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Abstract  
 
Background: Insect vectors spread 80% of plant viruses, causing major agricultural production losses. Direct insect vector 
identification is difficult due to a wide range of hosts, limited detection methods, and high PCR costs and expertise. Currently, 
a biodiversity database named Global Biotic Interaction (GloBI) provides an opportunity to identify virus vectors using its data. 
Objective: This study aims to build an insect vector search engine that can construct an virus-insect-plant interaction knowledge 
graph, identify insect vectors using network analysis, and extend knowledge about identified insect vectors. 
Methods: We leverage GloBI data to construct a graph that shows the complex relationships between insects, viruses, and 
plants. We identify insect vectors using interaction analysis and taxonomy analysis, then combine them into a final score. In 
interaction analysis, we propose Targeted Node Centric-Degree Centrality (TNC-DC) which finds insects with many directly 
and indirectly connections to the virus. Finally, we integrate Wikidata, DBPedia, and NCBIOntology to provide comprehensive 
information about insect vectors in the knowledge extension stage. 
Results: The interaction graph for each test virus was created. At the test stage, interaction and taxonomic analysis achieved 
0.80 precision. TNC-DC succeeded in overcoming the failure of the original degree centrality which always got bees in the 
prediction results. During knowledge extension stage, we succeeded in finding the natural enemy of the Bemisia Tabaci (an 
insect vector of Pepper Yellow Leaf Curl Virus). Furthermore, an insect vector search engine is developed. The search engine 
provides network analysis insights, insect vector common names, photos, descriptions, natural enemies, other species, and 
relevant publications about the predicted insect vector. 
Conclusion: An insect vector search engine correctly identified virus vectors using GloBI data, TNC-DC, and entity embedding. 
Average precision was 0.80 in precision tests. There is a note that some insects are best in the first-to-fifth order. 
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I. INTRODUCTION  

In plant ecosystems, insects have role as vectors that carry viruses. Several insect vectors [1–3] spread viruses in 
plants and caused significant losses in agricultural production [4–7]. Since insects are responsible for the majority of 
virus transmission [2], the role of insect vectors is crucial. Therefore, identifying insect vectors is important to break 
the transmission and reduce its negative impact on agricultural production. 

Collecting insects near virus-infected plants and identifying them in a lab are typical methods for insect vector 
identification [8, 9]. However, this method poses several challenges, such as the ability of some insects to infect 
multiple hosts (wide host range) [10], limited detection methods [11], and a process that requires expertise in 
implementation [11, 12]. Literature screening of prior studies [1–3] is another method for identifying insect vectors, 
given the abundance of prior studies [1–3] that have published information relating to insect vectors. However, reading 
the literature systematically and summarizing all the information as a whole also requires more time and effort. On 
the other hand, agricultural knowledge management methods have developed knowledge graph ontology technology 
[13]. Knowledge graphs have two advantages: First, because of the Linked Open Data (LOD) principle [14], which 
makes the data connected with other sources of knowledge; and second, due to the graph format, which enables the 
application of network analysis techniques [15]. One of the large knowledge graphs that can be used to identify insect 
vectors is Global Biotic Interaction (GloBI) [16]. GloBI is a global database that stores interaction data for all entities 
or living things in their ecosystem, including the interactions of insects, viruses, and plants. 

Previous research has used ontologies to address plant pathology problems [17–21]. However, research that applies 
network analysis to GloBI graphs to identify insect vectors has not been widely carried out. As suggested by [22], 
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applying network analysis to identify insect vectors is a potential practice. Our study aims to build a vector insect 
search engine based on network analysis. The search engine must be able to: (1) construct a knowledge graph of virus-
insect-plant interactions; (2) identify insect vectors using network analysis; and (3) collect detailed information 
regarding identified insect vectors. 

