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Abstract  
 
Background: Hepatitis is a contagious inflammatory disease of the liver and is a public health problem because it is easily 
transmitted. The main factors causing hepatitis are viral infections, disease complications, alcohol, autoimmune diseases, and 
drug effects. Some hepatitis variants such as B, C, and D can also cause liver cancer if left untreated.  
Objective: This research aims to determine the effect of Backward Elimination feature selection on the performance of hepatitis 
disease identification compared to cases where Backward Elimination is not applied. 
Methods: XGBoost classification, capable of handling machine learning problems, was utilized. Additionally, Backward 
Elimination was used as a featured selection to increase accuracy by reducing the number of less important features in the data 
classification process. 
Results: The results for training XGBoost model with Backward Elimination, and applying Random Search for hyperparameter 
optimization, achieved an accuracy of 98.958% at 0.64 seconds. This performance was better than using Bayesian search, which 
produced the same accuracy of 98.958% but required a longer training time of 0.70 seconds. 
Conclusion: The use of features obtained from Backward Elimination process as well as the use of feature average values for 
missing value treatment, produced an accuracy of 98.958%. Meanwhile, the precision in training XGBoost model with 
hyperparameter Bayesian search achieved accuracy, recall, and F1 score of 98.934%, 98.934%, and 98.934%, respectively. 
Consequently, the use of Backward Elimination in XGBoost model led to faster training, improved accuracy, and decreased 
overfitting. 
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I. INTRODUCTION  

Liver disease is often considered a silent killer because it tends not to show symptoms. Hepatitis is a contagious 
inflammatory liver disease that causes public health problem [1]. According to WHO, more than 3,000 people die 
every day from liver disease caused by hepatitis virus. Hepatitis variants such as B, C, and D can lead to liver cancer 
when left untreated [2]. In 2019, WHO reported that 78,000 deaths occurred worldwide due to complications of acute 
hepatitis A to E infection [3]. The main causes of hepatitis are viral infections, disease complications, alcohol, 
autoimmune diseases, and the effects of drugs [4]. 

The WHO’s Regional Office in Southeast Asia reported that the prevalence of hepatitis B in Indonesia reached 
7.1% or around 18 million cases, while hepatitis C reached 2.34% or around 6 million cases. The prevalence rate is 
the highest among other Southeast Asian countries after Myanmar and Thailand. Additionally, the 2018 Basic Health 
Research Report (riskesdas) stated that the highest prevalence of hepatitis cases in Indonesia occurred in children aged 
5 to 14 years [5].  

To avoid further transmission, there are various types of hepatitis which have different causes, symptoms, and 
treatments. This implies that the results of hepatitis diagnosis need to be known in order to administer proper treatment. 
Typically, adequate inspection is necessary to be carried out in a short time, while laboratory tests are usually required 
when diagnosing the disease. However, disease diagnosis based on laboratory results produces errors in the initial 
analysis or in determining the disease suffered by the patient. Based on the research conducted by [6], pre-analytical 
errors contribute to 46–68.2% of the total errors in laboratory tests, with incorrect patient identification accounting for 
26.8% of these errors. Therefore, laboratory test results are necessary to be validated, specifically in hepatitis research. 
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It is crucial to be aware that the validation based on factors that influence the disease can be predicted using machine 
learning. 

Machine learning has an impact on the rapid development of technology in various fields, including the medical 
field. In general, the technology uses computers to learn from data and make predictions. According to [7], predictions 
with high accuracy make it easier for explorers to evaluate an experiment quickly and accurately. 

Following machine learning technology, Extreme Gradient Boosting (XGBoost) is an evolution of Gradient Tree 
Boosting algorithm based on ensemble algorithms, which can handle machine learning problems efficiently. XGBoost 
excels in solving a variety of classification, regression, and ranking problems. In addition, the algorithm has also 
succeeded in becoming one of the most popular methods in machine learning [8], particularly in identifying hepatitis 
disease, where precise predictions are essential for effective and accurate treatment. 

