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Abstract  
 
Background: Some construction workers are often in a situation where injuries can occur from negligence in the use of safety 
helmets. To avoid this, supervision of the use of safety helmets should be conducted continuously during the work process 
through the application of computer vision technology. However, the complex background of the construction environment is a 
challenge to detecting small and densely packed safety helmets accurately. 
Objective: The construction environment is complex, and the wide workspace allows workers to be in an area far from 
supervision. The process makes it difficult for models to detect the use of safety helmets in complex, wide, and very high object 
density construction environments. Therefore, this study aims to overcome the problem by modifying YOLOv5s (You Only 
Look Once version 5) architecture. 
Methods: Real-time monitoring of the use of safety helmets could be performed using YOLOv5. This study proposed a modified 
YOLOv5s model called CBTi-YOLOv5s. The model incorporated Convolutional Block Attention Module (CBAM), 
Transformer, and Bi-directional Feature Pyramid Network (BiFPN) to improve feature extraction, multi-scale object 
representation, as well as detection accuracy, specifically on small and high-density objects in complex construction 
environments. 
Results: The results showed the modified YOLOv5s architecture had made an improvement of 3.7% in mean average precision 
(mAP) compared to the base YOLOv5s model. mAP of the base YOLOv5s model was 93.6%, while the modified CBTi-
YOLOv5s model achieved 97.3%. The proposed modified YOLOv5s model also achieved an inference speed of 58 frames per 
second (FPS), and the base model achieved 104 FPS. 
Conclusion: CBTi-YOLOv5s improved the accuracy, mAP, and ability to detect objects of varying scales. However, this 
improvement had drawbacks, namely increased model size and decreased inferential speed due to increased model architectural 
complexity.. 
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I. INTRODUCTION  

Occupational safety and health (OHS) is crucial in forming safe working environments and is essential in 
preventing both physical as well as mental health issues on the job [1]. A major aspect of OHS is ensuring the proper 
use of personal protective equipment (PPE), specifically safety helmets, which are crucial in protecting workers from 
head injuries caused by falling or flying objects. In Indonesia, it is reported that around 60% of workplace head injuries 
happen because workers are not wearing safety helmets [2], showing the need for better safety measures. A promising 
solution to this problem is vision-based detection systems, which can automatically monitor helmet use and help 
prevent accidents as well as fatalities at work 

Among the various methods for monitoring PPE, vision-based methods are often favored because the tools are 
flexible and non-intrusive, different from sensor-based systems that can be more burdensome [3]. To be effective, 
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these systems need to detect objects quickly and accurately in real-time, specifically in the complex, ever-changing 
environments typical of construction sites. 

Earlier solutions have applied a combination of deep learning and traditional machine learning, such as using 
FaceNet for feature extraction and Support Vector Machines (SVM) for PPE detection [4]. As these methods can be 
quite accurate, the tools tend to comprise multiple stages, which slows down processing and makes the models less 
ideal for real-time use. Relating to this discussion, fully deep learning-based models have surfaced to overcome this 
limitation. An example is PerspectiveNet, which leverages EfficientNet v2 as its backbone and is optimized for use 
on embedded systems [5]. However, these models can struggle in cluttered scenes or when trying to detect small 
objects [6], which are common challenges in real-world construction settings. 

Single-stage object detection models, particularly You Only Look Once (YOLO) family, have advantages 
including fast inference speeds and solid accuracy. For instance, an improved version of YOLOv4 (YOLO version 4) 
has reached a mean average precision (mAP) of 91.03% for detecting safety helmets in aerial images [7]. To handle 
the limited computing power, YOLO-PL is developed. YOLO-PL is a lightweight variant of YOLOv4, which 
improved the detection speed on constrained resource systems [8].  

Numerous models are developed with an inherent drawback despite the strengths, prioritizing speed or accuracy. 
Consequently, the models often underperform in real-world applications consisting of small, overlapping, or densely 
clustered objects, particularly in complex environments such as construction sites. 

YOLO architecture has tremendous advancements, and YOLOv5 (YOLO version 5) marked a turning point, 
offering several model variants modified to different devices as well as performance needs [9], [10], [11], [12], [13], 
[14]. Irrespective of its widespread use, YOLOv5 base models still have some significant drawbacks, including 
struggles with multi-scale object detection, specifically in crowded or complex scenes. The lightweight versions 
advance the computational speed but sacrifice feature richness, which can affect detection accuracy [13], [14].  