To construct graphs, we use the Breadth-First Search (BFS) technique [23] to retrieve as much interaction data as 
possible from the GloBI web service. Then the data is preprocessed and converted into the graph format. To identify 
insect vectors, we use two analytical approaches: interaction analysis and taxonomic analysis. Interaction analysis is 
based on Lilies’ insect vector identification method [8], which involves examining insects that interact with virus-
infected plants in the field. Meanwhile, taxonomic analysis is based on research findings [1, 3], which show that 
certain insect families have unique association patterns with various virus genera. In interaction analysis, we proposed 
the Targeted Node Centric-Degree Centrality (TNC-DC). TNC-DC is a modification of the Degree Centrality 
technique [24] that has been adapted to search for central nodes while considering the relationship with a target node 
(in this case, a virus). In taxonomic analysis, we use entity embedding techniques [25] to convert taxonomic data and 
Euclidean distance [26] to find out the similarity taxa of each node. Then the two approaches’ results are combined to 
produce a single final score. The higher the final score, the greater the potential of the insect as a vector. To extend 
our knowledge about predicted insects, we use some knowledge bases named DBpedia [27], Wikidata [28], and NCBI 
Taxon Ontology [29, 30] to obtain additional pertinent information. Included in this information are the insect's 
common name, specifics about its taxonomy, and an explanation of how it interacts with its natural biocontrol.  

Ultimately, the three procedures explained before were used as fundamental stages in the insect vector search engine 
that we have built, namely Vektorpedia. Researchers and other stakeholders can use Vektorpedia to understand the 
dynamics of virus-insect-plant interactions and formulate insect pest control strategies. 

II. LITERATURE REVIEW  

According to Hogan [31], there are two general techniques for knowledge accumulation in knowledge graphs: 
deductive (rule and logical inference) and inductive (machine learning and network analysis). In the field of plant 
pathology, most previous studies have used logical inference and ontology coverage on certain plants, such as cocoa 
plants [17], rice [18], and several other plants [19–21]. While research using inductive techniques and covering a wide 
range of organisms is relatively rare. The study [32] used a wide range of organismal data from GloBI to track 
parasites. However, it did not mention the identification of insect vectors. The study [33] specifically addresses the 
interaction of insects and host plants using network analysis but aims to identify association patterns between insects 
and their hosts.  

To the best of our knowledge, no research has been found that applies network analysis to GloBI graphs to assist in 
identifying insect vectors. On the other hand, applying network analysis to help identify insect vectors is a potential 
practice because it has been suggested in researches [22, 34]. According to Garret [22], plant pathology problems are 
complex system problems, and network analysis [15] can overcome these problems. Several previous studies have 
suggested applying network analysis to plant pathogen problems, especially using information from species interaction 
data to identify viral vectors [22, 34, 35]. We implement one of Garrett's suggestions, solving the problem of insect 
vectors with network analysis. We utilize the virus-insect-plant interaction data already in GloBI [16] and apply 
network analysis to find insect vectors. A comparison of several studies related to the research to be submitted can be 
seen in Table 1. 

TABLE 1 
COMPARISON BETWEEN OUR RESEARCH AND PREVIOUS RESEARCH 

Work Approach Objective 
Lagos-Ortiz et al, 2019 Deductive: logical inference Identification of plant diseases and pests 
Jearanaiwongkul et al, 2021 Deductive: logical inference Identification of plant diseases 
Rodríguez-García et al, 2021 Deductive: logical inference Identification of plant diseases and pests 
Seltmann et al. 2020 - Tracking parasites on a terrestrial basis 
Our research Inductive: targeted node centric-degree centrality and 

entity embedding 
Identification of plant virus vectors 

III. METHODS 

The research stages consist of: 1) Data acquisition 2) graph conversion; 3) interaction analysis; 4) taxonomic 
analysis; 5) final-score calculation; 6) testing; 7) knowledge extension; and 8) application development. An overview 
of the research stages is shown in Fig. 1. Knowledge graphs and an ontology are used as data sources in data 
acquisition, knowledge extension, and taxonomic analysis. The main data is GloBI, and the complementary data are 
NCBI Taxon Ontology, Wikidata, and DBPedia. Detailed specifications and data usability can be seen in Table 2. 
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Fig. 1 Research stages 

TABLE 2 
RESEARCH DATA   

Title Format Purpose 
GloBI Linked Open Data As the main data of biotic interactions 
NCBITO Ontology As complementary data on the taxonomy of plants, insects, and viruses 
Wikidata Linked Open Data As a hub for disambiguation of taxonomic data, and detailed insect detail data 
DBPedia Linked Open Data As complementary details of insect data 

 

A. Data Acquisition 

Data acquisition was performed twice: once for virus interactions (Depth 1) and then again for some insects or 
plants that are related to the virus (Depth 2). The process of acquiring data is broken down into the following sub-
stages: (1) data retrieval; (2) table separation; (3) disambiguation; (4) table concatenation; and (5) Filter are the five 
steps in this process. Fig. 2 shows all the sub-stages. 

