recursive forecasting can effectively maintain the training process and implementation in the real-world 
environment. In addition, the transfer learning methods to enhance pre-trained models or context representation in 
specific forecasting tasks will likely be more efficient and improve predictive accuracy rather than training the 
model from scratch. Considering these gaps, we covered all of the integration and experimental cases in this 
research to leverage the potential correlations and dependencies among variables, leading to a more comprehensive 
analysis and potentially improved forecast accuracy. Addressing this gap can contribute to advancing multi-output 
time series forecasting methods and enhance their applicability in various domains.  

 
 
.  
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III. METHODS 

The proposed model consists of an encoder-decoder module, and each module has some additional layers that 
become the core of the modules. The Encoder module has two fundamental layers: CNN and Bi-LSTM. At the top 
of the encoder part is a concatenation layer that receives forward-backwards hidden and cell state from Bi-LSTM 
layers. It merges them using a linear transformation and the tanh activation function, producing a vector 
representation of the feature. Meanwhile, the decoder module contains sharing Multi-LSTM and Linear 
Transformation layers that associate with numbers of the target variable. In other words, different LSTM and Linear 
Layers will handle each target feature, which shares their hidden and cell states or unique patterns to the different 
target feature layers. The overview of the proposed approach can be seen in Fig. 1.  

 

 

Fig. 1 Overview of the proposed approach 

A. Encoder Module 

The proposed encoder module consists of two layers: the 1-dimensional Convolutional Neural Network (1D 
CNN) followed by the Bidirectional Long Short-Term Memory (Bi-LSTM). The CNN layer will extract the implicit 
features in the data, detect spatial substructure and create meaningful spatial substructure as a result. The network 
can learn to identify significant features, trends, or patterns in the data that contribute to the forecasting task. 
Meanwhile, the CNN followed by LSTM has proven to be an effective model combination in the time series 
forecasting task[34], and it is a common approach to leveraging spatial and temporal information in the context 
vector representation. The CNN layers capture local patterns and extract meaningful features, meanwhile, the Bi-
LSTM incorporates the temporal context and captures long-term dependencies by accessing past and future patterns. 
It enables a more comprehensive understanding of temporal dynamics and learning non-linear correlation 
features[12]. 

 
1) 1D Convolutional Neural Network (CNN) 
The first layer in our proposed Encoder Module is 1-dimensional CNN. This dimension of the convolution 

operation has been used in the time series and natural language processing tasks. It allows for learning and capturing 
spatiotemporal patterns within feature vectors, enhancing the model’s ability to comprehend and process 
information at each time step in the sequence dimension. The model can gain a deeper understanding of the temporal 
dynamics and relationships within the data, enabling them to generate meaningful representations. Using CNNs, the 
model employed parameter sharing to reduce the number of parameters and allows the network to learn shared 
patterns across different time series. The illustration of the convolution blocks can be seen in Fig. 2.  

The convolution operation is performed by sliding the filters over the input sequence, followed by an element-
wise activation function �. Let � be the multivariate time series input of length � with � variables, � filters of size 
�, and a bias term �, the output (feature maps) are denoted as � with dimension �′ × �. The formula of the 1D CNN 
is defined in (1).  
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Fig. 2 Convolutional blocks layer  

 
Furthermore, the activation function � used in this study is GLU (Gated Linear Units). The GLUs activation 

function is widely used in tasks where the input length should keep the same after forwarding the convolution layer. 
This activation captures complex and non-linear relationships, ensures smooth and continuous activation, and 
provides improved gradient flow and convergence properties compared to the ReLU activation function. GLUs have 
gating mechanisms (similar to LSTMs and GRUs) contained within the sigmoid activation function, which usually 
keep the hidden dimension the same size. The activation function is defined in (2). 

