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Abstract

Background: Some construction workers are often in a situation where injuries can occur from negligence in the use of safety
helmets. To avoid this, supervision of the use of safety helmets should be conducted continuously during the work process
through the application of computer vision technology. However, the complex background of the construction environment is a
challenge to detecting small and densely packed safety helmets accurately.

Objective: The construction environment is complex, and the wide workspace allows workers to be in an area far from
supervision. The process makes it difficult for models to detect the use of safety helmets in complex, wide, and very high object
density construction environments. Therefore, this study aims to overcome the problem by modifying YOLOvVSs (You Only
Look Once version 5) architecture.

Methods: Real-time monitoring of the use of safety helmets could be performed using YOLOVS. This study proposed a modified
YOLOvV5s model called CBTi-YOLOvVSs. The model incorporated Convolutional Block Attention Module (CBAM),
Transformer, and Bi-directional Feature Pyramid Network (BiFPN) to improve feature extraction, multi-scale object
representation, as well as detection accuracy, specifically on small and high-density objects in complex construction
environments.

Results: The results showed the modified YOLOvVS5s architecture had made an improvement of 3.7% in mean average precision
(mAP) compared to the base YOLOvSs model. mAP of the base YOLOvSs model was 93.6%, while the modified CBTi-
YOLOvS5s model achieved 97.3%. The proposed modified YOLOvVSs model also achieved an inference speed of 58 frames per
second (FPS), and the base model achieved 104 FPS.

Conclusion: CBTi-YOLOvVSs improved the accuracy, mAP, and ability to detect objects of varying scales. However, this
improvement had drawbacks, namely increased model size and decreased inferential speed due to increased model architectural
complexity..
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1. INTRODUCTION

Occupational safety and health (OHS) is crucial in forming safe working environments and is essential in
preventing both physical as well as mental health issues on the job [1]. A major aspect of OHS is ensuring the proper
use of personal protective equipment (PPE), specifically safety helmets, which are crucial in protecting workers from
head injuries caused by falling or flying objects. In Indonesia, it is reported that around 60% of workplace head injuries
happen because workers are not wearing safety helmets [2], showing the need for better safety measures. A promising
solution to this problem is vision-based detection systems, which can automatically monitor helmet use and help
prevent accidents as well as fatalities at work

Among the various methods for monitoring PPE, vision-based methods are often favored because the tools are
flexible and non-intrusive, different from sensor-based systems that can be more burdensome [3]. To be effective,
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these systems need to detect objects quickly and accurately in real-time, specifically in the complex, ever-changing
environments typical of construction sites.

Earlier solutions have applied a combination of deep learning and traditional machine learning, such as using
FaceNet for feature extraction and Support Vector Machines (SVM) for PPE detection [4]. As these methods can be
quite accurate, the tools tend to comprise multiple stages, which slows down processing and makes the models less
ideal for real-time use. Relating to this discussion, fully deep learning-based models have surfaced to overcome this
limitation. An example is PerspectiveNet, which leverages EfficientNet v2 as its backbone and is optimized for use
on embedded systems [5]. However, these models can struggle in cluttered scenes or when trying to detect small
objects [6], which are common challenges in real-world construction settings.

Single-stage object detection models, particularly You Only Look Once (YOLO) family, have advantages
including fast inference speeds and solid accuracy. For instance, an improved version of YOLOv4 (YOLO version 4)
has reached a mean average precision (mAP) of 91.03% for detecting safety helmets in aerial images [7]. To handle
the limited computing power, YOLO-PL is developed. YOLO-PL is a lightweight variant of YOLOv4, which
improved the detection speed on constrained resource systems [8].

Numerous models are developed with an inherent drawback despite the strengths, prioritizing speed or accuracy.
Consequently, the models often underperform in real-world applications consisting of small, overlapping, or densely
clustered objects, particularly in complex environments such as construction sites.

YOLO architecture has tremendous advancements, and YOLOvS5 (YOLO version 5) marked a turning point,
offering several model variants modified to different devices as well as performance needs [9], [10], [11], [12], [13],
[14]. Irrespective of its widespread use, YOLOVS base models still have some significant drawbacks, including
struggles with multi-scale object detection, specifically in crowded or complex scenes. The lightweight versions
advance the computational speed but sacrifice feature richness, which can affect detection accuracy [13], [14].

