
Journal of 
Information Systems Engineering 
and Business Intelligence 

Vol.10, No.2, June 2024 
Available online at: http://e-journal.unair.ac.id/index.php/JISEBI 

ISSN 2443-2555 (online) 2598-6333 (print) © 2024 The Authors. Published by Universitas Airlangga.  
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/) 

doi: http://dx.doi.org/10.20473/jisebi.10.2.290-301 

Comparison of Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO) for Estimating the Susceptible-Exposed-
Infected-Recovered (SEIR) Model Parameter Values 
Aminatus Sa’adah 1)*  , Ayomi Sasmito 2) , Asysta Amalia Pasaribu 3) 

1)Informatics Engineering, Faculty of Infomatics, Institut Teknologi Telkom Purwokerto, Banyumas, Indonesia  
1)aminatus@ittelkom-pwt.ac.id 

 
2)Business Mathematics, School of STEM, Universitas Prasetiya Mulya, Tangerang, Indonesia 
2)ayomi.sasmito@pmbs.ac.id 

 
3)Statistic, School of Computer Science, Universitas Bina Nusantara, Jakarta, Indonesia 
3)asysta.amalia@binus.ac.id 

 
Abstract  

 
Background: The most commonly used mathematical model for analyzing disease spread is the Susceptible-Exposed-Infected-
Recovered (SEIR) model. Moreover, the dynamics of the SEIR model depend on several factors, such as the parameter values.  

Objective: This study aimed to compare two optimization methods, namely genetic algorithm (GA) and particle swarm 
optimization (PSO), in estimating the SEIR model parameter values, such as the infection, transition, recovery, and death rates. 
Methods: GA and PSO algorithms were compared to estimate parameter values of the SEIR model. The fitness value was 
calculated from the error between the actual data of cumulative positive COVID-19 cases and the numerical data of cases from 
the solution of the SEIR COVID-19 model. Furthermore, the numerical solution of the COVID-19 model was calculated using 
the fourth-order Runge-Kutta algorithm (RK-4), while the actual data were obtained from the cumulative dataset of positive 
COVID-19 cases in the province of Jakarta, Indonesia. Two datasets were then used to compare the success of each algorithm, 
namely, Dataset 1, representing the initial interval for the spread of COVID-19, and Dataset 2, representing an interval where 
there was a high increase in COVID-19 cases. 
Results: Four parameters were estimated, namely the infection rate, transition rate, recovery rate, and death rate, due to disease. 
In Dataset 1, the smallest error of GA method, namely 8.9%, occurred when the value of ������� = 0.5, while the numerical 
error of PSO was 7.5%. In Dataset 2, the smallest error of GA method, namely 31.21%, occurred when ������� = 0.5, while 
the numerical error of PSO was 3.46%. 
Conclusion: Based on the parameter estimation results for Datasets 1 and 2, PSO had better fitting results than GA. This showed 
PSO was more robust to the provided datasets and could better adapt to the trends of the COVID-19 epidemic. 
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I. INTRODUCTION  

Mathematical models are valuable tools for studying and exploring the dynamics of real-world problems, such as 
the spread of infectious diseases. In this context, the most commonly used mathematical model for this purpose is the 
Susceptible-Exposed-Infected-Recovered (SEIR) model [1], [2], [3]. This model was first developed by Kermark and 
McKendrick in 1927, and it describes the spread of infectious diseases through four compartments. Moreover, the 
model has evolved to describe the dynamics of various diseases, including COVID-19 (Coronavirus Disease 2019) 
[4], dengue [5], cancer [6], diphtheria [7], and tuberculosis [8]. The SEIR COVID-19 model used in most disease 
spread modeling is a physiological model developed based on assumptions and simplifications of the spread in actual 
conditions. 