 

 
Fig. 2 Sub-stages in data acquisition 

1) Data Retrieval 

This stage aims to expand and collect all possible virus, insect, and plant interactions in GloBI. The Breadth-First 
Search (BFS) technique [23] is utilized for retrieving interaction data. BFS was chosen due to its capability to retrieve 
all organisms associated with the virus. The concept of data retrieval using BFS is illustrated in Fig. 3. 

Since the goal is to identify the virus's insect vector, BFS is initiated with the virus itself as the starting node. The 
BFS is conducted at two depths. In Depth 1 (first data acquisition), the objective is to acquire plants and insects directly 
linked to the virus. In Depth 2 (second data acquisition), the aim is to obtain other entities connected to viruses 
indirectly through plants or insects obtained from Depth 1. Depth 2 consists of plant BFS as the host (Depth 2.1), 
insect BFS as the pathogen (Depth 2.2), and insect BFS as the host (Depth 2.3). In the end, this stage generates two 
raw tabular tables. One from Depth 1 and the other from Depth 2. 
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Fig. 3 The concept of virus-insect-plant interaction separated into two depths 

2) Table Splitting 

This stage aims to separate the raw interaction table from GloBI into a node table and an edge table. GloBI raw 
data, as shown in Fig. 4, is a table consisting of interaction records. Each row contains information on two entities and 
the type of interaction. For this reason, data needs to be separated between tables containing entity information (nodes) 
and tables containing interaction information (edges). This separation aims to eliminate redundancies and data 
duplication. Fig. 4 shows the table splitting process. 

 

 
Fig. 4 Table Splitting 

3) Disambiguation 

At this stage, ambiguity in an entity (an individual virus, insect, or plant) is eliminated to determines the most 
appropriate taxon name for an entity based on the NCBI Taxonomy Ontology (NCBITO). The process includes 
matching an entity with a standard entity from the NCBI Taxonomy Ontology via a big knowledge base as a hub 
(Wikidata). Fig. 5 shows the process of this stage. 
 

 

Fig. 5 Disambiguation process to standardize taxon IDs 

 
In the first step, entities are grouped based on their biodiversity database prefix code, excluding the NCBITO 

database code. Then, each entity within each group is linked to entities in Wikidata by matching their IDs. Once the 
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linked entities from Wikidata are obtained, possibly NCBI IDs associated with them are retrieved. This matching 
process utilizes an ontology query language endpoint known as "Simple Protocol and RDF Query Language" 
(SPARQL) provided by Wikidata. After obtaining NCBI IDs, they are linked again to the NCBI Taxon Ontology in 
order to obtain the entire taxon path. This entire process is carried out iteratively for each ID group based on the same 
database code. Finally, all retrieved data is rechecked, and any duplicates with existing data are deleted. 

4) Table Concatenation 

As depicted in Fig. 2, this stage is carried out after the data retrieval, table splitting, and disambiguation for the 
Depth 1 and Depth 2 interactions have been completed. The objective of this stage is to concatenate the interaction 
data acquired from the Depth 1 and Depth 2 processes. In this stage, both the node and edge tables from BFS Depth 1 
and Depth 2 are concatenated. The table-concatenation process is illustrated in Fig. 6. 
 

 

Fig. 6 Node and edge tables are vertically concatenated 

 
Each table (both node and edge) is concatenated vertically based on rows of data. This concatenation facilitates the 

identification of duplicated data from both Depth 1 and Depth 2. If there is data with the same ID, the duplication can 
be readily identified and subsequently deleted. 

5) Filtering 

This stage is the final data cleaning before starting to convert the graph. It consists of removing duplicates and 
filtering the data to exclusively capture viruses, insects, and plants. Other entities except the virus, insect, and plant 
are dropped. This leads to a slight decrease in data. However, it is essential for ensuring data consistency and enhancing 
the accuracy of subsequent analyses. 