The studies have relied on base YOLOvVS models for safety helmet detection tasks [3], without any architectural
improvements to tackle these limitations. Similarly, earlier models such as YOLOv4 and YOLO-PL lack features
including attention mechanisms or advanced multi-scale feature fusion, both of which are increasingly recognized for
improving detection robustness in real-world applications.

This study introduces an improved version of YOLOvSs by incorporating three major architectural modules to
address the limitations. First, Convolutional Block Attention Module (CBAM) is incorporated to refine spatial and
channel-wise feature representation. Second, a Transformer encoder is added to improve global feature extraction and
positional awareness to handle dense object scenarios. Third, Bi-directional Feature Pyramid Network (BiFPN) is
used to strengthen multi-scale feature fusion. These components aim to produce a lightweight, accurate, and real-time
object detection model, optimized for monitoring safety helmet usage in construction environments.

The structure used during the process of this study is as follows. Section II reviews related work and background
studies, Section III describes the proposed model architecture, and Section IV explains the experimental setup and
presents evaluation results. In addition, Section V discusses the results, and Section VI concludes the study.

II. LITERATURE REVIEW

Helmet is a crucial part of PPE for construction workers, providing essential protection against potentially life-
threatening head injuries. However, many workers frequently fail to wear helmets consistently, which significantly
increases the risk. Object detection technologies have surfaced as a promising solution for automatically monitoring
helmet use, enabling real-time surveillance to help create safer work environments. Deploying the systems is
challenging as the implementation in construction sites requires both accuracy and the efficient computational
performance of detection methods, making the models practical for real-world, real-time applications.

A hybrid method for detecting safety helmets in video footage was introduced by combining machine learning and
image processing methods, comprising three stages, namely face detection using Haar-like features, motion filtering,
and hard hat color detection [15]. This method struggled with distinguishing false positives from actual faces, although
the inclusion of color information provided some filtering capability. A CCTV-based monitoring system was
developed to detect faces using Haar-like features and identify helmets based on red color as well as shape outline
criteria, where the system activated warnings when workers were detected without helmets [16]. As traditional
machine learning methods often rely on handcrafted features and rule-based detection have shown moderate success
in helmet detection, the advent of deep learning has substantially improved accuracy and robustness through automatic
feature extraction from complex visual data.

Recent advances in deep learning have significantly influenced object detection. Currently, the most effective
object detection algorithms fall into two main categories, namely multi-stage and single-stage detectors [17]. Multi-
stage detectors, such as Faster R-CNN, offer superior detection accuracy but at the cost of high computational
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complexity, making the systems less suitable for real-time applications. Single-stage detectors, including YOLO,
prioritize faster inference speeds [6] with relatively lower computational requirements, often at a slight expense in
accuracy [18]. Among these, YOLO family of models has acquired substantial attention for the impressive speed-
accuracy drawback.

Several studies have applied YOLO models to the task of safety helmet detection. For instance, [19] evaluated
various YOLOVS5 versions YOLOv5n, YOLOv5s, YOLOv5m, YOLOVS5I, and YOLOv5x, achieving mAP scores of
94.2%, 95.3%, 95.5%, 95.6%, as well as 95.8%, respectively. Although these results show the effectiveness of
YOLOVS, baseline models still present limitations when detecting small, dense, and multi-scale objects under real-
world conditions. Studies by [20][21] proposed improving detection performance through the incorporation of CBAM
and BiFPN to address object scale variation challenges. The method used during the analysis achieved an improvement
of 1.6% in mAP and 5.3% in precision, significantly improving multi-scale object recognition and feature
representation. In another study [20], Transformer module was introduced alongside BiFPN and CBAM to further
improve the feature extraction capabilities, particularly for dense object scenarios. This method led to a 5.7% increase
in precision and a 1.6% improvement in mAP compared to the baseline model. Similarly, [22] experimented with a
variation where Transformer was applied at the prediction head level and CBAM was used to refine the input features
at the head network, leading to a 4.75% mAP improvement.

The major distinction between previous explorations and this study lies in the proposed architectural method.
Previous works primarily used the baseline YOLOvS models for safety helmet detection [3], without implementing
structural improvements to mitigate challenges related to multi-scale, dense, and small object detection. This study
addresses those limitations by incorporating CBAM, Transformer, and BiFPN modules into YOLOvS5s framework.
By conducting the process, this study aims to produce a lightweight, efficient, and highly accurate model capable of
overcoming the shortcomings observed in previous implementations.