Accurate data are important for obtaining model parameters that can effectively describe the dynamics of a disease 
[9]. These data can be used to estimate parameter values within the model using viable approaches like genetic 
algorithm (GA) [10], [11] and particle swarm optimization (PSO) [12][13]. GA is an optimization and search method 
based on genetics and natural selection principles [14], [15], [16]. Meanwhile, PSO is based on the behavior of flocks 
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of birds and schools of fish. It optimizes by finding the optimum solution based on the position and speed of the 
particles, influenced by the position of the group (swarm) [12]. Several studies have used both methods to estimate 
the parameters of epidemic mathematical model. GA has been specifically used to find optimal parameters, ensuring 
that the model accurately represents the dynamics of COVID-19 based on available data from different countries [10], 
[11], [17], [18], with PSO serving the same purpose [19][20]. PSO has also been used to estimate parameters in Lotka-
Volterra model based on annual profits from commercial and rural banks [21]. According to [22], GA was used to 
estimate parameters in dengue model using weekly dengue case data in Indonesia. 

Analyzing the dynamics of the model is crucial for developing effective disease control strategies. The dynamics 
depend on several factors, with one of the most essential being the value of the model parameters [23]. Parameter 
values that are specific to a location or certain time interval can provide a detailed understanding of disease patterns 
in a specific area or time. The dynamical analysis of the model in [24] and [25] has not been optimized in terms of 
parameter. In this context, the parameter values are obtained from assumptions or references from other studies, and 
not from precise fitting or parameter estimation. This lack of specificity can lead to less accurate disease control 
strategies when applied in a specific location [26]. Therefore, identifying the best algorithm for estimating the SEIR 
model parameter is crucial for improving analysis results. 

The current study provided a comprehensive explanation of the procedural steps in using GA and PSO for parameter 
estimation of the SEIR COVID-19 model, as well as focused on comparing the result in different dataset. Exploring 
different datasets can facilitate deeper understanding of the health requirements of the local population. COVID-19 
has varying behavior in different regions, and insights gained from this study can inform healthcare policies and 
strategies. Furthermore, access to detailed COVID-19 data from certain region improves the precision and reliability 
of results. Both GA and PSO were used to explain the procedural steps for estimating key parameters within the model. 
COVID-19 dataset was fitted to the model, which was solved numerically using Runge-Kutta, a popular and effective 
method for solving nonlinear ordinary differential equations. The four critical parameters estimated are infection rate 
(�), transition rate (�), recovery rate (�), and mortality rate attributed to the disease (��). The resulting parameter 
values were validated against the developed model to ensure accuracy and applicability. 

II. METHODS 

This section described the development of the SEIR mathematical model and parameter estimation using GA and 
PSO based on the cumulative cases of COVID-19 in DKI Jakarta. Four parameters of the model were estimated, 
namely infection rate (�), transition rate (�), recovery rate (�), and death rate (��). The values of other parameters 
are provided in Table 2. Meanwhile, the solution for the model was obtained using the fourth-order Runge-Kutta 
algorithm (RK-4) with the help of the ode45 solver in MATLAB. The stability and convergence of RK-4 algorithm 
are discussed in [27]. A summary of the study flow is provided in Fig. 1. 
 

 
 

Fig. 1 Research method diagram 

A. Dataset  

This study used two datasets, representing the cumulative number of positive COVID-19 cases. The data were 
publicly accessible on the website https://corona.jakarta.go.id/id, which provided daily updates on COVID-19 cases 
in Indonesia, including the number of recoveries, deaths, and exposures. Two different datasets were used, namely 
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Dataset 1, covering cumulative cases from April 1st to August 31st, 2020, and Dataset 2, spanning from March 23rd to 
July 31st, 2021. Dataset 1 represents the initial outbreak of the first variant of the coronavirus, while Dataset 2 
represents the period with the highest peak of the second variant. Brief descriptions of the datasets are presented in 
Tables 1 and 2. Cumulative data of positive cases were chosen over active case data as cumulative data tended to have 
less volatility, facilitating the identification of patterns. 