 
 

���(�) = � ∙ �
1

1 + ���
� (2) 

 
The CNNs architecture is commonly divided into two types of layers: convolutional and pooling layers. However, 

the main drawback of traditional pool operations, such as max pooling or average pooling, is the potential loss of 
sequential information [35]. In the context of time series forecasting, whereas each multivariate input is essential to 
forecast, applying pooling layers could discard some detailed information needed for making accurate predictions. 
Commonly, the length of the input coming out of a convolutional layer will be ���������� − 1 shorter than the input 
entering the convolution layer. Therefore, to handling this problem, we set padding in the input before apply 
convolution. It will reduce the length of input and the input coming into the convolutional blocks to equal the length 
of coming out.  

 
2) Bidirectional Long Short-Term Memory (Bi-LSTM) 
The second layer of our proposed Encoder Module is Bidirectional Long Short-Term Memory (Bi-LSTM), as 

shown in Fig. 3. This layer comprises the forward and backward sub-layers that can access past and future 
information when predicting a specific time step. Considering the context from both directions, the model can 
capture complete dependencies and valuable information missed by a unidirectional, which tends to reduce the 
efficiency of LSTM, particularly in time series data [36]. An LSTM unit typically consists of three gates: input, 
forget, and output which are useful for forgetting and storing the information in the memory cells (cell states). 
Suppose ��  and �� represent the time series input and an input gate, respectively, at the time step �, � and � are 
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weight matrices corresponding to the input and hidden states, and ℎ��� is the hidden state from the previous time 
step. Therefore, to calculate the input �� , forget ��, and output �� gates as seen in (3)-(5). 

 

 

Fig. 3 The Bidirectional Long Short-Term Memory blocks 
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After the calculation of those gates, we then calculate the cell �� and hidden ℎ�  states at the time step � as defined 

in (6) and (7), respectively. The output of each cell aims to get the relevant and meaningful information, discard 
irrelevant or redundant information, and as the representation of the LSTM output each time step. 
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�
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 ℎ� = �� ∙ ���ℎ(��) (7) 

 
Since we used forward and backward layers, we must compute each hidden state from both directions into a 

single representation or create a unified representation. Let say ℎ� represents the combined hidden state at time step 

�, ℎ�
�  and ℎ�

�  are the backward and forward hidden states, then we can obtain the combined hidden state through 
concatenation as seen in (8). 
 ℎ� = ��������ℎ�

�
, ℎ�

��� (8) 

In addition, we used the hyperbolic tangent activation function to ensure that the combined hidden state captures a 
complex relationship. This activation function makes the hidden representations should bound within a specific 
range, especially between -1 and 1. It is the common choice for activation functions due to its smooth and 
continuous nature. The updated equations for obtaining a combined hidden state with a hyperbolic tangent function 
are seen in (9). 
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 ℎ� = ���ℎ ���������ℎ�
�

, ℎ�
���� (9) 

The combined representation from the last layer in the Encoder Module, which consists of hidden and cell bi-
LSTM representation, will propagate through the Decoder module to generate the outputs of each time step. Those 
memory cells will produce a fixed-size context representing a semantic summary of the multivariate input sequence. 
By using the context, the decoder will clearly understand the data patterns before learning to produce the output. 

B. Decoder Module 

The decoder module, as shown in Fig. 4, consists of multiple LSTM and Linear transformation layers. It allows 
the model to capture the temporal dependencies and interactions between different output variables at each time step 
and transform them into the desired outputs for multiple time series.  

 

 

Fig. 4 Proposed decoder module 

 
The number of LSTM modules will depend on the number of output dimensions. Each LSTM module will be 

responsible for specific outputs or targets. By using multiple LSTM modules concerning the number of output 
dimensions, each dedicated to capturing temporal dependencies and patterns within specific output dimensions. As a 
result, the decoder can effectively learn the complex dynamics of the multi-dimensional time series data and 
leverage sequential information to make accurate predictions. Let denotes �����,  ℎ������,  ����� ,  is LSTM 
module, hidden, and cell for each � output, then the computation be represented in (10). 

 
 �����������, (ℎ��������, �������)� → �������, (ℎ������ , �����) (10) 

Furthermore, we shared the hidden state across multiple LSTM modules. Based on the formula above, the hidden 
and cell for the current output dimension is the hidden and cell from the previous LSTM module in specific output. 
It ensures that all output dimension have access to the same encoded historical information while having specific 
context representations in different output dimensions. The shared representation enables leveraging the learned 
information from one output dimension, capturing the interdependencies and sharing common patterns in each 
output.  