The studies have relied on base YOLOv5 models for safety helmet detection tasks [3], without any architectural 
improvements to tackle these limitations. Similarly, earlier models such as YOLOv4 and YOLO-PL lack features 
including attention mechanisms or advanced multi-scale feature fusion, both of which are increasingly recognized for 
improving detection robustness in real-world applications. 

This study introduces an improved version of YOLOv5s by incorporating three major architectural modules to 
address the limitations. First, Convolutional Block Attention Module (CBAM) is incorporated to refine spatial and 
channel-wise feature representation. Second, a Transformer encoder is added to improve global feature extraction and 
positional awareness to handle dense object scenarios. Third, Bi-directional Feature Pyramid Network (BiFPN) is 
used to strengthen multi-scale feature fusion. These components aim to produce a lightweight, accurate, and real-time 
object detection model, optimized for monitoring safety helmet usage in construction environments. 

The structure used during the process of this study is as follows. Section II reviews related work and background 
studies, Section III describes the proposed model architecture, and Section IV explains the experimental setup and 
presents evaluation results. In addition, Section V discusses the results, and Section VI concludes the study. 

II. LITERATURE  REVIEW  

Helmet is a crucial part of PPE for construction workers, providing essential protection against potentially life-
threatening head injuries. However, many workers frequently fail to wear helmets consistently, which significantly 
increases the risk. Object detection technologies have surfaced as a promising solution for automatically monitoring 
helmet use, enabling real-time surveillance to help create safer work environments. Deploying the systems is 
challenging as the implementation in construction sites requires both accuracy and the efficient computational 
performance of detection methods, making the models practical for real-world, real-time applications. 

A hybrid method for detecting safety helmets in video footage was introduced by combining machine learning and 
image processing methods, comprising three stages, namely face detection using Haar-like features, motion filtering, 
and hard hat color detection [15]. This method struggled with distinguishing false positives from actual faces, although 
the inclusion of color information provided some filtering capability. A CCTV-based monitoring system was 
developed to detect faces using Haar-like features and identify helmets based on red color as well as shape outline 
criteria, where the system activated warnings when workers were detected without helmets [16]. As traditional 
machine learning methods often rely on handcrafted features and rule-based detection have shown moderate success 
in helmet detection, the advent of deep learning has substantially improved accuracy and robustness through automatic 
feature extraction from complex visual data. 

Recent advances in deep learning have significantly influenced object detection. Currently, the most effective 
object detection algorithms fall into two main categories, namely multi-stage and single-stage detectors [17]. Multi-
stage detectors, such as Faster R-CNN, offer superior detection accuracy but at the cost of high computational 
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complexity, making the systems less suitable for real-time applications. Single-stage detectors, including YOLO, 
prioritize faster inference speeds [6] with relatively lower computational requirements, often at a slight expense in 
accuracy [18]. Among these, YOLO family of models has acquired substantial attention for the impressive speed-
accuracy drawback. 

Several studies have applied YOLO models to the task of safety helmet detection. For instance, [19] evaluated 
various YOLOv5 versions YOLOv5n, YOLOv5s, YOLOv5m, YOLOv5l, and YOLOv5x, achieving mAP scores of 
94.2%, 95.3%, 95.5%, 95.6%, as well as 95.8%, respectively. Although these results show the effectiveness of 
YOLOv5, baseline models still present limitations when detecting small, dense, and multi-scale objects under real-
world conditions. Studies by [20][21] proposed improving detection performance through the incorporation of CBAM 
and BiFPN to address object scale variation challenges. The method used during the analysis achieved an improvement 
of 1.6% in mAP and 5.3% in precision, significantly improving multi-scale object recognition and feature 
representation. In another study [20], Transformer module was introduced alongside BiFPN and CBAM to further 
improve the feature extraction capabilities, particularly for dense object scenarios. This method led to a 5.7% increase 
in precision and a 1.6% improvement in mAP compared to the baseline model. Similarly, [22] experimented with a 
variation where Transformer was applied at the prediction head level and CBAM was used to refine the input features 
at the head network, leading to a 4.75% mAP improvement. 