In research conducted by [9], seven different machine learning algorithms were utilized, including XGBoost, used 
to predict liver disease. The exploration performed by [10] predicted hepatitis B Surface Antigen Seroclearance using 
several machine learning algorithms such as logistic regression, decision trees, random forests, and XGBoost. 
Furthermore, [11] predicted heart disease using machine learning such as multi-layer perceptron Random Forest, 
Decision Tree, and XGBoost. Similarly, George Obaido et al. [12] performed Diagnosis using various machine-
learning methods such as Decision Trees, Logistic Regression, SVM, Random Forest, XGBoost, and AdaBoost. 

To improve data processing efficiency and machine learning model performance, feature selection method can be 
adopted. This is because the method can reduce data dimensionality by selecting the most important and relevant 
features [13]. An example of feature selection that can increase accuracy and reduce the number of insignificant 
features in the data classification process is Backward Elimination. In machine learning-based data classification, 
accuracy is low due to the large number of attributes. When identifying diseases, the large number of attributes in 
medical data can present a complex challenge. In addition, feature extraction can make an important contribution by 
helping machine learning models identify the different characteristic features of each variant of hepatitis. This implies 
that the features improve the ability of the model to provide accurate predictions. 

Backward Elimination was used as a feature selection method for the identification of volatile organic compounds 
(VOC) when applying SVM algorithm [14]. Consequently, the model achieved an accuracy of 75.6%, but when 
Backward Elimination was not used, the value was 73.2%. This implies that Backward Elimination method reduces 
the number of features and increases model accuracy. In order to improve the performance of data mining algorithms, 
such as KNN, Naïve Bayes, and C4.5, [15] classified diabetes using Backward Elimination. Based on the accuracy 
and AUC values, it is concluded that Backward Elimination can improve the total performance of the data mining 
algorithm. 

According to the results of [14] and [15], the use of feature selection, specifically Backward Elimination has the 
potential to improve model performance and reduce the number of features. In addition, the popular adoption and 
effectiveness of XGBoost, an ensemble algorithm that combines multiple learning models have been investigated. 
Several research results from [9], [10], [11], and [12], showed that XGBoost has better performance in the 
classification process. Therefore, this research aims to validate hepatitis test results by using Backward Elimination 
feature selection, and to improve the classification of XGBoost in order to avoid errors in diagnosing hepatitis. The 
impact of Backward Elimination on hepatitis disease is determined by comparing the performance results of disease 
identification using Backward Elimination with those without using Backward Elimination. 

II. METHODS 

This section explains the datasets, methods, and system architecture used in this research. 

A. Dataset 

The dataset used in this research consisted of liver function test results which were a combination of primary and 
secondary data. Primary data were obtained from 375 laboratory results of patient medical records at Dustira Hospital 
Tk.II, Cimahi City. According to the agreement with Dustira Hospital, the research documents and files can only be 
accessed by officers involved in the research. Therefore, the primary dataset will be stored in a secure location and 
will remain unpublished. Meanwhile, the secondary data were sourced from the Kaggle website with the data used 
being the Indian Liver Patient Dataset https://www.kaggle.com/datasets/jeevannagaraj/indian-liver-patient-dataset 
containing 583 laboratory results collected in North East of Andhra Pradesh, India. Therefore, this research used 958 
instances and 9 features (variables), which were categorized into 5 classes, namely hepatitis A, hepatitis B, hepatitis 
C, Unspecified Hepatitis, and Non-Hepatitis. Consequently, the variables used in this research were listed in Table 1. 

Based on Table 1, some variables in the dataset have normal value limits, such as Total Bilirubin 0.1-1.2 mg/dL, 
Direct Bilirubin 0-0.3 mg/dL, SGOT 5-40 U/L, and SGPT 7-56 U/L. These variables help in establishing the disease 
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of hepatitis by observing the extent of liver function damage. Furthermore, the HBsAg, HAV, and HCV variables 
check the type of hepatitis suffered to ensure the normal value is negative. 