TABLE 1 
DATASET 1 

Date  The number of cumulative COVID-19 cases (People) 

01/04/2020 816 
02/04/2020 909 
03/04/2020 990 
04/04/2020 1071 
05/04/2020 1151 

⋮        ⋮ 
31/08/2020 40309 

TABLE 2 
DATASET 2 

Date  The number of cumulative COVID-19 cases (People) 

23/03/2021 372871 
24/03/2021 373761 
25/03/2021 375487 
26/03/2021 376868 
27/03/2021 378222 

⋮      ⋮  
31/07/2021 814635 

B. The SEIR Mathematical Model 

The model categorized human population into four compartments, namely susceptible (�), exposed (�), infected 
(�), and recovered (�) [8]. The susceptible compartment increased at the recruitment rate � and decreased at the natural 
death rate ��. Susceptible individuals became exposed at an infection rate ���/�. The exposed compartment 
transitioned to the infected compartment at a recovery rate ��. The exposed and recovered compartments decreased 
due to natural death at �� and ��, rates respectively. Similarly, the infected individuals could die at a rate of ���. The 
transmission diagram of the model is presented in Fig. 2. Based on this explanation, mathematical model was 
formulated as follows: 

��

��
= Λ −

���

�
− ��,  

��

��
=

���

�
− �� − ��,  

��

��
= �� − �� − ���,  

��

��
= �� − ��.                                        (1) 

where �(�), �(�), �(�), �(�) ≥ 0, for each � ≥ 0. Compartment descriptions and parameters are presented in Tables 3 
and 4. 
 

 
Fig. 2 Transmission diagram of the SEIR model 

TABLE 3 
MODEL COMPARTMENTS DESCRIPTION 

Notation Description Unit  

�(�) The number of susceptible individuals at time � People 
�(�) The number of exposed individuals at time � People 
�(�) The number of infected individuals at time � People 
�(�) The number of recovered individuals at time � People 
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TABLE 4 
MODEL PARAMETERS DESCRIPTION 

Notation Description Value  Unit  

Λ Recruitment rate 
�

���×��.�
  People×day-1 

� Infection rate Estimated  Day-1 
� Transition rate Estimated Day-1 
� Recovery rate Estimated Day-1 

� Natural death rate 
�

���×��.�
  Day-1 

�� Death rate due to disease Estimated  Day-1 

C. Genetic Algorithm 

GA was first introduced by Haupt and Haupt in 1975 [28]. It comprises four key components, namely chromosome 
population (individual), parent selection based on fitness value, crossover to produce offspring and random mutation. 
Pair selection entails choosing two chromosomes from a collection of prospective parent individuals to produce two 
new individuals (offspring). Crossing over is the formation of one or two new individuals (offspring) from the selected 
parent individuals. Finally, mutation entails changing one or several individuals in the population with new individuals 
[29]. The pseudocode of GA for estimating the SEIR model parameters is presented in Table 5. 
 
Algorithm 1 
Genetic Algorithm  

Initialize parameters: 
����, ����, ����, �����, �������, �, �  
 
Generate initial population: 

for each chromosome in population: 
    initialize genes with �(0, 1) 
    transform genes to interval [�, �] 
Repeat for ngen generations: 
    Calculate the SEIR model using Runge-Kutta method 
    Select parents: 

    �_������ =  �����(���� ∗ �����) 
    Create rank order 
    Calculate cumulative probability matrix 

    Evaluate fitness value for each chromosome: 
    for each chromosome in population: 
        Calculate RMSE using actual and numerical data 

    Create pairs of parent individuals: 
    for each pair of parents: 
        Apply linear combination crossover to create two children 

    Apply elitism by preserving best chromosome 
    Apply mutation to selected chromosomes: 

    for each chromosome with mutation: 
        Replace selected genes with random values 