Meanwhile, the subsequent multiple linear layers provide the flexibility to transform the LSTM outputs into the 
desired output dimension for forecasting. These linear transformations allow the decoder to map the learned 
representations from the LSTM module to the specific format and scale required for multi-output time series 
forecasting. Furthermore, it can effectively adapt the learned representations from the LSTM module to match 
specific requirements and characteristics of each output dimension. Doing this enhances the forecasting performance 
for each output dimension.    

Each context vector in each time step will propagate through the feed-forward layer to produce the time series 
outputs. These processes ensure that cross-variable interactions occur when the model predicts each output, 
capturing different characteristics, complexity levels, or varying degrees of uncertainty in the multi-outputs. 
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C. Training Strategies & Evaluation Metrics 

There are two standard procedures in training sequential data. The recursive and teacher-forcing strategies. The 
recursive works by using the output in the previous step � − 1 as input at time � + 1. In our study, especially in real-
world scenarios, where the model will not have access to the ground-truth output �� , the model will use their 
prediction in the previous step as the input to predict the future step. It is common in the forecasting task. While the 
teacher-forcing strategy is a strategy that receives the ground-truth output ��  as input at time � + 1  to produce the 
future output. This procedure would apply during the training and enhance the training process. Furthermore, it 
could teach intricate patterns more efficiently and effectively when forecasting in the future step.  

Accordingly, we use teacher forcing in the training and recursive in the forecasting. The illustration of both 
training types is shown in Fig. 5. In detail, we set the teacher-forcing ratio during training. Instead of using only the 
ground truth output ��  as input in the next step, we combine both procedures by a ratio. The ratio will be 
conditioned with a random number, deciding whether teacher-forcing or recursive will be used in each step. 
Therefore, in Fig. 4, we can see that specific steps will use teacher forcing and others will not.  

 

 

Fig. 5 The training strategies. Left: Recursive training type receives the output prediction of each step as input to the next 
step. Right: Mixed teacher-forcing type mixed recursive and teacher-forcing types determined by a ratio 

 
Lastly, we evaluated our model with standard metrics that aim to measure the model's performance. We used 

Mean Squared Error (MSE) and Root Mean Squared Error (RMSE). The MSE measures the average squared 
difference between the actual values ��  and the predicted values ��� . Meanwhile, the RMSE takes the square root of 
the mean squared error to obtain the mean root value. These metrics' formulations are defined in (11) and (12). 

 
 

��� =
1

�
�(�� − ���)�

�
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 (11) 

 

���� = �
1

�
�(�� − ���)

�

�
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We used Mean Absolute Error (MAE) metrics to evaluate and measure the model’s performance for comparison 
purposes. Mean Absolute Error (MAE) measures the average absolute difference between the predicted and actual 
values without considering the direction of the errors. It measures the average magnitude of errors in the same unit 
as the original data and is beneficial for understating the scale of the errors. The formula of MAE is expressed in 
(13), where, ��  and ���  represent the actual and predicted values of the data �, and � is the total number of data. 

 
 

��� =
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���
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IV. RESULTS 

This section provides the experiment results on a public multivariate time series dataset from Beijing Multi-Site 
Air-Quality Data [37], which contains multi-output or multi-target data. We also demonstrated the superiority of the 
proposed model in handling multi-output time series forecasting by performing transfer learning in different 
datasets. 

A. Dataset 

Beijing Multi-Site Air Quality Data is a public dataset donated in 2019 by Beijing Municipal Environmental 
Monitoring Center. The dataset contains multivariate air pollutants and relevant meteorological variables related to 
internal factors affecting air quality. Many researchers and projects have already used the dataset in time-series 
forecasting tasks [19], [38]–[41]. It is a 1-hour interval with 11 features for 12 weather stations in China 
administrations. The data was gathered from the 1st of March 2013 to the 28th of February 2017, with 420,768 
instances or 35,064 instances of each of the 12 weather stations. However, this study only considers two weather 
stations: Gucheng stations for modelling and Wanshouxigong stations for transfer learning purposes.  

