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Abstract  
 
Background: Indonesia is a nation with the third-highest number of tuberculosis (TB) cases worldwide, after China and India. 
TB detection has been facilitated using YOLOv5 deep learning framework despite previous studies not having incorporated 
assessment metrics recommended by International Union Against Tuberculosis and Lung Disease (IUATLD).  
Objective: This study aims to present a method for classifying and enumerating Mycobacterium tuberculosis by using YOLOv5 
architecture with IUATLD evaluation standards. Sputum samples served as the primary medium for identifying the presence of 
Mycobacterium tuberculosis. In addition, the method showed precise delineation of bacterial boundaries to minimize 
classification inaccuracies and improve edge clarity through YOLOv5. 
Methods: Following the acquisition of microscopic images of TB, the data were resized from 1632x1442 to 640x480 pixels. 
Annotation was performed using YOLOv5 bounding boxes, and the model was subsequently trained as well as tested according 
to IUATLD guidelines. 
Results: During the analysis, YOLOv5-based classification system produced optimal performance. The model achieved 84.74% 
accuracy, 87.31% precision, and Mean Average Precision (mAP) score of 84.98%. These metrics showed high reliability in 
identifying Mycobacterium tuberculosis in the image dataset. 
Conclusion: The classification and quantification of Mycobacterium tuberculosis using YOLOv5 framework shows high 
precision, with mAP score of 84.98%, signifying strong model performance. Additionally, the counting process achieves a 
MAPE (Mean Absolute Percentage Error) of 0.15%, reflecting excellent prediction accuracy. 
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I. INTRODUCTION  

High-burden tuberculosis (TB) countries in 2019 were 87% of global TB diagnoses, with eight nations, which is 
India, Indonesia, China, Philippines, Pakistan, Nigeria, Bangladesh, and South Africa, making up nearly two-thirds of 
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these cases. Indonesia reports approximately 250,000 new TB cases each year, with around 100,000 of these leading 
to death [1]. TB remains the top infectious killer in the country and ranks as the third most common cause of death, 
after heart disease and acute respiratory infections. Globally, Indonesia is the third most affected country by TB behind 
China and India. In 2019, the country reported an estimated 842,000 TB cases, including 36,000 co-infected with HIV 
(Human Immunodeficiency Virus) [2]. Among HIV-negative individuals, TB was responsible for around 107,000 
deaths, while 9,400 deaths occurred among those living with HIV [3]. The illness significantly strains the national 
economy, particularly since 75% of those impacted are in the economically productive age group of 15 to 50 [4]. This 
leads to job losses and reduced productivity for both patients as well as caregivers. Economic consequences stem from 
factors such as early mortality, prolonged illness, and related medical as well as non-medical expenditures [5] [6]. 
According to WHO (World Health Organization) figures from 1999, Indonesia recorded about 583,000 new TB cases 
annually at that time, with about 140,000 deaths per year [7]. 

TB is a transmissible disease predominantly caused by Mycobacterium tuberculosis [8][9]. Sputum smear 
microscopy has been recognized as an efficient method for TB detection, facilitating early diagnosis and contributing 
to disease control efforts [10]. However, accurate TB diagnosis remains complex, as most current methods depend on 
recognizing the immune reaction of the host rather than directly isolating the pathogen [11][12]. Speedier diagnostic 
methods are crucial to ensure prompt therapy, which is major to stopping further transmission [13]. Identifying 
individuals with active TB is important for curbing the spread of the infection and strengthening intervention strategies 
[14][15]. 