    Create new population by combining elitism and mutated chromosomes 
    Select chromosome with smallest fitness value 
    Check termination condition (reach ���� iterations) 
    when termination condition is met: 
        Display the solution 
End loop 

 
The first step in using GA for parameter estimation is the initialization of parameters for both GA and the SEIR 

model. The parameter values for GA include population size (����), number of genes/individuals/chromosomes 
(����), number of generations or iterations (����), probability of crossing over (�����), and probability of mutation 
(�������). Meanwhile, the parameter values include Λ, ��, �(0), �(0), �(0), �(0). A random population of 
chromosomes was generated using normal distribution with a mean of zero and a variance of one, �(0,1), order 
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(���� × ����). These values were subsequently transformed into lower and upper bound intervals (�, �) using the 
formula: 

������ = � + (� − �) × ����(0,1)                   (2) 
The chromosomes formed at this stage served as the initial population. 

The second step was parent selection, where several chromosomes in the population were selected to become 
subpopulations of parent individuals. The number of parent individuals that survived to become a subpopulation was 
determined by the formula: 

�_������ = �����(���� × �����).                   (3) 

Create a rank order from ������ℎ�� to ��� and count ���������� ���� =
�_������×(�����������)

�
. Create an 

ordered cumulative probability matrix (������ℎ�� × 1) with the ���-element as: 

�������(�) =
∑ ����(�)�

���

���������� ����
 ,                      

 (4) 

where ����(�) = �_������ + 1 − �. The value 
����(�)

���������� ����
 states the probability of the ranked individual being 

selected as a parent. 
The fitness value (objective function) for each chromosome in the population was subsequently evaluated. In the 

SEIR model (1), the cumulative positive cases of COVID-19 are the sum of infected, recovered, and deceased 
individuals. Therefore, new compartments were defined, namely death (�) and cumulative (�), where  

�(�) = �(�) + �(�) + �(�)                       
 (5) 

��

��
= ���                              

 (6) 
��

��
=

��

��
+

��

��
+

��

��
= �� − ��                      

 (7) 
The fitness value for this parameter estimation was calculated using Mean Absolute Percentage Error (MAPE) in 

the following equation: 

� =
�

�
∑ �

��
∗���

��
∗ ��

��� ,                             (8) 

�(�) = �(�),                             
 (9) 

where �� represents the cumulative actual data of positive COVID-19 cases on day-� and ��
∗ represents the numerical 

data of the cumulative ode45 positive cases of COVID-19 on day-� . The numerical value of �(�) was calculated 
using RK-4 method with the ode45 solver package in MATLAB software. 

The third step is cross over, which entails the formation of one or two new individuals (offspring) from the selected 
parent individuals. It started with the selection of several pairs from the subpopulation of parent individuals. Crossing 
over was conducted on these pairs to produce new offspring. These offspring were subsequently added to the 
chromosome population. The cross over method used in this study was a linear combination, requiring a random 
number � with 0 < � < 1. Two offspring can be obtained using the linear combination of parent individuals with the 
following formula: 

� = �� + (1 − �)�,                            (10) 
� = (1 − �)� + ��.                             (11) 

The fourth step is elitism, which aims to separate the chromosome with the best fitness value, ensuring it does not 
experience mutations. The fifth step is mutation, where several chromosomes were randomly mutated by replacing 
selected genes with random values. This stage explored the solution space to obtain the most optimal solution. Six 
different mutation rates were used in this study, namely 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 [5]. Subsequently, seven 
experiments were conducted for each value of ������� and the parameter model value with the smallest error was 
selected for each �������. Seven experiments were conducted for each �������, and the parameter model value 
with the smallest error was selected for each rate. The final step is the formation of a new population by combining 
the chromosomes resulting from elitism and those from the mutation process. The chromosome with the smallest 
fitness value was chosen, and the iteration continued until the stopping criteria was met, namely maximum iteration. 
 