B. Graph Conversion 

Since network analysis can only be applied to graph data, the data must be converted into graph format. The graph 
conversion process is using NetworkX [36]. NetworkX is a Python package containing functions used for graph 
conversion. It takes a node table and an edge table as input and produces a directed tripartite graph as output. This 
tripartite graph is constructed with nodes representing viruses, insects, and plants. The edges connecting these nodes 
are described by relationship types such as hasHost, pathogenOf, pollinates, visitFlowersOf, or visit. Fig. 7 illustrates 
the resulting tripartite graph created during this process. 

 

Fig. 7 Tripartite graph with three class (viruses, insects and plants) 
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C. Interaction Analysis 

Interaction analysis uses the Targeted Node Centric-Degree Centrality (TNC-DC) technique. TNC-DC is a 
modification of Freeman's degree centrality [24] that we proposed. The difference between TNC-DC and Freeman's 
degree centrality is that there is a multiplier weight based on the number of direct relationships between the calculated 
node (insect) and the target node (virus), or at least there are indirect relationships through other entities first (e.g., 
plants). Fig. 8 shows how the idea of TNC-DC was used in the analysis of interactions.  

 

 

Fig. 8 The degree centrality concept to be applied in interaction analysis 

 
In general, the data have a relationship concept at an abstract level consisting of three entity classes (namely viruses, 

insects, and plants) and two relationship types (namely hasPathogen and pathogenOf). At the individual level, the 
graph is more complex. However, the primary objective is to identify insects that fulfill specific criteria: (1) have the 
most relationships (highest degree), (2) have direct relationships with the most viruses, and (3) have indirect 
relationships with viruses the most. In the end, insects that meet these requirements have a high degree of relationship 
and are assumed to be the insects with the most potential as viruses. A list of potential vector insects would be the 
information produced at this stage. The TNC-DC formula can be seen in equation 1. 
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���  

���
 × 
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���  
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 ×  
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���  

(���)
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The formula consists of three parts, namely the original degree calculation (�), the direct virus relationship 
calculation (�), and the indirect virus relationship calculation (�). The �� is the node to be calculated, �� is the other 
connected nodes, and � is the total node. �(��,  ��) = 1 only if there are connected edges. �(��,  ��) = 1 only if there 
is an edge that is directly connected to the node and �� is the main virus node. �(��,  ��) = 1 only if there are connected 
edges, but through another node first. In the � calculation, the constant 1 is added so that if the value of � = 0, then 
the values of � and � do not become 0 either. The addition of 1 then has implications for the total divisor, which must 
be changed to (� − 2) to remain equal. 

D. Taxonomy Analysis (Entity Embedding and Euclidean Distance) 

Taxonomic analysis relies on the findings outlined in reference [3], which indicate that certain virus families exhibit 
unique and consistent association patterns with specific insect families. For instance, literature from the past indicates 
that viruses belonging to the Geminiviridae family consistently have an insect vector from the Aleyrodidae family. 
Given that the Pepper Yellow Leaf Curl Virus also belongs to the Geminiviridae family, its potential insect vector 
could likewise be from the Aleyrodidae family. 

The idea of taxonomic analysis is to take a list of candidate insects and analyze it by comparing their taxonomic 
distance and how similar they are to the relevant taxonomy. Relevant taxonomy refers to all taxonomic information 
(order, family, or genus) about insects that are generally known to be vectors of the virus (order, family, or genus) in 
some literature in the past. At this time, the user can input the relevant taxonomy information, or it can be prefilled by 
the system based on our association database. Fig. 9 shows steps in taxonomic analysis. 

Firstly, the taxonomic data for each insect and relevant taxonomy needs to be converted into RDF Graph. After that 
the RDF graph is converted into numeric form using an entity embedding technique called RDF2Vec [37, 38]. Then, 
Euclidean distance (ED) [26] is used to measure the taxonomic similarity of each insect in that (numeric) vector space. 
The ED formula can be seen in Equation 2. The values of p and q are two points in the vector space. The qi and pi are 
vector values. n is the number of dimensions. 
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Fig. 9 The taxonomy analysis steps 

E. Final Score 

The final score combines CM and ED using Equation 3. CM shows how important nodes are compared to other 
nodes. It aims to recognize nodes that are important or central among the whole list of other nodes in a graph. In 
contrast, ED shows how far the candidate insect vector point is from the relevant taxonomy in the insect taxonomic 
feature space. The greater the CM, the greater the final value (directly proportional), and the smaller the ED distance, 
the greater the final value (inversely proportional), resulting in Equation 3. A min-max scaler is used to normalize CM 
and ED, ensuring both have the same range of values between 0 and 1. The number 1 is also added to preserve the 
values if some value is zero. 