The major distinction between previous explorations and this study lies in the proposed architectural method. 
Previous works primarily used the baseline YOLOv5 models for safety helmet detection [3], without implementing 
structural improvements to mitigate challenges related to multi-scale, dense, and small object detection. This study 
addresses those limitations by incorporating CBAM, Transformer, and BiFPN modules into YOLOv5s framework. 
By conducting the process, this study aims to produce a lightweight, efficient, and highly accurate model capable of 
overcoming the shortcomings observed in previous implementations. 

III. METHODS 

This study proposed a modified YOLOv5s [14] algorithm using CBAM [23], Transformer [24], and BiFPN [21] to 
improve model accuracy as well as multi-scale detection capability in detecting safety helmets. The steps used during 
the process of the study flow were shown in Fig. 1. First, preprocessing was conducted to divide the image data, which 
included training, validation, and testing, in addition to converting the label format to YOLO format. Second, 
modifications are made to the backbone and head networks with CBAM, Transformer, and BiFPN. Third, modeling 
was performed during the process using the improved architecture 

. 

Fig. 1 Proposed methodology’s workflow 

A. Dataset 

The dataset used in this study was a collection of images of construction and manufacturing workers called the 
Hardhat Dataset, as the samples of the dataset were shown in Fig. 2. During the process, the Hardhat Dataset [25] was 
obtained from the Harvard Dataverse site shared by Northeastern University China. This dataset, consisting of 7.063 
images with a total of 26.633 object annotations, was divided into two classes, namely helmet and head. The annotation 
format in the dataset was Extensible Markup Language (XML), with the distribution of helmet class totaling 19.852 
annotations and head containing 6.781 annotations. 
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Fig. 2 Sample images of dataset [25] 

B. Prepocessing 

1) Splitting Dataset 
The division of the dataset was performed to adjust the location of the image before it was used in the modeling 

process, as image data was divided into the train, validation, and test. The division comprised 5,297 training data 
(75%), 1,059 validation data (15%), and 707 test data (10%). Moreover, each set was placed in a different folder that 
represented the set.  

2) Parsing Dataset 
Labels from the dataset originally annotated in XML format were converted to YOLO format to be compatible with 

YOLO architecture. During the analysis, the center of the object was obtained by calculating the x and y coordinates. 
The dimension of the bounding box was obtained by calculating the width and height dimensions. Following the 
process, the center coordinate and bounding box dimensions were normalized by dividing the variables relative to the 
width as well as height values of the image. 

The parsing stage was performed using ElementTree module to retrieve information from XML file. The 
information retrieved was the image size in length and width, then the bounding box in the form of xmin, ymin, xmax, 
as well as ymax coordinates, and the last was the class name. Relating to the process, the information was stored in a 
dictionary and collected into a list dataset. The coordinate value and image size stored in the list dataset were used in 
the calculation process to get annotations in YOLO format.  

3) Augmentation 
The dataset used in the modeling process with YOLOv5 was augmented with four methods, namely mosaic, 

flipping, scaling, and HSV color change. Augmentation in YOLOv5 was applied with mosaic as the main 
augmentation method used. Mosaic combined four images, namely one original and three additional images randomly 
selected from the training dataset, which were then randomly rotated and scaled until the figures were finally put 
together in a grid-like shape. This method was particularly beneficial for helmet detection because the model generated 
training images with higher object density and variety, effectively improving the ability of the model to recognize 
small helmet instances in diverse, crowded contexts. The procedure also enriched the training set and improved 
generalization, making the model more robust in complex environments. The result of the augmentation process during 
this study was shown in Fig. 3. Based on the mosaic image, there was a probability to apply additional augmentation 
with the flipping method and color adjustment with HSV. 

 

Fig. 3 Sample augmented images 
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C. Proposed Model 

CBAM was an attention module designed to improve the ability of the model to extract important target features 
on two main dimensions, namely the channel and spatial axes. The attention mechanism efficiently focused on 
important or suppressed unimportant information. CBAM consisted of two submodules, namely Channel Attention 
Module (CAM) and Spatial Attention Module (SAM). CAM module focused on the different weights of the channels 
and multiplied the channels with appropriate weights to prioritize the information on important channels. Moreover, 
the spatial information from the feature map � ∈ ��×�×� was combined using average-pooling and max-pooling 
operations to produce two � × 1 × 1 channel mappings, each of the resulting values was applied in a multi-layer 
perceptron operation, and the resulting output was summed element-wise. In SAM module, the channel information 
from the feature map was combined using average-pooling and max-pooling operations to produce two �� × �′ × 1 
channel mappings. The final result was obtained by combining two feature maps followed by a 7×7 convolution 
operation [23]. 