TABLE 1 
DATASET VARIABLES USED FOR IMPLEMENTATION AND TESTING 

No Variable Description Type of Data 

1 Age Age of Patient Numeric 
2 Gender Gender of the Patient Categorical 
3 Bilirubin Total The total amount of bilirubin present in the blood Numeric 
4 Bilirubin Direct The total bilirubin that was directly excreted into the bile Numeric 
5 SGOT serum glutamic oxaloacetic transaminase Numeric 
6 SGPT serum glutamic pyruvic transaminase Numeric 
7 HbSAg The surface antigen of hepatitis B virus (HBV) Categorical 
8 HAV The virus that caused hepatitis A Categorical 
9 HCV The virus that caused hepatitis C Categorical 

 

B. Backward Elimination  

Backward Elimination is a method that could be used to remove insignificant attributes from the model [16]. The 
method is a wrapper-type feature selection technique performed by entering all predictor variables into a linear 
regression model, as shown in Equation (1). In addition, the method gradually eliminates the variables that do not 
meet the eligibility requirements, until a model was formed with only significant predictor variables [17]. The 
representation of Backward Elimination process could be seen in Fig. 1. 

 
� = �� + �� ∗ �� + �� ∗ ��+… + �� ∗ ��  

 
where: 
�     : Dependent variable 
��  : Independent variable 
��    : Regression coefficients 

 

Fig. 1 Image of Backward Elimination 

C. Extreme Gradient Boosting 

XGBoost is a machine learning method, and it is a regression and classification algorithm with ensemble methods. 
The method is also a variant of Tree Gradient Boosting algorithm, developed with optimization that is 10 times faster 
than Gradient Boosting [18]. Furthermore, XGBoost could be formed from several decision trees, with each 
subsequent tree construction relying on the previous tree to form a stronger classification tree based on the sum of all 
tree weights. Fig. 2 showed an image of Extreme Gradient Boosting. 

D. Bayesian Search Optimization 

Bayesian Search Optimization is used as a hyperparameter search method to obtain the optimal XGBoost model. 
To achieve better performance, hyperparameter search utilized information from previous experiments to select 
hyperparameter combinations. Additionally, prior probability was used to determine the best point until the last 
iteration [20]. 
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E. Random Search 

Random search is a hyperparameter search method that efficiently and randomly selects a combination of 
hyperparameters from each iteration. Generally, the selection of optimal hyperparameters was performed by 
considering the highest cross-validation accuracy value from all the candidates generated. According to Li & 
Talwalker, random search is a simple method that has a strong basis compared to more complex algorithms [21]. 

 
 

 
Fig. 2 Image of Extreme Gradient Boosting (based on the Flow chart of XGBoost [19]) 

 

F. System Architecture 

The workflow of this research system was presented in the form of a business process model shown in Fig. 3.  
 
 

 
Fig. 3 System Architecture 

 
According to Fig. 3, the system started by inputting the dataset and later divided the dataset into two parts, namely 

training and test data, with the training data comprising 80% and the test data being 20% of the total dataset. 
Furthermore, the necessary preprocessing process was carried out by performing Missing Value Treatment and Label 
Encoding method. To reduce features or data that were not very significant, Backward Elimination process was 
initially performed before developing XGBoost model using a combination of Bayesian and Random Search 
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hyperparameters. Subsequently, predictions were conducted to obtain model performance evaluation results in the 
form of a confusion matrix and k-fold cross-validation with 5-fold cross-validation 

G. Evaluation Metrics 

Classification model evaluation was performed to measure the performance of the classification model used [22]. 
Measurement of evaluation metrics in this result used the confusion matrix method and k-fold cross-validation with 
5-fold cross-validation. 