����� ����� =
� � �����������(��)

� � �����������(��)
    (3) 

F. Testing 

The testing stage aims to validate network analysis methods. Test data, consisting of 21 pairs of viruses and their 
confirmed insect vectors from [3, 39–41], can be accessed at https://linktr.ee/vektorpedia. The precision metric [42] 
is used to assess the accuracy of predicting the taxon paths of the actual insect vectors. The precision formula can be 
seen in Equation 4. 

��������� =
���� �������� �����

���� �������� ����� � ����� �������� �����
    (4) 

 
Since the network analysis returns the predicted insects in the form of a list, various testing options are available. 

The approach to testing can involve selecting a single insect with the highest final score, the top three, the top five, or 
even more, depending on specific requirements and the desired number of recommended insect vectors. This range of 
insect numbers is referred to as a prediction range. The testing concept is illustrated in Fig. 10. 

 

 

Fig. 10 Proportion of (a) nodes based on their entity type; (b) edges based on interaction type 

 
Fig. 10 depicts the predicted insect within the 2-prediction range. Assuming the actual insect vector is the Silver 

Whitefly, the precision is 0.67 for the first insect and 1.0 for the second insect. To represent this "more than one 
prediction range" test case, the prediction with the highest precision is selected, which, in this case, is the second 
insect. This indicates that the network analysis with a 2-prediction range has a precision of 1.0. 
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The decision not to use the average is justified by the fact that the average does not effectively represent the 
prediction results in this context. Another insect that does not fulfill the same taxon as the actual insect is not 
necessarily the wrong prediction and could also be a vector as long as they are in the same family. To accommodate 
this condition, the test focuses solely on determining the presence of actual insects in the range of predicted insects. 
As long as actual insects are identified among the predicted list, it is assumed that the predictions are accurate. 
However, to showcase the differences in results across various prediction ranges, the test cases are implemented for 
tolerance ranges of 1, 3, 5, and 10 prediction ranges. 

G. Knowledge Extension 

This stage aims to provide detailed information about the predicted insects. This stage is a complementary process 
where predicted insects are enriched with detailed information from knowledge bases such as Wikidata, DBPdia, and 
NCBI Taxon Ontology. The information provided from the data sources can be seen in Table 3. 

TABLE 3 
KNOWLEDGE EXTENSION DATA SOURCES   

No Data source Information 
1 Wikidata Photos, scientific names, related literature and articles 
2 DBPedia Short description 
3 GloBI Interactions of insects with plants, viruses and biocontrol agents 
4 NCBI Taxon Ontology Taxonomic data of whole organisms such as superkingdom-species, and insect vector relatives 

H. Application Development 

This stage encompasses the development of a vector search engine application using a web platform. The 
application incorporates the analysis techniques previously described, and the resulting information is presented on a 
dashboard. There are three services to be built, namely: (1) a web client for the interface; (2) a computing server for 
the analysis and computation services; and (3) an NCBI Taxon Ontology Server to serve the data through SPARQL 
endpoint. 

IV. RESULTS 

To demonstrate how a research step works, the Pepper Yellow Leaf Curl Virus is selected as an example. The other 
viruses are examined in the testing subsection. The information from reference [3] is used as a benchmark. It says that 
the Pepper Yellow Leaf Curl Virus has an insect vector from the Aleyrodidae insect family, and the actual insect vector 
is Bemisia Tabaci. 

A. Data Acquisition 

Table 4 shows changes in the amount of data obtained at each data acquisition sub-stage. Even though there were 
at most 48,624 rows of interaction data at one of the sub-stages, in the end, only 5,998 interactions (edges) were used. 
This is because some duplicate data is removed in the next sub-stage. In this way, even though the data is reduced, it 
is hoped that the interaction data obtained is truly of high quality. 

Fig. 11 (a) shows the proportion of entities (nodes) in the data. The graph's most prevalent entities are viruses 
(44.3%), then insects (40.7%), and finally plants (14.9%). Fig. 11 (b) shows the proportion of interaction types (edges) 
in the data. In terms of the total number of interactions, pathogenOf (35.09%) was the most prevalent type of 
interaction, followed by pollinates (24.70%), visitFlowerOf (21.94%), hasHost (17.02%), and visit (1.25%). 