The Gucheng station data consists of hourly data on six primary air pollutants and six relevant meteorological 
features. These six air pollutant concentrations are Particulate Matter (PM) with diameters of 2.5 and 10 
micrometers, Sulfur Dioxide (SO2), Nitrogen Dioxide (NO2), Carbon Monoxide (CO), and Ozone (O3). 
Meanwhile, the Temperature (TEMP), Pressure (PRES), Dew Point Temperature (DEWP), Precipitation (RAIN), 
Wind Direction (wd), and Wind Speed (WSPM) are compared as the meteorological variables. The statistical 
summary of each feature is shown in Table 1. Each feature has a certain number of missing values. Even though 
these missing values are less than 2%, we must address them before modelling the data. Therefore, we performed an 
imputation by applying linear interpolation to fill in the remaining missing values with the median value.   

TABLE 1 
STATISTICAL SUMMARY OF THE GUCHENG DATASET   

Feature* Unit Missing Value Mean 
Standard 
Deviation 

Median 

PM2.5 ug/m3 646 83.31 82.46 59.0 

PM10 ug/m3 381 114.48 96.08 93.0 

SO2 ug/m3 507 16.36 22.046 8.0 

NO2 ug/m3 668 57.57 36.83 52.0 

CO ug/m3 1401 1293.63 1215.55 900.0 

O3 ug/m3 729 57.03 57.46 43.0 

TEMP degree celcius 51 13.72 11.34 14.7 

PRES hPa 50 1010.33 10.36 1010.0 

DEWP degree celcius 51 2.86 13.73 3.4 

RAIN mm 43 0.0659 0.87 0.0 

WSPM m/s 42 1.52 1.19 1.2 

       *Excluded the unuseful features (e.g., year, month, day,  index, stations, and wd.) 
 

We examine the previous study on forecasting time series multi-output in air quality data to choose the targets 
[19], [42], [43]. Based on our observation, we consider the four outputs commonly used in forecasting tasks: PM2.5, 
PM10, SO2, and NO2. Fig. 6 shows how complex the output will be forecast. These outputs have become standard 
for targeting pollutants with significant health implications, environment, and regulatory relevance. Besides that, we 
also evaluate the correlation of each feature to decide the target. We can conclude that there is a relationship in each 
output. The relationship could have a strong positive correlation, such as PM2.5 and PM10, and a moderate positive 
correlation, such as PM2.5, with SO2 and NO2. It indicates essential insights regarding forecasting the multi-output 
time series.  

It is commonly used to normalize time series data to ensure that all feature values fall within a standardized range, 
regardless of the original data with varying range values. Therefore, we preprocessed the feature to have the same 
scale or a standardized range. We used a data normalization technique called MinMax Scaler, which scales the 
values within a specific range, typically between 0 and 1. 

We also use the Wanshouxigong station dataset to examine our proposed model by performing transfer learning. 
The term “transfer learning” here means that we used the previous model, which has been trained with a specific 
dataset, to forecast the dataset that the model had never seen before in a specific dataset. It allows models on related 
tasks or domains to improve the learning process and the generalization ability of new models on specific 
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targets[44]. Furthermore, the Gucheng station will be a model builder, and the Wanshouxigong station will examine 
the model performance on new data and have specific characteristics and intricate patterns. By doing that, we can 
measure the model generalization in another task within the same domain.  

 

 

Fig. 6 Visual representation of each output in the Gucheng station dataset 

B. Experimental Setup 

Three essential steps are commonly used to train the machine learning model: Splitting Data, Model Training, and 
Model Evaluation.  

Splitting the data is an important step commonly used to train the machine learning model. In the machine 
learning model context, dividing the data into three portions is better: training, testing, and validation. However, in 
this study, we only split our data into train and test data with a portion of 2% of the test set. The reason is that we 
will examine the model with another dataset. It might be a good approach for this case.  