III. METHODS

This study proposed a modified YOLOvVS5s [14] algorithm using CBAM [23], Transformer [24], and BiFPN [21] to
improve model accuracy as well as multi-scale detection capability in detecting safety helmets. The steps used during
the process of the study flow were shown in Fig. 1. First, preprocessing was conducted to divide the image data, which
included training, validation, and testing, in addition to converting the label format to YOLO format. Second,
modifications are made to the backbone and head networks with CBAM, Transformer, and BiFPN. Third, modeling
was performed during the process using the improved architecture

Pre-Processing Modeling

Splitting data

YOLOv5s+CBAM+Tr+BiFPN

uondaleq

Parsing labels to
YOLO Format

Augmentations
+ Mosaic
* Flipping

+ Scalling
+ HSV

Fig. 1 Proposed methodology’s workflow

A. Dataset

The dataset used in this study was a collection of images of construction and manufacturing workers called the
Hardhat Dataset, as the samples of the dataset were shown in Fig. 2. During the process, the Hardhat Dataset [25] was
obtained from the Harvard Dataverse site shared by Northeastern University China. This dataset, consisting of 7.063
images with a total of 26.633 object annotations, was divided into two classes, namely helmet and head. The annotation
format in the dataset was Extensible Markup Language (XML), with the distribution of helmet class totaling 19.852
annotations and head containing 6.781 annotations.
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Fig. 2 Sample images of dataset [25]

B. Prepocessing

1) Splitting Dataset

The division of the dataset was performed to adjust the location of the image before it was used in the modeling
process, as image data was divided into the train, validation, and test. The division comprised 5,297 training data
(75%), 1,059 validation data (15%), and 707 test data (10%). Moreover, each set was placed in a different folder that
represented the set.

2) Parsing Dataset

Labels from the dataset originally annotated in XML format were converted to YOLO format to be compatible with
YOLO architecture. During the analysis, the center of the object was obtained by calculating the x and y coordinates.
The dimension of the bounding box was obtained by calculating the width and height dimensions. Following the
process, the center coordinate and bounding box dimensions were normalized by dividing the variables relative to the
width as well as height values of the image.

The parsing stage was performed using ElementTree module to retrieve information from XML file. The
information retrieved was the image size in length and width, then the bounding box in the form of xmin, ymin, xmax,
as well as ymax coordinates, and the last was the class name. Relating to the process, the information was stored in a
dictionary and collected into a list dataset. The coordinate value and image size stored in the list dataset were used in
the calculation process to get annotations in YOLO format.

3) Augmentation

The dataset used in the modeling process with YOLOvVS was augmented with four methods, namely mosaic,
flipping, scaling, and HSV color change. Augmentation in YOLOvS5 was applied with mosaic as the main
augmentation method used. Mosaic combined four images, namely one original and three additional images randomly
selected from the training dataset, which were then randomly rotated and scaled until the figures were finally put
together in a grid-like shape. This method was particularly beneficial for helmet detection because the model generated
training images with higher object density and variety, effectively improving the ability of the model to recognize
small helmet instances in diverse, crowded contexts. The procedure also enriched the training set and improved
generalization, making the model more robust in complex environments. The result of the augmentation process during
this study was shown in Fig. 3. Based on the mosaic image, there was a probability to apply additional augmentation
with the flipping method and color adjustment with HSV.

Fig. 3 Sample augmented images
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C. Proposed Model

CBAM was an attention module designed to improve the ability of the model to extract important target features
on two main dimensions, namely the channel and spatial axes. The attention mechanism efficiently focused on
important or suppressed unimportant information. CBAM consisted of two submodules, namely Channel Attention
Module (CAM) and Spatial Attention Module (SAM). CAM module focused on the different weights of the channels
and multiplied the channels with appropriate weights to prioritize the information on important channels. Moreover,
the spatial information from the feature map F € R“*#>*W was combined using average-pooling and max-pooling
operations to produce two C X 1 X 1 channel mappings, each of the resulting values was applied in a multi-layer
perceptron operation, and the resulting output was summed element-wise. In SAM module, the channel information
from the feature map was combined using average-pooling and max-pooling operations to produce two H' x W' x 1
channel mappings. The final result was obtained by combining two feature maps followed by a 7x7 convolution
operation [23].