Transformer [26] architecture was designed based on attentional mechanisms, and the system performed positional 
encoding of the extracted feature network, which was recombined with the main input vector to produce more refined 
features. The resulting features were computed and outputted in multi-scale parallel by the decoding process [27]. 
Each encoder of transformer had two sub-layers, where the first was a multi-head attention layer and the second was 
fully-connected. Following the discussion, residual connections were applied between sub-layers to help the model 
learn complex functions more effectively and to mitigate the vanishing gradient problem, enabling deeper 
architectures to train successfully [22]. 

BiFPN was a bidirectional architecture that combined top-down and bottom-up pathways. It was designed to enable 
efficient cross-scale connections and weighted feature fusion for improved multi-scale feature representation [21]. 
The model combined multi-scale feature information from the backbone network by applying up-sampling and down-
sampling operations. It made the feature map resolutions combined and effectively fused information across different 
scales [28]. 

This study introduced CTBi-YOLOv5s, an improved version of YOLOv5s designed for safety helmet detection 
with improvements in both the backbone and head of the network. The backbone was strengthened by incorporating 
Transformer module, and specifically, C3TR block positioned after SPP (Spatial Pyramid Pooling) layer. This addition 
leveraged the self-attention mechanism to improve global feature extraction. It improved the ability of the model to 
understand complex visual patterns. 

Further improvements were made in the head architecture, where CBAM, Transformer layers, and BiFPN were 
introduced. CBAM was incorporated before the feature map combining stage to show critical spatial and channel-
wise features. It improved the ability of the network to distinguish object shapes and boundaries. Additionally, 
Transformer blocks replaced the standard C3 modules in the prediction head to strengthen feature representation and 
contextual understanding. These incorporated improvements aimed to boost the accuracy and robustness of the model, 
specifically in challenging construction site environments.  

 

Fig. 4 Proposed CTBi-YOLOv5s 

 
The use of Transformer in this section was intended to use the self-attention mechanism that allowed the model to 

analyze the relationship of various feature maps extracted from the backbone network. After the process, BiFPN was 
applied to the head architecture network at the medium resolution level. In this network structure, the feature map 
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from the previous layer was combined with two other feature maps. The union included one from the backbone having 
a mid-resolution feature map (P4), and two from layer 6, which was previously where this layer was a higher-level 
feature (P3) [20]. During the process, the bottom-up and top-down mechanisms of BiFPN allowed the model to 
effectively combine features from different scales for improving the feature representation of the object. The 
application of BiFPN had the potential to overcome the multi-scale problem of YOLOv5. The diagram of the total 
framework of CTBi-YOLOv5s model was shown in Fig. 4. 

D. Evaluation Matrix 

Evaluation was used to measure the performance of the model during the process. Model evaluation was performed 
using several matrices, namely mAP, recall, precision, and F1 score. mAP matrix was the average value of the model 
in predicting objects in various categories. Additionally, it was used to assess the effectiveness of the model in object 
detection, and the following was the formula for the matrix (1). 

��� =  ∑
���� (�)

�

�
���     (1) 

Precision was a matrix that measured the accuracy of the model in making positive predictions. Meanwhile, recall 
measured the accuracy of the model in making predictions that were positive. The F1 score was used to evaluate the 
model based on precision and recall values. The following were the formulas of precision (2), recall (3), and F1 
score (4). 
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IV. RESULTS 

Experiments were conducted using the Hardhat dataset with the basic and Improved YOLOv5s algorithm. The 
device used in the modeling process was Google Collaboratory by using the T4 GPU. Additionally, parameters from 
[3] were used, consisting of batch size 20, epoch 50, and image size 416 x 416. The model was evaluated using 
precision, recall, F1 score, and mAP. During the process, systems that had been modified with BiFPN, CBAM, and 
Transformer were compared with YOLOv5s base model. Table 1 showed the comparison of evaluation results after 
modeling. 