The exact number of each set will depend on the sequence (e.g., steps, hour, timestep, or horizon) we determined. 
We use the word sequence here to describe the time series in the data, which refers to the ordered arrangement of 
data points over time. Each data point in the sequence represents a measurement or observation taken at a specific 
time or interval. It is crucial because it captures the temporal dependency and potential patterns or trends in data. It 
can be seen as a history of information that the model should learn. Specifically, in the context of our air quality 
data, it points out how many hours we considered in one feature. Therefore, we experimented with sequences or 
hours: 1-hour, 6-hour, 18-hour, and 24-hour.  

In the model training and evaluation, we used different strategies for sequencing data. We combined different 
training and evaluation strategies to build the model. Each strategy is described in the method section above. We 
used teacher-forcing in the training mode and mixed teacher-forcing in the testing mode. It allows leveraging the 
benefits of teacher-forcing for training while introducing a more realistic validation setting and enabling the model 
to forecast based on its predictions during forecasting. After that, to examine the model's performance, we set the 
recursive strategies to demonstrate the model in real-world data, which does not have the ground truth or target.  

To determine the most optimal hyperparameter configuration, we experiment with such a trial to determine the 
best value. A tuned combination of hyperparameters will be applied to the model with the value details in Table 2. 
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Primarily, our hyperparameter is based on such components. First is the model architecture, which determines the 
structure and depth of the model. Regularization and dropout hyperparameters showed us the regularization control 
to prevent model overfitting. The CNN and scale hyperparameters are specific to the convolutional layer and the 
contribution of the residual path in the model. Furthermore, training configuration hyperparameters define the 
setting for training the model, such as batch_size, learning_rate, and optimizer choice.  

TABLE 2 
HYPERPARAMETER VALUES   

Hyperparameter Value Description 

n_layers 4 
Number of LSTM layers in 
both encoder and decoder layer 

hidden_size  64 
Number of LSTM hidden sizes 
in both encoder and decoder 
layer 

dropout 0.2 
Number of dropouts in Linear 
layers 

cnn_layers 2 Number of CNN layer 

kernel_size 3 
Number of kernel sizes in CNN 
layer 

batch_size 32 
Number of batch sizes in the 
data loader 

learning_rate 0.001 
Number of  learning rates of 
the optimizer 

optimizer AdamW 
Variants of Adam with weight 
decay 

scale 0.5 
Number of contributions of  the 
residual path 

            

C. Result Analysis 

We experimented with two scenarios to assess the model performance in handling time series forecasting tasks. 
The first is to show the model performance in the single-output and the second is the multi-output experiment, which 
is the primary experiment of this study. We used these scenarios to evaluate the proposed model performance in 
single and multi-output to demonstrate that the model works well in any conditions, even though not in their first 
aims.  

 
1) Single-Output 
On the single-output side, we only considered 24-hours of sequence, which means the model will have 24 hours 

of history information and try to forecast the 24-hours ahead. Computational efficiency and the paramount 
importance of real-world weather forecasting applications are why we used 24-hour sequence in a single-output 
experiment. It is more important to assess the model performance in the long-term horizon, specifically only 
including one feature, rather than in short-step forecasting. Meanwhile, PM2.5 is our feature due to the crucial 
environmental parameter directly impacting air quality and public health. In addition, PM2.5 has been used by many 
researchers as an essential pollution level to forecast air quality [39], [40], [45], [46]. The result showed that the 
model achieved a relatively low training loss with the 0.0014 value. Meanwhile, the test cost 0.0012 indicates 
relatively low testing loss and better performance of how well the model generalizes to unseen data. In addition, we 
also calculated RMSE and MAE scores and got 0.0305 and 0.0197, respectively. These cost metrics suggest the 
model makes accurate predictions with minor errors and deviations from the actual values. It indicates that the 
model is performing well in minimizing prediction errors and capturing the intricate patterns in the data.  