Transformer [26] architecture was designed based on attentional mechanisms, and the system performed positional
encoding of the extracted feature network, which was recombined with the main input vector to produce more refined
features. The resulting features were computed and outputted in multi-scale parallel by the decoding process [27].
Each encoder of transformer had two sub-layers, where the first was a multi-head attention layer and the second was
fully-connected. Following the discussion, residual connections were applied between sub-layers to help the model
learn complex functions more effectively and to mitigate the vanishing gradient problem, enabling deeper
architectures to train successfully [22].

BiFPN was a bidirectional architecture that combined top-down and bottom-up pathways. It was designed to enable
efficient cross-scale connections and weighted feature fusion for improved multi-scale feature representation [21].
The model combined multi-scale feature information from the backbone network by applying up-sampling and down-
sampling operations. It made the feature map resolutions combined and effectively fused information across different
scales [28].

This study introduced CTBi-YOLOVSs, an improved version of YOLOvVS5s designed for safety helmet detection
with improvements in both the backbone and head of the network. The backbone was strengthened by incorporating
Transformer module, and specifically, C3TR block positioned after SPP (Spatial Pyramid Pooling) layer. This addition
leveraged the self-attention mechanism to improve global feature extraction. It improved the ability of the model to
understand complex visual patterns.

Further improvements were made in the head architecture, where CBAM, Transformer layers, and BiFPN were
introduced. CBAM was incorporated before the feature map combining stage to show critical spatial and channel-
wise features. It improved the ability of the network to distinguish object shapes and boundaries. Additionally,
Transformer blocks replaced the standard C3 modules in the prediction head to strengthen feature representation and
contextual understanding. These incorporated improvements aimed to boost the accuracy and robustness of the model,
specifically in challenging construction site environments.

Output
Upsample

e
Conv
SPP Upsample
car I

Fig. 4 Proposed CTBi-YOLOVSs

The use of Transformer in this section was intended to use the self-attention mechanism that allowed the model to
analyze the relationship of various feature maps extracted from the backbone network. After the process, BiFPN was
applied to the head architecture network at the medium resolution level. In this network structure, the feature map
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from the previous layer was combined with two other feature maps. The union included one from the backbone having
a mid-resolution feature map (P4), and two from layer 6, which was previously where this layer was a higher-level
feature (P3) [20]. During the process, the bottom-up and top-down mechanisms of BiFPN allowed the model to
effectively combine features from different scales for improving the feature representation of the object. The
application of BiFPN had the potential to overcome the multi-scale problem of YOLOvS5. The diagram of the total
framework of CTBi-YOLOvS5s model was shown in Fig. 4.

D. Evaluation Matrix

Evaluation was used to measure the performance of the model during the process. Model evaluation was performed
using several matrices, namely mAP, recall, precision, and F1 score. mAP matrix was the average value of the model
in predicting objects in various categories. Additionally, it was used to assess the effectiveness of the model in object
detection, and the following was the formula for the matrix (1).

mAP = zg=1*‘”eg @ )

Precision was a matrix that measured the accuracy of the model in making positive predictions. Meanwhile, recall
measured the accuracy of the model in making predictions that were positive. The F1 score was used to evaluate the
model based on precision and recall values. The following were the formulas of precision (2), recall (3), and F1
score (4).

Precision = —— 2)
TP+FP

Recall = —2 3)
TP+FN

Precision x Recall
F1 Score =2 x ——"Z 2202 4)

Precission+Recall

IV. RESULTS

Experiments were conducted using the Hardhat dataset with the basic and Improved YOLOvS5s algorithm. The
device used in the modeling process was Google Collaboratory by using the T4 GPU. Additionally, parameters from
[3] were used, consisting of batch size 20, epoch 50, and image size 416 x 416. The model was evaluated using
precision, recall, F1 score, and mAP. During the process, systems that had been modified with BiFPN, CBAM, and
Transformer were compared with YOLOv5s base model. Table 1 showed the comparison of evaluation results after
modeling.