D. Particle Swarm Optimization 

PSO explanation is based on [30] and [31]. The algorithm is a computational technique that addresses optimization 
issues using a meta-heuristic approach. Inspired by the collective behaviour of natural phenomena such as flocks of 
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birds or schools of fish, this method was first developed by Kennedy and Eberhart in 1995. In PSO, each particle or 
agent represents the coordinates of different points within the solution space during each iteration. The algorithm can 
thoroughly explore the entire functional landscape and identify both local and global solutions. The specific outcome, 
whether local or global, depends on the design of the solution and the available computational resources. In the current 
study, PSO was used to estimate parameter values in the model for the spread of COVID-19 based on cumulative data 
of positive COVID-19 cases in DKI Jakarta. The optimal solution is the one that best fits the system of differential 
equations (the SEIR model) to the COVID-19 dataset and the given initial values. 

A swarm is defined as follows:  
����� = {��, ��, … , ��|�� ∈ (��, ��, … , ��)}                    (12) 

where �� are the particles that make up the swarm in the interval range limited by ��, ��, … , ��. These particles move 
to find solution parameters that minimize the objective function. The objective function in PSO is the same as in GA, 
using equation (8). The objective function was first calculated for each particle, and subsequently compared across all 
particles to identify the best solution, becoming the swarm’s guide. This process repeats until the stopping criteria are 
met. 

Next, each particle moves toward the best solution with speed ��. The velocity vector for each particle was 
calculated using the following equation (13): 

��(� + 1) = ����(�) + ����
� ���

�����
− ��(�)� + ����

�������� − ��(�)�.             (14) 

The velocity vector comprises three distinct components, namely an inertial component denoted as ��, responsible 
for preserving the particle's forward motion; a learning component denoted as ��, incorporating a random term ��

� to 

guide the particle toward its personal best position ��
�����

; and a global learning component denoted as ��, 

incorporating a random term ��
� to guide the particle toward the best solution discovered by the whole group, denoted 

as ������. The velocity vector dynamically adjusted the collective velocity of the swarm. Once the speed vector has 
been computed, the subsequent procedure is to update the position of each particle, denoted as ��, based on the 
corresponding speeds. This update was conducted using the following formula: 

��(� + 1) = ��(�) + ��(� + 1).                        (15) 

Algorithm 2  
Particle Swarm Optimization (PSO)  

Input: ���������, �����, �, ��, ��, ��, �� 
Output: ������, � 
Random initialization of population 
for each � (� ∈ �����) do, 

 for each � �� ∈ ����� do, 

  for each � (� ∈ �) do, 
   velocity update by Eq (14) 
   position update by Eq (15) 
  end 

  fitness evaluation ��(��) = �(��)� 

  If ����(� + 1)� < � ���
�����(�)� then, 

   ��
�����(�) = ��(� + 1) 

  end 

  If � ���
�����(�)� < �(������) then, 

   ������ = ��
�����(�) 

  end 
 end 
end 

E. Evaluation 

MAPE was used to evaluate the parameter value estimation results of the SEIR model from GA and PSO algorithms. 
In the model (1), the cumulative positive cases of COVID-19 are the sum of infected, recovered, and deceased 
individuals. Therefore, new compartments were defined, namely death (�) and cumulative (�), where  

�(�) = �(�) + �(�) + �(�)                       (10) 
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��

��
= ���                              (11) 

��

��
=

��

��
+

��

��
+

��

��
= �� − ��                      (12) 

The fitness value for this parameter estimation was calculated using MAPE, as shown in the following equation: 

� =
�

�
∑ �

��
∗���

��
∗ ��

��� × 100%,                        (13) 

�(�) = �(�),                              (14) 
where �� represents the cumulative actual data of positive cases of COVID-19 on day-� and ��

∗ represents the numerical 
data of the cumulative ode45 positive cases of COVID-19 on day-� . The numerical value of �(�) was calculated 
using RK-4 method with the ode45 solver package in MATLAB software, using parameters estimated by GA and 
PSO. The stability and convergence of RK-4 algorithm are detailed in [30]. Both algorithms can be compared to 
determine which is more effective for parameter estimation under different conditions or data quality. 