However, the objective evaluation of the model performance should be in real-world scenarios where the model 
faces unseen data or does not have ground truth in the time series data. Therefore, we evaluated or tested the data 
with unseen data and the model's performance in single-output. Note that our evaluation is based on a recursive 
technique. This approach aligns with forecasting in practice, where predictions are made sequentially based on 
available historical information. It ensures that the model prediction relies solely on historical data. As we can see in 
Figure 7, the model is quite successful in forecasting and fitting the target data. Even though there is still a specific 
point that the model could not forecast, it could be an outlier or the extreme values present in the data that make it 
challenging to forecast. Overall, the model can identify the intricate patterns of the data.  
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Fig. 7 Comparison of predicted and actual in the PM2.5 single-output model 

 
2) Multi-Output 
In this main experiment, we used four horizons or sequences, as mentioned before, which are 1-hours, 6-hours, 

12-hours, and 24-hours. The metric score for each horizon showed in Table 3. Using these different horizons not 
only looks at which horizons performed better, but we can inspect the model performance on the long sequence and 
the model performance when the information provided is short. We choose 1-hours to examine the lack of 
information and 24-hours if the model tends to have information loss.  

Based on Table 2, the 6-hours of horizon generally perform better in accuracy and precision along each output. 
The loss values in MSE, RMSE, and MAE are relatively lower compared to the longer horizon (12-hours and 24-
hours). The value also has no significant variations when the model predicts different air pollutants, with relatively 
small errors compared with the actual values. It demonstrated the capability to capture short-term patterns 
effectively.  

TABLE 3 
LOSSES FOR EACH HORIZON   

Horizon 

PM2.5 PM10 SO2 NO2 

MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE MSE RMSE MAE 

1-hours 0.0046 0.0390 0.0319 0.0038 0.0436 0.0223 0.0007 0.0023 0.0189 0.0055 0.0552 0.0422 

6-hours 0.0010 0.0293 0.0198 0.0013 0.0347 0.0240 0.0007 0.0236 0.0172 0.0024 0.0468 0.0320 

12-hours 0.0016 0.0378 0.0245 0.0021 0.0442 0.0307 0.0010 0.0290 0.0208 0.0042 0.0635 0.0429 

24-hours 0.0018 0.0400 0.0270 0.0022 0.0456 0.0324 0.0008 0.0278 0.0204 0.0044 0.0651 0.0445 

 
The loss over the training time and epoch is shown in Figure 8. The figure provides insight into the model 

performance and its ability to converge toward optimal parameters along the epochs. The smoothness of the loss 
curve indicates how well the model performs and effectively learns from the training data and gradually improves its 
performance. The model also appears to generalize well to unseen data while capturing the important patterns in the 
training data. The model produced 815,548 trainable and non-trainable parameters in training. It should increase the 
complexity and capacity to learn from the data and be more prone to overfitting. However, it showed that the model 
was suitable for handling overfitting or underfitting. It makes the model capable of capturing subtle and nuanced 
patterns and relationships in the input data.  

In addition, we did not set up the value for the epoch, but we used an early stopping technique. Early stopping 
prevents overfitting by stopping the training process before the model becomes too specialized to the training data 
and underperforms in the unseen data. Therefore, we only initiate a number as early stopping criteria, using 20 as a 
threshold for performance degradation. 
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Fig. 8 The losses in training and testing for each epoch 

 
Furthermore, the complete visualization of each output has presented in Figure 9. As we can see, there is a specific 
point that the model could not forecast along the outputs. We have inspected them as extreme values or outliers in 
the data. In this study, we purposely chose to keep the extreme values or outliers in the data instead of removing 
them. By keeping these challenging data points in the analysis, we aim to evaluate the model's robustness and ability 
in real-world data, even in the presence of outliers. As a result, it seems like the model can learn the pattern in the 
presence of an outlier. The model predictions align with the general trend of the data, capturing the fluctuation and 
overall behavior. However, the model still struggles to accurately predict the peak value in the extreme values. 
   