  TABLE 1 
RESULT OF THE EXPERIMENT 

Model Precision (%) Recall (%) F1 Score mAP@0.5 
YOLOv5s  93.9 87.1 0.90 0.936 
YOLOv5s + BiFPN 94 94.2 0.94 0.972 
YOLOv5s + CBAM 94.8 92.7 0.94 0.97 
YOLOv5s + Tr 95.1 93.4 0.94 0.972 
YOLOv5s + CBAM + BiFPN 94.2 93.3 0.94 0.97 
YOLOv5s + Tr + BiFPN 95 92.9 0.94 0.973 
YOLOv5s + Tr + CBAM 94.8 9.22 0.94 0.971 
YOLOv5s + Tr + CBAM + BiFPN 94.1 93.3 0.94 0.973 

         *Tr represented Transformer module 
 

A significant contribution of this study was the determined improvement achieved by modifying YOLOv5s 
architecture with BiFPN, CBAM, and Transformer components. Modeling results showed that these modifications 
provided a substantial improvement in detection performance compared to the base model. The original YOLOv5s 
achieved 93.9% precision, 87.1% recall, 0.90 F1 score, and 93.6% mAP@0.5. Through the improvement of this study, 
the F1 score improved by up to 4%, while precision increased by 0.1%, 0.7%, and 1.2%. Recall improved by 7.1%, 
5.6%, and 6.3%, and mAP@0.5 rose by 3.6%, 3.4%, as well as 3.6%, depending on the combination of modules 
applied. 

The combination of CBAM and BiFPN led to 94.2% precision, 93.3% recall, and a mAP@0.5 of 97%, signifying 
a strong synergistic effect between the two improvements. The joining of Transformer and BiFPN achieved 95% 
precision, 92.9% recall, and 97.3% highest mAP@0.5, marking the best precision among the tested models with a 
slightly less balanced recall. During the analysis, the combination of Transformer and CBAM produced 94.8% 
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precision, 92.2% recall, and mAP@0.5 of 97.1%. The incorporation of all three modules (Transformer, CBAM, and 
BiFPN) produced the best total performance, achieving 94.1% precision, 93.3% recall, and 97.3% mAP@0.5.  

 

 
Fig. 5 Model progress during training (a) Precision; (b) Recall; (c) mAP@0.5 

 

The training progress of the model during this study was shown in Fig. 5. The improvements, particularly in recall 
and mAP, were significant compared to the base YOLOv5s model, showing the effectiveness of the proposed 
architectural modifications. The addition of Transformer and CBAM modules influenced the complexity of the model. 
The basic YOLOv5s model had 166 layers, which increased to 176 through the addition of a Transformer and further 
to 202 with the incorporation of CBAM. However, these modifications led to significant improvements in precision, 
recall, F1 score, and mAP. 

TABLE 2 
COMPARISON OF SIZE, TRAINING TIME, AND MODEL INFERENCE SPEED 

Model Size Time FPS 
YOLOv5s  14.4MB 55min 57s 104 
YOLOv5s + BiFPN 14.5MB 48min 09s 105 
YOLOv5s + CBAM 14.5MB 53min 17s 70 
YOLOv5s + Tr 14.4MB 48min 38s 71 
YOLOv5s + CBAM + BiFPN 14.6MB 46min 55s 79 
YOLOv5s + Tr + BiFPN 14.5MB 54min 47s 54 
YOLOv5s + Tr + CBAM 14.5MB 50min 48s 55 
YOLOv5s + Tr + CBAM + BiFPN 14.6MB 48min 02s 58 

 
Modifications to the architecture affected the training process and the speed of model inference. Table 2 showed 

the model inference speed in Frames per Second (FPS), size, and training time. FPS measured how many frames or 
images the model processed per second during inference. Based on the ability, the modified models led to larger model 
sizes since the replicas required slightly faster training time. The improvements in detection accuracy came with a 
drawback, where the inference speed dropped due to increased computational complexity. However, this drawback 
was justified by the substantial advances in detection performance for complex construction site environments. 
Compared to the previous study conducted by [3], the improvements applied provided better results in terms of 
accuracy and detection. Table 3 showed the comparison between the previous study and the proposed model. 
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TABLE 3 
COMPARISON OF THE PREVIOUS STUDY AND THE PROPOSED MODEL 