A wide array of studies have adopted YOLOv5 architecture for object detection and classification tasks. For 
example, study by [16] improved the recognition of small-scale targets in satellite imagery by incorporating YOLOv5 
with Region-based Fully Convolutional Networks (R-FCN). Similarly, results from [17] showed that augmenting 
YOLOv5 with complementary models significantly increased classification accuracy. In [18], YOLOv5 framework 
was paired with Local Fully Convolutional Neural Network (LFCN) to better capture distant, minute objects. You 
Only Look Once (YOLO) model family has also been used in TB diagnostics. According to [19], TB detection system 
using YOLOv7 was built through a convolutional neural network (CNN) for efficient single-pass object detection. 
Another study by [20] introduced a unique method by modifying a hybrid network capable of extracting features from 
pretrained CNN and Vision Transformers (ViT), which were then processed through a dual-layer fully connected 
architecture based on YOLOv3. Despite these advancements, none of the mentioned methods incorporated evaluation 
strategies grounded in the guidelines of International Union Against Tuberculosis and Lung Disease (IUATLD). Since 
1994, IUATLD, in partnership with WHO, has endorsed unified anti-TB drug treatment protocols aimed at simplifying 
therapy, improving adherence, and minimizing errors in medication administration [21]. Therefore, applying IUATLD 
scoring standard in TB sputum diagnostics is crucial to achieving reliable and standardized clinical assessments [22]. 

Fig. 1 shows the structure of YOLOv5 model [16], which is composed of three essential parts, namely Backbone, 
PANet, and Output modules. Backbone functions as a feature extractor from the input image, using BottleNeckCSP 
blocks to maintain critical information while improving computational performance. Spatial Pyramid Pooling (SPP) 
mechanism is incorporated to capture features at various scales, increasing detection reliability. PANet (Path 
Aggregation Network) component refines the features extracted by Backbone through several stages for classification.  

 
Fig. 1. Methodology of Classifying and Counting Mycobacterium Tuberculosis  

This study proposes a classification and quantification system for Mycobacterium tuberculosis using YOLOv5 
architecture to solve the pending issue according to the evaluation guidelines set by IUATLD. The analysis centers on 
sputum specimens as the principal source for bacterial detection, since this method accurately identifies the predicted 
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bacterial regions. Through the capabilities of YOLOv5, the framework is designed to reduce misclassification and 
improve the sharpness as well as reliability of object boundary recognition in the classification workflow. 

The analysis contributes by addressing two major questions, namely how can YOLO architecture be applied to 
classify TB from sputum samples, and how IUATLD standard is used for counting Mycobacterium tuberculosis, 
respectively. 

The layout of this manuscript is arranged as follows, where Section II delivers an overview of existing studies, and 
Section III explains the proposed methods in depth. In addition, Section IV describes the results and offers an 
interpretation of the experimental data, and Section V concludes the study. 

II. METHODS 

The architecture of the proposed YOLO model was shown in Fig. 2. Initially, microscopic images of TB were 
gathered and resized from the original resolution of 1632×1442 to 640×480 pixels. These images were then annotated 
with bounding boxes following YOLO framework. The dataset passed through a training and detection phase aimed 
at classifying Mycobacterium tuberculosis. In the final stage, the number of detected bacteria was quantified based on 
the output of the model and evaluated using IUATLD assessment guidelines. 

 
 

Fig. 2. Methodology of Classify and Counting Mycobacterium tuberculosis  

A. Data Collection 

This study used a dataset comprising images of Mycobacterium tuberculosis provided by the Clinical Pathology 
Department of Dr. Soetomo Hospital in partnership with Airlangga University. A total of 1,265 samples were collected 
to support the training phase of YOLO-based detection model. These images were obtained through Ziehl-Neelsen 
staining, a standard method for visualizing acid-fast bacilli in TB diagnosis. The dataset was curated specifically for 
model training and included a balanced split for both training as well as validation purposes. During the process, 
ethical approval for data use was granted under exemption reference number 53/EC/KEPK/FKUA/2023. 

B. Insert Picture 

During the process, images used in this study were inserted into the model. The images contained the location of 
Mycobacterium tuberculosis coordinates in the form of the x and y axes. This step was performed to gather all the 
visual data processed and analyzed in subsequent steps. Following the process, ensuring that the images were correctly 
inserted was crucial for the accuracy and reliability of the study. 
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C. Resize  

After importing the images, adjustment was conducted to produce a standardized resolution. This resizing process 
ensured uniformity across all images, which was crucial for reliable analysis and model performance. By standardizing 
the dimensions of the images, the data became compatible with YOLOv5 framework, facilitating effective processing. 
This step was critical for preserving data consistency and enabling the accurate detection as well as quantification of 
Mycobacterium tuberculosis by the model. 