TABLE 4 
CHANGES IN DATA ON DATA ACQUISITION 

Sub-stage Amount 
1. Virus Interaction (Depth I): 
1.1. Data retrieval 1028 interaction 
1.2. Table Splitting 516 node, 516 edge 
1.3. Disambiguation 514 node, 511 edge 
2. Plant and Insect Interaction (Depth II): 
2.1. Data retrieval 48624 Interaction 
2.2. Table splitting 7369 node, 12409 edge 
2.3. Disambiguation 6874 node, 11231 edge 
2.4. Table concatenation 7388 node, 11742 edge 
2.5. Final result (after filter) 2786 node, 5998 edge 
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(a) (b) 

Fig. 11 Proportion of (a) nodes based on their entity type; (b) edges based on interaction type 

B. Graph Conversion 

Fig. 12 shows the visualization of the generated graph from the node and edge tables. Several red nodes (insects) 
occur in the center of the graph. The position in the center indicates that the node has many edges (interactions). This 
also indicates that those nodes have the potential to become insect vectors. After manual inspection, it was discovered 
that Bemisia Tabaci (the vector of the Pepper Yellow Leaf Curl Virus) was present in the middle of the graph. 
Interaction analysis can be used to obtain these centered insect nodes automatically. 

 

 

Fig. 12 Data conversion from tabular to Graph 

C. Interaction Analysis 

In this section, the results of interaction analysis when using original DC and TNC-DC are compared. Fig. 13 shows 
the analysis results when using the original DC. Fig. 15 shows the analysis results when using TNC-DC. The x-axis 
is the degree value, and the y-axis is the name of the insect. 
 

 

Fig. 13 Some results from original DC 
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Fig. 13 shows that Bemisia Tabaci was placed first in the original DC results. However, this was followed by various 
species of bees, namely Apis Mellifera, Lasioglossum Nudulum, Bombus Appositus, Chelostomoides, Nomia 
Viridicincta, Holandrena, Bombus Impatiens, Xylocopa Ruficeps, Triepeolus Simplex. In fact, each bee has no 
interaction at all with the virus, and it is not a vector for the Begomovirus virus. Fig. 14 shows the neighbor nodes that 
Apis Mellifera bees have and their interaction types. 
 

  
(a) (b) 

Fig. 14 Apis Mellifera's (a bee) neighbor nodes (a) and its interaction types (b) 

 
In Fig. 14 (a), it can be seen that although Apis Mellifera has a high degree of interaction, its interactions are only 

with plants. Apart from that, in Fig. 14 (b), it can be seen that the Apis Mellifera interaction type is only between 
hasHost, pollinates, visit and visitFlowersOf. This indicates that the reason why bees have a high degree is because 
they interact with many plants. However, their interaction is only about pollination events and not virus transmission 
events. There are concerns that bees at the highest degree hide other insects that actually interact with the virus. 
Therefore, we modified the original DC to become TNC-DC. 

 

 

Fig. 15 Some results from TNC-DC 

 
In Fig. 15, it can be seen that TNC-DC only produces Bemisia Tabaci in the first place, while the other insects have 

a degree value of 0. This low degree value is caused by the insect not having any interaction with the virus. Some bees 
that were previously at the highest places in the original DC now have equivalent value to other insects that also have 
no interaction with the virus. Even though most of the TNC-DC results are 0, all those insects can still be analyzed 
for their potential based on taxonomy at a later stage. 

D. Taxonomy Analysis (Entity Embedding and Euclidean Distance) 

Fig. 16 illustrates the results of embedding insect data that has been reduced to two dimensions. The label at each 
dot indicates the insect family. Fig. 16 (a) shows that each insect has been gathered based on taxonomy. In Fig. 16 
(b), since the Pepper Yellow Leaf Curl Virus insect vector comes from the Aleyrodidae family, a closer examination 
is performed within the Aleyrodidae group. It can be seen that five insects belong to the Aleyrodidae taxonomy. Then, 
Euclidean distance is employed to find these five insects. Fig. 17 shows the results of the Euclidean distance. The 
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shorter the distance, the more potential insects there are as vectors. The top five insects are Trialeurodes Vaporariorum 
(0.271), Bemisia Tabaci (0.298), Aleurodicus Dispersus (0.317), Bemisia Emiliae (0.320), and Bemisia Afer (0.457). 