 
1) Confusion Matrix 
Confusion matrix is a method commonly used to calculate accuracy in the classification model evaluation stage 

[23]. The method produced several values that were used as an evaluation of model performance, namely f1 score, 
accuracy, precision, and recall [24]. 

Accuracy: Accuracy refers to the percentage result of the number of correctly classified test data. The calculation 
of the accuracy value could be seen in Equation (2). 

 

�������� =  
�� + ��

����� ����
  

 
Precision: Measures the certainty of the actual percentage of tuples labeled as positive were true in reality [25]. The 

calculation of the precision value is shown in Equation (3). 
 

���������� =  
��

�� + ��
  

 
Recall: Recall measures the completeness of the exact percentage of positive tuples that are positively labeled, and 

the calculation of recall value was shown in Equation (4). 
 

������ =  
��

�� + ��
  

 
F1 Score: The sum of the harmonic mean between precision and recall, and the calculation of the f1 score value 

was shown in Equation (5). 
 

�1 ����� = 2 ∗
���������� ∗ ������

���������� + ������
  

 
where: 
TP (True Positive): The number of positives that were correctly predicted as positive. 
FP (False Positive): The number of negatives that were incorrectly predicted as positive. 
TN (True Negative): The number of negatives that were correctly predicted as negative. 
FN (False Negative): The number of positives that were incorrectly predicted as negative. 
 

2) K-Fold Cross Validation 
K-fold cross-validation was used to estimate prediction errors when evaluating model performance. The data was 

divided into k almost equal parts and the classification model was trained and tested k times. In addition, model 
classification accuracy was determined by averaging the accuracy at each repetition. In the duplication, a set of parts 
was used as training and testing data [26]. 

III. RESULTS 

A. Pre-Processing  

The initial preprocessing process was carried out by handling missing values in each row of data that had empty 
values. Various methods were used to handle missing values, which were described in Table 2. The next step 
comprises the process of converting categorical data into numerical values, which was performed by using the label 
encoding method. Subsequently, the data was split with a ratio of 80% for training data and 20% for test data. 
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TABLE 2 
MISSING VALUE TREATMENT METHOD IN THE PRE-PROCESSING PROCESS  

Missing Value Treatment Description 

Dropna Deleted data rows that have empty values 
Median Filled empty values using the median value of the variable 
Mean Filled empty values using the mean value of the variable 
Forward Fill Filled the empty value with the closest value in front of the row 

 

B. Training Model 

Model training was performed by conducting a feature selection process using Backward Elimination. The process 
was performed by selecting features based on the p-value of each feature obtained through regressor_OLS.summary. 
The results of the p-value calculation could be seen in Table 3. 

Based on Table 3, it could be seen that the variables x1 (age), x2 (gender), and x5 (SGOT) were not significant in 
the model, as evidenced by p-values exceeding the significance level (α = 0.05). Meanwhile, the remaining variables 
(total bilirubin, direct bilirubin, SGPT, HBsAg, HAV, and HCV) were influential (significant) features in the model, 
indicated by their p-value, which was lower than the significant level. This difference was due to the use of Backward 
Elimination during the model development. Regarding the hyperparameter tuning process, Bayesian and random 
search was performed using a set of parameters listed in Table 4. 

TABLE 3 
THE SIGNIFICANCE OF THE RELATIONSHIPS IN THE MODEL   

Variable Coefficient Standard Error t P-value 

Const 3.2724 0.033 99.689 0.000 
x1 -0.0012 0.003 -1.919 0.055 
x2 0.0292 0.001 1.301 0.194 
x3 -0.0109 0.022 -3.408 0.001 
x4 0.0472 0.003 7.666 0.000 
x5 -5.215e-05 0.006 -1.266 0.206 
x6 0.0003 4.12e-05 6.419 0.000 
x7 -2.3048 0.027 -85.551 0.000 
x8 -3.3040 0.026 -124.684 0.000 
x9 -1.3299 0.033 -39.806 0.000 