Fig. 9 Visual representation of predicted and target each output in 6-hour horizon (a) PM2.5, (b) PM10, (c) SO2, and (d) NO2 

 

(a)  

(b)  

(c)  

(d)  
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Nevertheless, the loss value tends to increase by extending the horizon or the sequence, even though there are no 
significant differences between the 6-hours horizon. It will indicate that the model performance struggles as it 
attempts to forecast over longer time spans. Figure 10 visually compares the predicted and actual values in the 24-
hour horizon, especially in the target PM2.5 and PM10. Based on the visualization, we can infer that the model can 
still capture the underlying patterns and dynamics of the data, albeit with reduced accuracy. Although its 
performance may not be as strong for the 6-hours horizon, the model can still capture specific trends and make 
predictions that are informative to some extent. As long as this study purpose is to examine the model in multi-
output capability, the overall performance in each output expresses the superiority of the model. It provides 
meaningful forecasts with acceptable accuracy for multiple air pollutants over extended periods, signifying its multi-
output forecasting capability.  

 

 
Fig. 10 Predicted and target in 24-hour horizon (a) PM2.5 and (b) PM10 

 
Meanwhile, if we only use 1-hours horizon, the information is insufficient to learn from the model. As a result, 

the loss increased three times compared with 6-hours horizon. It suggests accurately forecasting air pollutant levels, 
as such a short horizon might be challenging for the model. The data's limited time horizon, dynamics, and short-
term fluctuations restrict the model from learning and incorporating basic patterns and trends beyond the immediate 
next hour.  

 
3) Transfer Learning 
To assess the robustness of the proposed model, we experimented with transfer the learning model Gucheng 12-

hour horizon into the 12-hours horizon in the Wanshouxigong dataset. Table 4 shows the losses for the 12-hours 
horizon in the Wanshouxigong dataset using the transfer learning model. Overall, the model demonstrated 
exemplary performance in forecasting PM2.5, PM10, and SO2 and may struggle to accurately predict NO2 
concentration as indicated by the higher losses. 

TABLE 4 
LOSSES FOR 12-HOURS HORIZON IN WANSHOUXIGONG   

Metric 
Output 

PM2.5 PM10 SO2 NO2 

MSE     0.0054 0.0055 0.0008 0.0130 

RMSE 0.0737 0.0744 0.0285 0.1141 

MAE 0.0548 0.0548 0.0211 0.0892 

 

The model achieves relatively low losses for the PM2.5 and PM10 outputs with MSE, RMSE, and MAE, 
indicating a slight average difference between the predicted and actual values. In the case of SO2, the model 
performs well with an MSE of 0.0008, indicating low overall error prediction SO concentrations. The RMSE and 
MAE values also confirm the model accuracy in capturing the SO2 patterns. However, for the NO2 output, the 
model exhibits a higher loss compared to the other loss. The MSE had a relatively higher error in predicting NO2 

 
(a) 

 
(b) 
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concentrations, the same as RMSE, and MAE also has a more significant difference between the predicted and 
actual values for NO2.  

Figure 11 visually represents the model predicted and the actual target values for the Wanshouxigong dataset. The 
model generally fits the trend and captures the main features of the actual data. However, it is worth noting that 
there are discrepancies between the predicted values and the actual data, particularly in the case of NO2. Despite 
these errors, the model still captures the general pattern and approximates the actual values, albeit with deviations. It 
indicates that the model understands the underlying patterns in the data and can adapt and learn from specific 
datasets, even if it cannot perfectly fit the actual values.  

 

 
Fig. 11 Visual representation of predicted and target each output in transfer learning 6-hour horizon (a) PM2.5, (b) PM10, (c) SO2, and (d) NO2 

V. DISCUSSION 

This study examined the Encoder-Decoder networks by proposing a model architecture combining LSTM, CNN, 
and Linear layers, especially in multi-output time series forecasting. The experiments have been conducted using 
two open public datasets, Gucheng and Wanshouxigong stations datasets from Beijing Multi-Site Air Quality Data. 
The first experiment assesses the proposed model in single-output tasks; the second is the main experiment, which 
evaluates the multi-output in Gucheng and then transfers the learning to evaluate the Wanshouxigong stations 
dataset. 