TABLE 1
RESULT OF THE EXPERIMENT

Model Precision (%)  Recall (%) FI Score  mAP@0.5
YOLOV5s 93.9 87.1 0.90 0.936
YOLOVS5s + BiFPN 94 94.2 0.94 0.972
YOLOv5s + CBAM 94.8 92.7 0.94 0.97
YOLOV53s + Tr 95.1 93.4 0.94 0.972
YOLOv5s + CBAM + BiFPN 94.2 93.3 0.94 0.97
YOLOVS5s + Tr + BiFPN 95 92.9 0.94 0.973
YOLOVS5s + Tr + CBAM 94.8 9.22 0.94 0.971
YOLOv5s + Tr + CBAM + BiFPN  94.1 93.3 0.94 0.973

*Tr represented Transformer module

A significant contribution of this study was the determined improvement achieved by modifying YOLOvVSs
architecture with BiFPN, CBAM, and Transformer components. Modeling results showed that these modifications
provided a substantial improvement in detection performance compared to the base model. The original YOLOVS5s
achieved 93.9% precision, 87.1% recall, 0.90 F1 score, and 93.6% mAP@0.5. Through the improvement of this study,
the F1 score improved by up to 4%, while precision increased by 0.1%, 0.7%, and 1.2%. Recall improved by 7.1%,
5.6%, and 6.3%, and mAP@0.5 rose by 3.6%, 3.4%, as well as 3.6%, depending on the combination of modules
applied.

The combination of CBAM and BiFPN led to 94.2% precision, 93.3% recall, and a mAP@0.5 of 97%, signifying
a strong synergistic effect between the two improvements. The joining of Transformer and BiFPN achieved 95%
precision, 92.9% recall, and 97.3% highest mAP@0.5, marking the best precision among the tested models with a
slightly less balanced recall. During the analysis, the combination of Transformer and CBAM produced 94.8%
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precision, 92.2% recall, and mAP@0.5 of 97.1%. The incorporation of all three modules (Transformer, CBAM, and
BiFPN) produced the best total performance, achieving 94.1% precision, 93.3% recall, and 97.3% mAP@0.5.

metrics/precision metrics/recall
0950

0925

0900

0875

Recall

— wlovss Base ass0

lovss + BIFPN
~— Yolov5s + CBAM 0.825
— Ylovss + Tr
— YolovSs + CBAM + BiFPN
— Ylovss + Tr + BiFPN
Yolovss + Tr + CBAM
— YlovSs + Tr + CBAM + BiFPN 0775
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— Yolovss + CBAM + BiFPN

— Yolovss + Tr + BIFPN
Yolovss + Tr + CBAM

— Yolovss + Tr + CBAM + BiFPN

0.800

10 20 30 40 50 10 20 30 40 50

metrics/mAP_0.5

— Ylovss Base
lovss + BIFPN

—— Ylovss + CBAM

— Ylovss + Tr

— Yolovss + CBAM + BiFPN

— Yolovss + Tr + BiFPN
Ylovss + Tr + CBAM

— YolovSs + Tr + CBAM + BiFPN

10 20 E') 40 50

Fig. 5 Model progress during training (a) Precision; (b) Recall; (c) mAP@0.5

The training progress of the model during this study was shown in Fig. 5. The improvements, particularly in recall
and mAP, were significant compared to the base YOLOv5s model, showing the effectiveness of the proposed
architectural modifications. The addition of Transformer and CBAM modules influenced the complexity of the model.
The basic YOLOvVS5s model had 166 layers, which increased to 176 through the addition of a Transformer and further
to 202 with the incorporation of CBAM. However, these modifications led to significant improvements in precision,
recall, F1 score, and mAP.

TABLE 2
COMPARISON OF SIZE, TRAINING TIME, AND MODEL INFERENCE SPEED
Model Size Time FPS
YOLOVS5s 14.4MB 55min 57s 104
YOLOVS5s + BiFPN 14.5MB 48min 09s 105
YOLOv5s + CBAM 14.5MB 53min 17s 70
YOLOv5s + Tr 14.4MB 48min 38s 71
YOLOv5s + CBAM + BiFPN 14.6MB 46min 55s 79
YOLOVvVS5s + Tr + BiFPN 14.5MB 54min 47s 54
YOLOvVS5s + Tr + CBAM 14.5MB 50min 48s 55
YOLOV5s + Tr + CBAM + BiFPN 14.6MB 48min 02s 58