*Significant α = 0,05 

 
TABLE 4 

BAYESIAN SEARCH AND RANDOM SEARCH HYPERPARAMETER RANGE 

Parameter Description Range 

n_estimators Number of trees to be created 100 - 300 
max_depth Maximum depth of the tree 4 - 8 
min_child_weight Minimum number of weights of child nodes in the tree 0 - 7 
learning_rate Rate of learning patterns in the data 0.025 - 0.3 
gamma Minimum loss reduction value  0 - 2 
colsample_bylevel Column subsample ratio at each level 0.25 - 1 
subsample Number of samples used during the training process 0.5 - 1 

 
Random Search hyperparameter tuning process used XGBoost RandomSearchCV model initialization, where the 

CV was cross-validated with K-fold cross-validation. Kfold used = 5. Based on the hyperparameter range in Table 3, 
the hyperparameter tuning process based on Bayesian Search and Random Search was performed for 100 iterations to 
get the best hyperparameter values, which could be seen in Table 5. 

Model training experiments were performed with backward feature selection and without Backward Elimination, 
different missing value treatments, and each model with different hyperparameters, namely Bayesian search and 
random search. Furthermore, for each model training, the aim settings were “multi:softmax”, num_class = 5, and 
eval_metric = ['mlogloss', 'merror']. The following model training scenarios without Backward Elimination were 
shown in Table 6. When training the model with Backward Elimination, the following datasets were used, namely the 
total bilirubin, direct bilirubin, SGPT, HBsAg, HAV, and HCV features. The following model training scenario with 
Backward Elimination was shown in Table 7. 
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TABLE 5 
BAYESIAN SEARCH AND RANDOM SEARCH HYPERPARAMETER TUNING RESULTS 

Parameter Bayesian Search Random Search 

n_estimators 240 200 
max_depth 5 4 
min_child_weight 1 0 
learning_rate 0.2 0.025 
gamma 0.3 0 
colsample_bylevel 0.610 0.75 
subsample 0.445 0.15 

TABLE 6 
SCENARIO OF XGBOOST MODEL TRAINING WITHOUT BACKWARD ELIMINATION 

Number Of Models Dataset Missing Value Treatment Hyperparameter Optimization 

1 Normal Dropna Bayesian Search 
2 Normal Dropna Random Search 
3 Normal Median Bayesian Search 
4 Normal Median Random Search 
5 Normal Mean Bayesian Search 
6 Normal Mean Random Search 
7 Normal Forward Fill Bayesian Search 
8 Normal Forward Fill Random Search 

TABLE 7 
SCENARIO OF XGBOOST MODEL TRAINING WITH BACKWARD ELIMINATION 

Number Of Models Dataset Missing Value Treatment Hyperparameter Optimization 

1 Backward Elimination Dropna Bayesian Search 
2 Backward Elimination Dropna Random Search 
3 Backward Elimination Median Bayesian Search 
4 Backward Elimination Median Random Search 
5 Backward Elimination Mean Bayesian Search 
6 Backward Elimination Mean Random Search 
7 Backward Elimination Forward Fill Bayesian Search 
8 Backward Elimination Forward Fill Random Search 

 

C. Results of XGBoost Model Testing Without Backward Elimination 

The results of testing 8 models using 20% of the test data were measured based on the degree of accuracy, precision, 
recall, F1 score, training time, and average precision of k-fold cross-validation results with a value of Kfold = 5. The 
following were the results of testing the model without Backward Elimination, which could be seen in Table 8. 