  
(a) (b) 

Fig. 16 (a) Embedded data; (b) Zoom in to Aleyrodidae family 

 

 

Fig. 17 Some results of Euclidean distance calculation 

E. Final Score 

Fig. 18 shows the results of calculating the final score. The higher the final score, the greater the insect’s potential 
as a vector. Since the final score is a combination of network analysis and taxonomy analysis, the insects are now 
listed in a different order: Bemisia Tabaci (1.0), Trialeurodes Vaporariorum (0.5), Aleurodicus Dispersus (0.49), 
Bemisia Emiliae (0.49), and Bemisia Afer (0.48). Based on these results, Bemisia Tabaci is a virus vector of the 
Pepper Yellow Leaf Curl Virus. This result has been validated by our benchmark data [3]. At a later stage, information 
about Bemisia Tabaci is enriched. 
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Fig. 18 Some results of final score calculation 

F. Testing 

The test results are available at https://linktr.ee/vektorpedia. Fig. 19 shows a comparison of precision values for 
each prediction range. The y axis represents average precision, and the x axis represents prediction range.  

 

Fig. 19 Precision values in every prediction range 

 
From Fig. 19, it can be seen that there is an increase in average precision when the prediction range is expanded. A 

precision of 0.71 was obtained within the 1-prediction range, 0.78 within the 3-prediction range, 0.8 within the 5-
prediction range, and 0.88 within the 10-prediction range. The precision score indicates that the analysis method can 
effectively predict the actual insect vector, particularly starting from the 5-prediction range. It implies that the actual 
insect vector may be ranked within the first to fifth positions in the list resulting from network analysis. Considering 
the recommendation of the smallest number of insects with the highest precision, the top five insects can be 
recommended to the user. 

G. Knowledge Extension 

The enhancement stage generates detailed information regarding the vector insect resulting from the analysis, 
Bemisia Tabaci. Information about the pathogens (natural enemies) of Bemisia Tabaci was discovered when Bemisia 
Tabaci was integrated into GloBI. Fig. 20 shows the natural enemies of the Bemisia Tabaci and their proportions. 
There are 63 insects, 18 viruses, and 41 other organisms (arthropods, fungi, etc.) that are natural enemies or parasites 
of Bemisia Tabaci. The complete list of Bemisia Tabaci’s natural enemies can be accessed at 
https://linktr.ee/vektorpedia. There are Eretmocerus, Encarsia, and Aphelinus, which are natural enemies and can be 
used as biocontrol for Bemisia Tabaci. 
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Fig. 20 Bemisia Tabaci's natural enemy graph 

 
Relatives of the Bemisia Tabaci insect from another species were identified in the NCBI taxon ontology. Insect 

relatives of Bemisia Tabaci can be accessed at https://linktr.ee/vektorpedia. There are 37 different insect relatives of 
Bemisia Tabaci. Detailed information about the Bemisia Tabaci, including common names, photographs, and 
descriptions, was found in Wikidata and DBPedia. Table 5 shows detailed information on Bemisia Tabaci. 

TABLE 5 
DETAILED INFORMATION FROM WIKIDATA AND DBPEDIA 

No Proces Information 
1 Scientific Name Bemisia Tabaci 
2 Common Names Sweet potato whitefly, etelänjauhiainen, bomullsmellus, 煙草粉蝨種群,煙草粉蝨,銀葉粉蝨, عثة التبغ, 

Tabakmottenschildlaus, Aleurode du tabac, シルバーリーフコナジラミ, 담배가루이, Tabakswittevlieg, Mosca-
branca (Bemisia tabaci), dan Табачная белокрылка. 

3 Photo https://commons.wikimedia.org/wiki/File:Silverleaf_whitefly.jpg 
4 Description The silverleaf whitefly (Bemisia Tabaci, also informally referred to as the sweet potato whitefly) is one of several 

species of whitefly that are currently important agricultural pests... 