Modifications to the architecture affected the training process and the speed of model inference. Table 2 showed
the model inference speed in Frames per Second (FPS), size, and training time. FPS measured how many frames or
images the model processed per second during inference. Based on the ability, the modified models led to larger model
sizes since the replicas required slightly faster training time. The improvements in detection accuracy came with a
drawback, where the inference speed dropped due to increased computational complexity. However, this drawback
was justified by the substantial advances in detection performance for complex construction site environments.
Compared to the previous study conducted by [3], the improvements applied provided better results in terms of
accuracy and detection. Table 3 showed the comparison between the previous study and the proposed model.
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TABLE 3
COMPARISON OF THE PREVIOUS STUDY AND THE PROPOSED MODEL
Model Precision (%) Recall (%) F1 Score mAP@0.5
YOLOv5n 93.4 87.6 0.904 0.942
YOLOVSs 93.6 89.9 0.917 0.953
YOLOvV5Sm 94.8 90.4 0.925 0.955
YOLOvSI 94.9 94.9 0.925 0.956
YOLOv5x 93.9 93.9 0.925 0.958
CTBi-YOLOvVS5s (Proposed) 94.1 93.3 0.94 0.973

V. DISCUSSION

Multi-scale detection was a challenging task in safety helmet detection due to significant variation in object size,
which arose from the varying distances between workers and the camera in real-world environments. In this study,
most safety helmets and human heads appeared relatively small in the image frame, making detection particularly
difficult. The size of helmet was not fixed but relative to the general image resolution, and in a single frame, objects
of interest varied considerably in scale. These conditions showed the need for robust multi-scale feature learning. A
previous study by [6], which introduced the HardHat dataset and also focused on helmet detection, was conducted
under experimental conditions different substantially from those in this analysis.

A trend surfaced when this study compared each improvement against YOLOvSs baseline based on the results by
[3]. As the original model already delivered high precision (93.9%) and respectable mAP@0.5 (93.6%), its recall
(87.1%) lagged, showing that up to 13% of objects were missed. Introducing BiFPN dramatically narrowed this gap,
improving recall to 94.2% and raising mAP@0.5 by 3.6% with only a marginal 0.1% gain in precision. This shows
that the weighted feature fusion of BiFPN allows the detector to capture a broader variety of object scales without
sacrificing accuracy.

CBAM module, which applied attention sequentially across channels and spatial locations, shifted the balance
slightly toward precision, as precision rose to 94.8% and recall to 92.7%, improving the focus of the model on truly
relevant regions. mAP@Q0.5 increase of 3.4% signified that feature recalibration sharpened the judgment of the
network with a tad less sensitivity than BiFPN. A Transformer head (“Tr”) pushed precision even higher to 95.1%,
while raising recall to 93.4% and mAP@0.5 by 3.6%. This followed the hypothesis that self-attention layers helped
the network to incorporate long-range dependencies and contextual relationships, making for fewer false positives as
well as false negatives.

The combination of modules in this study showed complementary effects during the process. Joining CBAM with
BiFPN produced a model balanced at 94.2% precision, 93.3% recall, and 97.0% mAP@0.5, signifying that feature
fusion as well as attention synergized to both broaden detection coverage as well as refine focus. During the process,
pairing Transformer and BiFPN achieved the highest mAP@0.5 of 97.3% while maintaining 95.0% precision as well
as 92.9% recall. Multi-scale ability of BiFPN incorporated seamlessly with representational depth of self-attention,
maximizing mean average precision. The combination of Transformer and CBAM also produced strong achievements
(94.8% precision, 92.2% recall, 97.1% mAP@0.5), but the slightly reduced recall showed that overlapping attention
mechanisms might have led to diminishing returns in sensitivity.

Incorporating all three modules produced an exceptionally well-rounded detector, including 94.1% precision,
93.3% recall, and the shared top mAP@0.5 of 97.3%. This full-stack model reached near-optimal mAP while
preserving strong precision and recall, confirming that multi-scale fusion as well as dual attention pathways were
layered without conflict. In practical terms, when maximum mAP was the priority and computational overhead was
acceptable, the triple-module YOLOVS5s was outstanding. For scenarios where inference speed or resource constraints
matter more, a single-module improvement, specifically BiFPN, delivered most of the recall and mAP achievements
at lower complexity.