In the single-output analysis, the model has trained using 24-hours of historical data to forecast the 24-hours of 
PM2.5 feature. The model achieved a relatively low error in training and testing data based on the result. Overall, 
each metric score confirms the high accuracy and demonstrates its ability to identify intricate patterns in the time 
series data, even though it is designed for multi-output forecasting.  We compared our proposed model, as shown in 
Table 5, to show how the model competes with other models. Our proposed model performed better than the prior 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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study[39], which builds the model solely on a single output. It is three times lower than the VMD+BiLSTM model 
in the MAE score and reached 3.050% in the RMSE score.  In addition, our proposed model also outperformed the 
previous study [45], with the MSE error reduced by 14.56% in the training and 12.68% in the testing compared with 
13.38% and 55.30%, respectively.  

 TABLE 5  
COMPARISON OF GUCHENG STATION PM2.5 MODELS 

Algorithms MAE RMSE% 

Decision Tree 16.155 22.973 

BiLSTM          9.716 14.204 

EMD+BiLSTM               4.768 6.497 

VMD+LSTM          4.453   5.947 

VMD+BiLSTM          3.481 5.121 

Proposed          1.970 3.050 

     

We experimented with four horizons in the multi-output analysis to examine the proposed model performance on 
long and short sequences. The result showed that the 6-hour horizon performs better than other horizons. The value 
also has no significant variations when the model predicts different air pollutants, with relatively small errors 
compared with the actual values. It demonstrated the capability to capture short-term patterns effectively, making 
the model less error-sensitive [31]. Shorter-term forecasts rely on more immediate past data, which can be easier to 
capture accurately. We compared our proposed model with the previous study [19]. However, they consider only 
two outputs, PM2.5 and PM10, making it unable to comprehend all output comparisons. Our proposed model 
outperforms overall scores, especially in the RMSE and MAE metrics, reaching under 40 compared with 40 and 32 
in PM2.5 and 54 and 47 in PM10. Meanwhile, the model also tends to have relatively low values across each loss 
metric in transfer learning. It indicates that the model performs well in forecasting the Wanshouxigong stations 
dataset and makes it accurate with minor errors and deviations from the actual values. It also measures how well the 
proposed model transfers the learning into another specific dataset. 

This study faced some limitations in the design of the multi-output model. The horizon length effect has become 
the main problem of this. As we increase the sequence, the model tends to increase the loss, which makes the model 
difficult to forecast. It suggests that longer-term forecasts are less accurate compared to shorter-term forecasts. 
Therefore, it is crucial to consider when using the model for longer-term prediction. However, based on our 
evaluation, the model can still capture the data patterns, even though it does not fit perfectly. Future work can 
explore and develop a specialized technique to improve long-term prediction, particularly in multi-output scenarios. 
A possible integration is to use Informer model which based on transformer architecture or attention layer in both 
encoder and decoder layers. It has proved to handle long sequence text in the single-output time series forecasting 
model. Another limitation is the variability across outputs. Some outputs, such as PM10 and NO2, exhibit higher 
prediction errors than others, such as SO2 and PM2.5. It indicates that the model might have more difficulty 
accurately forecasting specific outputs and may require further improvement specifically for those outputs. Future 
research can concentrate on output-specific model enhancement to improve the forecasting accuracy of specific 
outputs using feature engineering, model adjustment, or specialized training approaches. For example, parallel 
multi-head attention mechanism in transformer architecture has shown great performance to handle feature or 
output-specific using their multi self-attention mechanism.  

VI. CONCLUSIONS 

In this study, we introduced an encoder-decoder model capable of handling multi-output time series forecasting 
tasks. The model could generate multiple outputs simultaneously for each step in the sequences. Beijing Multi-Site 
Air Quality Data has been used to evaluate the model performance. The experiment showed that the model could 
effectively forecast the multiple outputs in different horizons. It can be seen in the relatively low error for MSE, 
RMSE, and MAE metric loss. The model also shows robustness in the forecast of the single-output, even though the 
model is built for multi-output purposes. Therefore, it can be concluded that the proposed model can effectively 
handle the time series forecasting tasks.  
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