According to Table 8, the results of training XGBoost model without Backward Elimination, using mean feature 
value to handle missing data, and applying "Random Search" for hyperparameter optimization with specific 
parameters (n_estimators = 200, max_depth = 4, min_child_weight = 0, learning_rate = 0.025, gamma = 0, 
colsample_bylevel = 0.75, and subsample = 0.15) produced an accuracy of 98.437% at 0.74 seconds. This performance 
was better than using Bayesian Search hyperparameter optimization with parameters n_estimators = 240, max_depth 
= 5, min_child_weight = 1, learning_rate = 0.2, gamma = 0.3, colsample_bylevel = 0.610, and subsample = 0.445, 
which achieved the same accuracy of 98.437%, but with a training time of 0.85s.  

Even though model training without Backward Elimination achieved high accuracy based on the results of the 
confusion matrix or 5-fold cross-validation average, it could be seen from the graph in Fig. 4 that there were several 
models where overfitting occurred. In these cases, the training data had a high level of accuracy, but simultaneously, 
the accuracy of the validation data was low. 
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TABLE 8 
RESULTS OF XGBOOST MODEL TESTING WITHOUT BACKWARD ELIMINATION 

Number Of Models 
Evaluation of Model Performance 

TrnT 5-Fold CrossVal 
Acc. Prec. Rec. F1 Scr 

1 95.890 % 95.252 % 95.894 % 95.521 % 0.68 s 0.983 
2 96.575 % 96.061 % 96.421 % 96.227 % 0.59 s 0.982 
3 95.833 % 95.495 % 96.466 % 95.878 % 0.92 s 0.980 
4 97.916 % 97.636 % 98.233 % 97.906 % 0.72 s 0.973 
5 98.437 % 98.263 % 98.583 % 98.416 % 0.85 s 0.982 
6 98.437 % 98.263 % 98.583 % 98.416 % 0.74 s 0.983 
7 96.354 % 96.033 % 96.817 % 96.365 % 0.77 s 0.971 
8 97.916 % 97.500 % 98.596 % 97.939 % 0.65 s 0.973 

*Acc: Accuracy, Prec: Precision, Rec: Recall, F1 Scr.: F1-Score, TrnT.: Training Time,  
K-Fold Cross Val: Mean of 5-Fold Cross Validation 

D. Test results of XGBoost model with Backward Elimination 

The results of testing 8 models using 20% of the test data were measured based on the level of accuracy, precision, 
recall, F1 score, training time, and average precision of k-fold cross-validation results with a value of Kfold = 5. The 
following are the results of testing the model without Backward Elimination, which could be seen in Table 9. 

Table 9 showed that XGBoost model trained with Backward Elimination, mean feature value treatment for missing 
value, and using "Random Search" with specific parameters (n_estimators = 200, max_depth = 4, min_child_weight 
= 0, learning_rate = 0.025, gamma = 0, colsample_bylevel = 0.75, and subsample = 0.15) achieved an accuracy of 
98.958% at 0.64 seconds. This performance was better than using Bayesian Search (n_estimators = 240, max_depth 
= 5, min_child_weight = 1, learning_rate = 0.2, gamma = 0.3, colsample_bylevel = 0.610, and subsample = 0.445), 
which achieved the same accuracy but required a longer training time of 0.70 seconds. 

TABLE 9 
RESULTS OF XGBOOST MODEL TESTING WITH BACKWARD ELIMINATION 

Number Of Models 
Evaluation of Model Performance 

TrnT 5-Fold CrossVal 
Acc. Prec. Rec. F1 Scr 

1 97.945 % 97.921 % 97.473 % 97.682 % 0.64 s 0.983 
2 97.945 % 97.921 % 97.473 % 97.682 % 0.57 s 0.982 
3 96.354 % 95.979 % 97.180 % 96.420 % 0.87 s 0.980 
4 97.395 % 97.048 % 97.882 % 97.404 % 0.69 s 0.973 
5 98.958 % 98.934 % 98.934 % 98.934 % 0.70 s 0.982 
6 98.958 % 98.934 % 98.934 % 98.934 % 0.64 s 0.983 
7 98.437 % 98.064 % 98.947 % 98.442 % 0.65 s 0.971 
8 98.958 % 98.666 % 99.298 % 98.953 % 0.64 s 0.973 