H. Application Development 

The application development phase has been successfully carried out and resulted in a web-based vector search 
engine application. Fig. 21 (a) is a screenshot of the graph visualization stage. Fig. 21 (b) is a screenshot of the network 
analysis stage. The application can be accessed via https://ipb.link/vektorpedia. 

  
(a) (b) 

Fig. 21 (a) Graph visualization stage in application; (b) Network analysis stage in application 

V. DISCUSSION 

Identifying insect vectors is crucial for breaking transmission and mitigating the negative impact on agricultural 
production. However direct insect vector identification in the field poses several challenges. Our study provides some 
alternative approaches to identify insect vectors indirectly by analysing a big biodiversity interaction data provided by 
GloBI [16]. This idea led to the development of an insect vector search engine system named “Vektorpedia”. By 
implementing network analysis and taxonomy analysis, Vektorpedia effectively aids in finding insect vectors of some 
viruses and provides the useful information such as the natural enemies of the insect vector, the other varian and 
species of the insect vector, etc. This is an important step towards increasing agricultural productivity and 
sustainability. This stage of research drew inspiration from a previous study, as mentioned in reference [43]. However, 
a notable distinction lies in the objective that [43] primarily centered around COVID-19 information, whereas our 
investigation was specifically oriented towards insect vectors. 
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For comparison, there is another study [44] that also uses analytical data for studies on insect-plant-virus 
interactions, but this research uses proteomic techniques. However, research on proteomic techniques has several gaps 
that can be covered by our research. Proteomic techniques used in this study may not capture the full complexity of 
the interactions, as they primarily focus on protein identification and quantification. This may not immediately provide 
detailed information about the natural enemies of insect vectors. Since our study uses a biotic interaction approach, 
obtaining information about natural enemies becomes more straightforward. In addition, the simple interaction 
analysis offers increased accessibility and cost-effectiveness, eliminating the need for specialized equipment or 
expertise in data collection and management. Furthermore, simple interaction analysis saves more time when 
compared to traditional or direct insect vector identification [8, 9]. Which requires preparation before entering the 
field and also requires special tools and skills. 

However, our study also has several limitations. It is limited by the availability of data on GloBI. Some virus 
interaction data may not yet be available. In addition, an understanding of the common virus names is required to 
access and understand the results. Apart from that, some actual insect vectors are not successfully sorted in the first 
place. Some actual vector insects are actually in the first to fifth place in order by final score. This is because the 
taxonomy analysis does not differ significantly in distance for insects in the same family. Due to the dynamic 
arrangement of the insect vectors, multiple experiments in the range of predicted insects were conducted. Instead of 
using one insect as predicted insect, we immediately obtained good precision values in the third, fifth, and tenth 
prediction ranges of predicted insects. It was discovered that raising the prediction range would also raise the precision. 
It means that the actual vector is actually obtained, but it's just a matter of ordering. The testing results show that our 
analysis approach has a precision value of 0.78 in third prediction range, 0.80 in fifth prediction range, and 0.88 in 
tenth prediction range. Additionally, even though they are not actual insects, the insects that frequently change their 
arrangement still belong to the same family, so they still have the potential to be vectors; it's just a matter of the test 
assessment, which needs to be compared to actual insects. 

For future work, we recommend trying to use RDF data and perform analysis directly via SPARQL queries rather 
than our data acquisition step, which requires data conversion and analysis, which may require more execution time. 
This is also related to the [44] study, which states that querying graph data is faster than tabular relational data. Apart 
from that, we also recommend conducting research to uncover more information on taxonomic association patterns of 
insects and viruses and documenting them into knowledge graphs or ontologies. 

VI. CONCLUSIONS 

In conclusion, our study introduces the "Vektorpedia" insect vector search engine, utilizing biodiversity interaction 
data from GloBI. Through network and taxonomy analyses, Vektorpedia offers an indirect yet effective approach to 
identify insect vectors, providing valuable insights into natural enemies, insect variations, and species. This innovative 
method proves to be accessible, cost-effective, and time-efficient compared to traditional techniques. Despite 
limitations in data availability and taxonomy analysis, our precision values demonstrate the reliability of our approach. 
For future research, we propose exploring RDF data and SPARQL queries for direct analysis, aiming to enhance 
efficiency. Additionally, further investigation into taxonomic association patterns between insects and viruses can 
contribute to knowledge graphs or ontologies, advancing our understanding of these crucial interactions. 
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