Model Precision (%) Recall (%) F1 Score mAP@0.5 
YOLOv5n  93.4 87.6 0.904 0.942 
YOLOv5s 93.6 89.9 0.917 0.953 
YOLOv5m 94.8 90.4 0.925 0.955 
YOLOv5l 94.9 94.9 0.925 0.956 
YOLOv5x 93.9 93.9 0.925 0.958 
CTBi-YOLOv5s (Proposed) 94.1 93.3 0.94 0.973 

V. DISCUSSION 

Multi-scale detection was a challenging task in safety helmet detection due to significant variation in object size, 
which arose from the varying distances between workers and the camera in real-world environments. In this study, 
most safety helmets and human heads appeared relatively small in the image frame, making detection particularly 
difficult. The size of helmet was not fixed but relative to the general image resolution, and in a single frame, objects 
of interest varied considerably in scale. These conditions showed the need for robust multi-scale feature learning. A 
previous study by [6], which introduced the HardHat dataset and also focused on helmet detection, was conducted 
under experimental conditions different substantially from those in this analysis. 

A trend surfaced when this study compared each improvement against YOLOv5s baseline based on the results by 
[3]. As the original model already delivered high precision (93.9%) and respectable mAP@0.5 (93.6%), its recall 
(87.1%) lagged, showing that up to 13% of objects were missed. Introducing BiFPN dramatically narrowed this gap, 
improving recall to 94.2% and raising mAP@0.5 by 3.6% with only a marginal 0.1% gain in precision. This shows 
that the weighted feature fusion of BiFPN allows the detector to capture a broader variety of object scales without 
sacrificing accuracy. 

CBAM module, which applied attention sequentially across channels and spatial locations, shifted the balance 
slightly toward precision, as precision rose to 94.8% and recall to 92.7%, improving the focus of the model on truly 
relevant regions. mAP@0.5 increase of 3.4% signified that feature recalibration sharpened the judgment of the 
network with a tad less sensitivity than BiFPN. A Transformer head (“Tr”) pushed precision even higher to 95.1%, 
while raising recall to 93.4% and mAP@0.5 by 3.6%. This followed the hypothesis that self-attention layers helped 
the network to incorporate long-range dependencies and contextual relationships, making for fewer false positives as 
well as false negatives. 

The combination of modules in this study showed complementary effects during the process. Joining CBAM with 
BiFPN produced a model balanced at 94.2% precision, 93.3% recall, and 97.0% mAP@0.5, signifying that feature 
fusion as well as attention synergized to both broaden detection coverage as well as refine focus. During the process, 
pairing Transformer and BiFPN achieved the highest mAP@0.5 of 97.3% while maintaining 95.0% precision as well 
as 92.9% recall. Multi-scale ability of BiFPN incorporated seamlessly with representational depth of self-attention, 
maximizing mean average precision. The combination of Transformer and CBAM also produced strong achievements 
(94.8% precision, 92.2% recall, 97.1% mAP@0.5), but the  slightly reduced recall showed that overlapping attention 
mechanisms might have led to diminishing returns in sensitivity. 

Incorporating all three modules produced an exceptionally well-rounded detector, including 94.1% precision, 
93.3% recall, and the shared top mAP@0.5 of 97.3%. This full-stack model reached near-optimal mAP while 
preserving strong precision and recall, confirming that multi-scale fusion as well as dual attention pathways were 
layered without conflict. In practical terms, when maximum mAP was the priority and computational overhead was 
acceptable, the triple-module YOLOv5s was outstanding. For scenarios where inference speed or resource constraints 
matter more, a single–module improvement, specifically BiFPN, delivered most of the recall and mAP achievements 
at lower complexity. 