III. RESULTS 

In this section, GA and PSO were compared to estimate the parameter values in the COVID-19 model (�, �, �, and 
��) for cases in DKI Jakarta, Indonesia. First, GA and PSO were implemented on Dataset 1, with the best estimated 
parameter values given in Table 5. Based on Table 5, the smallest error for GA method, namely 8.90%, occurred when 
the value of ������� = 0.1, while the numerical error of PSO was 7.5%. The best parameter values for the estimation 
results from GA and PSO are presented in Table 6. In Dataset 1, the estimation value of infection rate (�) was 0.0425, 
transition rate (�) was 0.1123, recovery rate (�) was 0.0089, and death rate (��) was 0.0123. Furthermore, the model 
and Dataset 1 were validated using the model in system (1). Figure 3a shows the comparison between the model and 
Dataset 1. This graphic explains the general trend of under-predicting cases and over-predicting casualties over time. 
During the observation time interval, PSO provided better-fitting results than GA. For the first 120 days of 
observations, PSO performed excellently, and even in the last 30 days of observation, PSO still outperformed GA. 

TABLE 5 
BEST PARAMETER VALUE FOR DATASET 1 USING PARTICLE SWARM OPTIMIZATION (PSO) AND GENETIC ALGORITHM (GA) 

Algorithm  � � � �� Error 

GA (mutrate = 0.05) 0.3447 0.5366 0.0571 0.2706 10.11% 
GA (mutrate = 0.1) 0.1908 0.5028 0.0268 0.1431 8.90% 
GA (mutrate = 0.2) 0.3490 0.9482 0.0397 0.2936 10.74% 
GA (mutrate = 0.3) 0.3690 0.3157 0.0686 0.2742 9.88% 
GA (mutrate = 0.4) 0.4857 0.3573 0.0822 0.3766 10.31% 
GA (mutrate = 0.5) 0.4042 0.6919 0.0351 0.3444 9.75% 
PSO 0.0425 0.1123 0.0089 0.0123 7.50% 

TABLE 6 
ESTIMATION PARAMETER VALUE FOR DATASET 1 

Parameter  Value (GA) Value (PSO) 

� 0.1908 0.0425 
� 0.5028 0.1123 
� 0.0268 0.0089 

�� 0.1431 0.0123 

 
Second, GA and PSO were implemented on Dataset 2, with the best estimated parameter values presented in Table 

7. Based on Table 7, the smallest error for GA method, namely 31.21%, occurred when the value of ������� = 0.5, 
while the numerical error of PSO was 3.46%. The best parameter values for the estimation results from GA and PSO 
are presented in Table 8. In Dataset 2, the estimation value of infection rate (�) was 0.4987, transition rate (�) was 
0.0132, recovery rate (�) was 0.0541, and death rate (��) was 0.0535. Furthermore, the model and Dataset 2 were 
validated using the SEIR model in system (1). Figure 3b shows the comparison between the model and Dataset 2. This 
graphic explains the general trend of under-predicting cases and over-predicting casualties over time. In Figure 3b, 
PSO produced superior fitting results than GA, despite neither algorithm being able to achieve a fit almost identical 
to Dataset 2. 
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TABLE 7 
BEST PARAMETER VALUE FOR DATASET 2 USING PARTICLE SWARM OPTIMIZATION (PSO) AND GENETIC ALGORITHM (GA) 