Table 2 showed that while all improved YOLOVS5s variants slightly increased model size and added computational
overhead, Transformer + CBAM + BiFPN combination delivered the most favorable drawback. In this study, the
baseline YOLOvVS5s (14.4 MB) trained in 55 min 57 s and achieved 104 FPS. Adding BiFPN alone (14.5 MB) actually
reduced training time to 48 min 09 s and pushed FPS to 105, a negligible size increase for faster learning as well as
inference. Consequently, CBAM or Transformer personally cut training time by 2—7 minutes and incurred a steep
drop in FPS to 70 and 71, signaling that attention mechanisms added a measurable runtime cost. When all three
modules were combined, the model increased only to 14.6 MB, yet training completed in just 48 min 02 s, faster than
the baseline, and inference still ran at a robust 58 FPS, higher than the 30 FPS real-time threshold for video
applications. Tr + CBAM + BiFPN variant appeared as the best selection, supported by its top mAP@0.5 performance.
It maximized detection accuracy while maintaining real-time inference speed and only a modest increase in footprint.
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Table 3 showed that the modified model significantly outperformed previous studies, achieving an impressive
mAP of 97.3%, compared to 95.3% for the previous YOLOv5s model and 95.8% for the highest mAP for YOLOv5x
model. This improvement was further shown in Figure 6, where the inference results of the base and improved models
were compared. The blue circles signified missed detections by the base YOLOv5s model, which the modified model
successfully detected, showing its ability to accurately identify objects in complex scenes. These improvements
reduced false detections and signified the effectiveness of the modifications in improving multi-scale object
recognition, particularly in challenging environments such as construction sites with varying object sizes as well as
occlusions. This study incorporated three major components, namely CBAM, Transformer, and BiFPN, to overcome
the limitations of the baseline YOLOvSs model in detecting helmets in cluttered as well as dynamic construction
environments.

h 0.91
Paimet 065
Imet. 0 -" 3
e .
=

= ] \ $ : :
- § « helmet 0.63 pejmat'0.

!
el

jhelmet 0.93]

| ra heimet
el A
 fuiad v

(b)
Fig. 6 Comparison of helmet detection performance before and after model improvement. (a) Detection results using the baseline YOLOV5s
model. (b) Detection results using the proposed CTBi-YOLOvVS5s model.

CBAM improved the ability of the model to focus on the most relevant spatial and channel-wise features,
improving detection accuracy in visually complex scenes. Transformer module introduced a global self-attention
mechanism, allowing the model to capture long-range dependencies and better interpret contextual relationships,
particularly useful in crowded settings. Meanwhile, BiFPN supported efficient multi-scale feature fusion, which was
essential for accurately detecting helmets of various sizes and at different distances. These components form a
lightweight yet powerful architecture that significantly improved detection performance, maintaining the speed and
efficiency required for real-time deployment in construction site safety monitoring.

VI. CONCLUSIONS

In conclusion, this study introduced a novel YOLOVSs variant that incorporated three complementary architectural
components, namely CBAM, Transformer-based self-attention, and BiFPN, to simultaneously improve spatial and
channel-wise attention, capture long-range dependencies, as well as perform efficient multi-scale feature fusion. This
study conducted a comprehensive evaluation across eight model configurations, assessing detection performance
(precision, recall, F1 score, and mAP@0.5), model size, training time, as well as inference speed. By quantifying these
metrics, the analysis provided practical deployment understanding and drawback analyses modified for real-time
helmet detection in construction site environments.

The results showed that the combined Tr + CBAM + BiFPN model achieved the best total performance, improving
mAP@0.5 from 93.6% to 97.3%. Precision was also improved to 94.1%, recall to 93.3%, and F1 score to 0.94%,
while maintaining a compact footprint (14.6 MB), reducing training time by up to 14% (48 min 02 s vs. 55 min 57 s),
as well as delivering real-time inference at 58 FPS. BiFPN produced the greatest recall improvement to 94.2% and
Transformer head delivered the highest precision of 95.1%, but only the full incorporation balanced peak accuracy
with practical speed as well as memory requirements, making it the recommended selection for deployment.

The analysis should recommend for future studies a probabilistic exploration of module combinations through
neural architecture search or Bayesian optimization to identify even more lightweight yet effective variants, potentially
in appearing frameworks such as YOLOv8-nano, YOLOv7-tiny, or EfficientDet-D0. Methods such as knowledge
distillation, structured pruning, and post-training quantization should be applied to compress the model further without
sacrificing accuracy, while conditional computation or dynamic gating could adaptively activate attention as well as
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fusion modules based on scene complexity. Deploying and benchmarking these optimized architectures across diverse
edge and embedded platforms would be crucial to ensure robust, low-latency performance in real-world, resource-
constrained environments.
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