Table 2 showed that while all improved YOLOv5s variants slightly increased model size and added computational 
overhead, Transformer + CBAM + BiFPN combination delivered the most favorable drawback. In this study, the 
baseline YOLOv5s (14.4 MB) trained in 55 min 57 s and achieved 104 FPS. Adding BiFPN alone (14.5 MB) actually 
reduced training time to 48 min 09 s and pushed FPS to 105, a negligible size increase for faster learning as well as 
inference. Consequently, CBAM or Transformer personally cut training time by 2–7 minutes and incurred a steep 
drop in FPS to 70 and 71, signaling that attention mechanisms added a measurable runtime cost. When all three 
modules were combined, the model increased only to 14.6 MB, yet training completed in just 48 min 02 s, faster than 
the baseline, and inference still ran at a robust 58 FPS, higher than the 30 FPS real-time threshold for video 
applications. Tr + CBAM + BiFPN variant appeared as the best selection, supported by its top mAP@0.5 performance. 
It maximized detection accuracy while maintaining real-time inference speed and only a modest increase in footprint. 
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Table 3 showed that the modified model significantly outperformed previous studies, achieving an impressive 
mAP of 97.3%, compared to 95.3% for the previous YOLOv5s model and 95.8% for the highest mAP for YOLOv5x 
model. This improvement was further shown in Figure 6, where the inference results of the base and improved models 
were compared. The blue circles signified missed detections by the base YOLOv5s model, which the modified model 
successfully detected, showing its ability to accurately identify objects in complex scenes. These improvements 
reduced false detections and signified the effectiveness of the modifications in improving multi-scale object 
recognition, particularly in challenging environments such as construction sites with varying object sizes as well as 
occlusions. This study incorporated three major components, namely CBAM, Transformer, and BiFPN, to overcome 
the limitations of the baseline YOLOv5s model in detecting helmets in cluttered as well as dynamic construction 
environments. 

 

 
Fig. 6 Comparison of helmet detection performance before and after model improvement. (a) Detection results using the baseline YOLOv5s 

model. (b) Detection results using the proposed CTBi-YOLOv5s model. 

 
CBAM improved the ability of the model to focus on the most relevant spatial and channel-wise features, 

improving detection accuracy in visually complex scenes. Transformer module introduced a global self-attention 
mechanism, allowing the model to capture long-range dependencies and better interpret contextual relationships, 
particularly useful in crowded settings. Meanwhile, BiFPN supported efficient multi-scale feature fusion, which was 
essential for accurately detecting helmets of various sizes and at different distances. These components form a 
lightweight yet powerful architecture that significantly improved detection performance, maintaining the speed and 
efficiency required for real-time deployment in construction site safety monitoring. 

VI. CONCLUSIONS 

In conclusion, this study introduced a novel YOLOv5s variant that incorporated three complementary architectural 
components, namely CBAM, Transformer-based self-attention, and BiFPN, to simultaneously improve spatial and 
channel-wise attention, capture long-range dependencies, as well as perform efficient multi-scale feature fusion. This 
study conducted a comprehensive evaluation across eight model configurations, assessing detection performance 
(precision, recall, F1 score, and mAP@0.5), model size, training time, as well as inference speed. By quantifying these 
metrics, the analysis provided practical deployment understanding and drawback analyses modified for real-time 
helmet detection in construction site environments. 

The results showed that the combined Tr + CBAM + BiFPN model achieved the best total performance, improving 
mAP@0.5 from 93.6% to 97.3%. Precision was also improved to 94.1%, recall to 93.3%, and F1 score to 0.94%, 
while maintaining a compact footprint (14.6 MB), reducing training time by up to 14% (48 min 02 s vs. 55 min 57 s), 
as well as delivering real-time inference at 58 FPS. BiFPN produced the greatest recall improvement to 94.2% and 
Transformer head delivered the highest precision of 95.1%, but only the full incorporation balanced peak accuracy 
with practical speed as well as memory requirements, making it the recommended selection for deployment. 

The analysis should recommend for future studies a probabilistic exploration of module combinations through 
neural architecture search or Bayesian optimization to identify even more lightweight yet effective variants, potentially 
in appearing frameworks such as YOLOv8-nano, YOLOv7-tiny, or EfficientDet-D0. Methods such as knowledge 
distillation, structured pruning, and post-training quantization should be applied to compress the model further without 
sacrificing accuracy, while conditional computation or dynamic gating could adaptively activate attention as well as 
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fusion modules based on scene complexity. Deploying and benchmarking these optimized architectures across diverse 
edge and embedded platforms would be crucial to ensure robust, low-latency performance in real-world, resource-
constrained environments.  
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