Algorithm  � � � �� Error 

GA (mutrate = 0.05) 0.3215 0.2008 0.1123 0.1672 31.79% 
GA (mutrate = 0.1) 0.3534 0.2125 0.0967 0.2112 31.92% 
GA (mutrate = 0.2) 0.1868 0.0623 0.0485 0.0764 31.58% 
GA (mutrate = 0.3) 0.2980 0.1960 0.1359 0.1232 31.77% 
GA (mutrate = 0.4) 0.1630 0.1052 0.0567 0.0747 31.27% 
GA (mutrate = 0.5) 0.1929 0.1209 0.0485 0.1095 31.21% 
PSO 0.4987 0.0132 0.0541 0.0535 3.46% 

TABLE 8 
ESTIMATION PARAMETER VALUE FOR DATASET 2 

Parameter  Value (GA) Value (PSO) 

� 0.1929 0.4987 
� 0.1209 0.0132 
� 0.0485 0.0541 

�� 0.1095 0.0535 

 

  
(a)                          (b) 

 
Fig. 3 The validation of (a) Dataset 1 and (b) Dataset 2 with model using PSO and GA  

IV. DISCUSSION 

Optimized parameters can provide an accurate picture of the rate of disease spread in a population. In Dataset 1, 
representing the initial interval for the spread of COVID-19, the parameters estimated using PSO method provided 
smaller numerical error values than GA. However, the difference in error values needed further investigation. The 
second parameter results from PSO and GA accurately followed the dataset trend. Even at certain early time points, 
the validation graphs for both methods had the same value. This differed from the results obtained by [10], using 
weighted fitness by including the element ��(�) in the objective function. The current study showed that the model 
and data agreed well over the last 30 days, likely because the fitness function weighed more heavily on recent data by 
design. In Dataset 2, where there was a high increase in cases, the numerical error results from PSO method provided 
much better fitting results than GA. This showed PSO was more robust to the dataset and could better adapt to the 
trends of the COVID-19 epidemic. 

The SEIR COVID-19 model used in most disease spread modeling is not typically based on data but a physiological 
model built on assumptions and simplifications of actual disease spread conditions. When no dataset is available to 
obtain parameter values, model analysis can still be carried out using assumed parameter values sourced from medical 
literature. However, when there is a dataset related to the number of infected individuals, the model parameter values 
can be estimated based on that dataset. The estimated parameter values depend on the dataset used, and each dataset 
(varying by time or location) can produce different estimated parameter values. This approach provides a specific 
picture regarding the rate of disease spread in the location and time from which the dataset originates. 
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The parameter values estimated from the two datasets were subsequently interpreted. Dataset 1 represented the 
period of the initial outbreak of the first coronavirus variant, while Dataset 2 represented the period of the highest 
peak of the second variant. The COVID-19 infection rate from Dataset 1 was 0.0425, while 0.4987 was obtained for 
Dataset 2. Also, the COVID-19 recovery rate value from Dataset 1 was 0.0089, while 0.0541 was obtained for Dataset 
2. This showed the spread rate of the second coronavirus variant was eleven times higher compared to the first 
coronavirus variant. However, the fast spread was offset by a recovery rate for the second variant that was 
approximately six times faster compared to the first variant. This showed that while the second variant spread, it also 
had a higher chance of recovery. Conversely, the first variant spread more slowly but had a lower chance of recovery. 
This information was crucial for informing policies related to treatment types and disease control strategies. 

A similar estimation of COVID-19 model parameters using GA was carried out by [10], using datasets from early 
March to May 2020 in six cities, namely Washington DC, GA, Michigan, New York, PA, and VA. The current study 
produced estimated recovery rate values of 0.18, 0.13, 0.10, 0.10, 0.11, and 0.20, respectively. Averaging these values 
produced a recovery rate of 0.13, varying significantly from the estimation results of this study for a similar time 
interval (Dataset 1), namely 0.0089. However, compared to the results from [17], which also used a dataset of COVID-
19 cases in Indonesia for the same interval as Dataset 1, the estimated recovery rate was 0.0083. This value 
corresponded with the results of the current study, showing COVID-19 spread differently in each location. The 
variance could be influenced by several factors, such as weather, genetics, and social behavior. 