*Acc: Accuracy, Prec: Precision, Rec: Recall, F1 Scr.: F1-Score, TrnT.: Training Time,  
K-Fold Cross Val: Mean of 5-Fold Cross Validation 

 
The model training using Backward Elimination feature selection according to the findings in Table 9 achieved 

high accuracy based on the results of the confusion matrix or five-fold cross-validation average. The graph in Fig. 5 
showed that model training using Backward Elimination achieved high accuracy. Furthermore, feature selection 
increased the accuracy of the training data to the same level as the validation data, showing a reduction in the 
overfitting effect. The reduction could be understood by observing how the two accuracy curves, namely the training 
data and validation data, come closer together. The observation showed that the model could perform well on new, 
unseen data. However, some models still experienced overfitting, obviously due to a growing disparity between the 
training and validation data curves longer time. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 4 Graph Of Accuracy For Xgboost Model Testing Without Backward Elimination (a) Drop+Bayesian, (b) 
Drop+Random, (c) Mean+Bayesian, (d) Mean+Random, (e) Median+Bayesian, (f) Median+Random, (g) Ffill+Bayesian, (h) 

Ffill+Random 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

Fig. 5 Graph Of Accuracy For Xgboost Model Testing With Backward Elimination (BE) (a) Drop+BE+Bayesian, (b) Drop+ 
BE+Random, (c) Mean+ BE+Bayesian, (d) Mean+ BE+Random, (e) Median+ BE+Bayesian, (f) Median+ BE+Random, (g) 

Ffill+ BE+Bayesian, (h) Ffill+ BE+Random 

IV. DISCUSSION 

Several research including [9], had examined the implementation results of seven machine learning algorithms 
including SVM, Decision Tree, Random Forest, Naive Bayes, Logistic Regression, Adaptive Boosting, and Extreme 
Gradient Boosting for predicting liver disease. Among the algorithms, Extreme Gradient was used, which showed the 
highest accuracy reaching 81% [10]. Additionally, XGBoost showed superior accuracy of 95% in predicting hepatitis 
B surface antigen zero-clearance [11]. The use of this model for liver disease prediction obtained the highest accuracy 
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of 87.02%. According to George Obaido et al. [12], hepatitis B diagnosis using XGBoost achieved 90% accuracy. In 
this current research, model training using XGBoost achieved the highest accuracy of 98.437% at 0.74 seconds. 

The test results using Backward Elimination when training XGBoost model showed an accuracy of 98.958% at 
0.64 seconds. The improvement of 0.521% in accuracy was attributed to Backward Elimination which aided in 
reducing the number of features used. 

The inclusion of Backward Elimination in the training process improved accuracy and reduced overfitting by 
minimizing the use of insignificant features. Furthermore, the choice of hyperparameters alongside Backward 
Elimination also affected the training time with “Random Search” showing faster training time compared to “Bayesian 
Search”. 

Other aspects that could be investigated in further research were feature selection methods. Although Backward 
Elimination was used in this exploration, different feature selection methods could be used to provide a more 
comprehensive comparison. Further exploration can also be carried out to understand the way in which different 
feature selection methods impact results and contribute to significant improvements. While considering the balance 
of each class, the number of datasets needs to be taken into account because an increase in the number could also 
affect performance. 

V. CONCLUSIONS 

In conclusion, the results of the research showed that feature selection using Backward Elimination method had a 
positive impact on the performance of XGBoost model. By using only six relevant features, the model achieved high 
accuracy, precision, recall, and F1 score. Apart from increasing the accuracy of hepatitis identification, the use of 
Backward Elimination also reduced overfitting. Additionally, the results of hyperparameter optimization of XGBoost 
model using Bayesian and Random Search methods showed that this method was effective. 
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