In the GA scheme, as presented in Tables 5 and 7, there was no correlation between the ������� value and the 
resulting error value. In terms of computation time, PSO required less time than GA. In the GA scheme, the algorithm 
needed to be run several times for different ������� values or varying ����, ����, and ������� ��������� values 
to achieve the best results. For instance, selecting five different ������� and running ea�ℎ seven times, necessitated 
running the algorithm 35 times to achieve the best result. Meanwhile, with PSO, it was crucial to vary the ����, ����, 
or ������� ��������� values. In the current study, PSO provided better results than GA. According to [17], the 
parameters of COVID-19 SEIR model were estimated using GA algorithm. The study also used a dataset from the 
spread of COVID-19 in Indonesia during the initial period of cases, from April 15 to August 24, 2020. The lowest 
error value obtained was 13.17% when the ������� =  0.125. At the same time interval, represented by Dataset 1, 
better results were obtained, with a smallest error of 8.9% when ������� = 0.1. The best ������� value obtained 
was smaller compared to that in [17], with PSO algorithm producing the smallest error, around 7.50%. 

The challenge of the current study was that both PSO and GA failed to estimate the model parameter values in 
Dataset 2 accurately. For datasets with exponential data trends, like in Dataset 1, PSO provided excellent estimation 
results with relatively minimal errors. On the other hand, GA required many trials to find the mutation rate with the 
least error. The study compared GA and PSO algorithms to estimate the SEIR model parameter values at different 
time intervals. Future studies could expand this by including data on the spread of COVID-19 from several regions or 
by using other estimation methods. 

The model had been widely applied, especially for COVID-19 cases, in various countries like China [11], [32], 
Bangladesh [33], Sri Lanka [34], the United States [35], France [36], and England [37]. While each country had unique 
characteristics like culture, population and certain events, the model generally provided satisfactory estimates. This 
was also confirmed by the current study, focusing on datasets from Indonesia, especially in Jakarta. To gain a deeper 
understanding of the model results, it was crucial to consider specific local characteristics. For example, social 
distancing and cloth face coverings effectively reduced the spread of the virus [35], overcrowded population increased 
susceptibility rates [33], and the current study examined the impact of the first variant's outbreak and the peak of the 
second variant of COVID19 in Jakarta. This approach allowed for comparisons of epidemics and the extent of 
prevention and control in various locations at different times [11]. 

Studies have also explored various methods to improve the SEIR model, such as using cluster analysis [32], hybrid 
modeling [38], generic algorithms [10], [11], multiple regression [33], and machine learning [39]. Improvements could 
be made by applying Artificial Intelligence and Deep Learning to improve prediction results [40], [41]. Besides the 
algorithmic perspective, future studies could explore integrating online news data [42], [43] to gain insights from a 
phenomenon point of view and incorporating sentiment analysis [44]. Another valuable approach was to analyze data 
from a system dynamic perspective [45]. 

V. CONCLUSIONS 

In conclusion, GA and PSO were used to estimate parameter values in COVID-19 model using a dataset of 
cumulative positive COVID-19 cases. The fitness value was calculated from the error between the actual data of 
cumulative positive COVID-19 cases and the numerical solution of the SEIR COVID-19 model using MAPE formula. 
Based on estimation results, PSO provided better fitting results than GA, with smaller error and minimum 
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computational time. Furthermore, PSO fit the model better when the dataset had exponential trends without 
fluctuations or periodicals. Using the parameter values obtained from the cumulative COVID-19 case dataset, 
numerical simulation could be performed to study the dynamics of the disease spread in a population, facilitating 
policy-making for disease control. For future studies, incorporating a dataset representing the susceptible and exposed 
compartments could help obtain parameter values that better describe the spread of the disease. 
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