D. Labelling Data 

The annotation process, namely labelling, included assigning descriptive metadata to identify biological features, 
such as structural patterns shown in the dataset. The images were manually labeled to capture the precise coordinates 
of bounding boxes representing ground truth, which later served as a benchmark against the predictions generated by 
the model. Following the process, model training was performed over 100 epochs using a batch size of 16, with 
ongoing monitoring of both the loss function and performance metrics. Fig. 3 shows that YOLO model was applied 
to detect Mycobacterium tuberculosis in individual frames of images by generating bounding boxes localizing the 
bacteria. These boxes were defined by coordinate points (X, Y), serving as classification labels. The quantity of 
annotations per input varied, depending on how single or multiple overlapping bacterial regions were present. During 
the analysis, the labeling phase was completed in five working days with guidance from a lab technician at the Clinical 
Pathology Department of Dr. Soetomo Hospital in Surabaya. 

 
Fig. 3. Dataset Labelling with Bounding Box 

E. Proposed Classification Method  

The dataset annotated in the previous step served as the foundation for training the model to detect patterns, 
producing optimized weights for object identification in visual data. This process was conducted using YOLO 
algorithm. Model development and execution were conducted in PyCharm incorporated development environment. 
During the analysis, training included images specifically labeled to show Mycobacterium tuberculosis lesions. In the 
process, model parameters were iteratively adjusted to minimize classification errors, which signified the disparity 
between actual labels and model predictions. The accuracy of the annotated bounding boxes was reviewed and verified 
by two subject matter experts, namely the Head of the Clinical Pathology Laboratory and a professor from the Clinical 
Pathology Department. 

YOLOv5 used a combination of loss functions during the training phase, including those for classification, 
bounding box precision (localization), and objectness confidence, which estimated the probability concerning the 
presence of an object [23]. Despite YOLO family occasionally producing higher error rates than some other detection 
models, its ability to recognize object-like features in background regions contributed to strong generalization across 
varying object categories [24], [25], [26]. This version of YOLOv5 included several architectural upgrades over 
predecessors [27], [28], and was organized into three primary components, namely backbone, neck, and head. 
Backbone, which was built on the Darknet-53 framework handled feature extraction. In addition, neck improved these 
features by combining spatial and contextual details from various resolutions [16]. Head contained three distinct 
branches that generated multi-scale predictions. To refine detection results, the model also applied methods to 
eliminate overlapping bounding boxes [29]. 

The model known as YOLOv5, a refined successor in YOLO family included several critical developments that 
improved its performance in detection and classification tasks. Optimized for real-time operations, it offered fast 
inference speeds with minimal impact on accuracy [16], [30]. The advanced feature extraction of this model was 
powered by components such as Spatial Pyramid Pooling-Fast (SPPF) layer, which helped the tool capture multi-scale 
characteristics effectively [24]. Additionally, the model was also adaptable and lightweight, allowing users to select 
versions modified to specific accuracy as well as hardware requirements, on high-performance systems or constrained 
devices [31], [32]. Another feature was its flexible structure, which supported easy modifications for custom detection 
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needs [33]. YOLOv5 had been successfully applied across various sectors, such as detecting objects in dim lighting, 
identifying small targets in aerial views, and tracking motion in sports scenarios [24]. 

 

Input Image
CSP Darknet S3 SPPF Layer

PANet

Results of Classification

1st Model
. Data Train 60% (759 data) 

and Data Test 40% (506 data).

2nd Model
.Data Train 70% (885 data) 

and Data Test 30% (380 data).

3rd Model
Data Train 80% (1012 data) 

and Data Test 20% (253 data).

4th Model
Data Train 90% (1138 data) 

and Data Test 10% (127 data).

Models of Classification

Scanty Negatif

3+2+1+

Counting IUATLD

 
Fig. 4. Tuberculosis Classification Model 

 

Fig. 4 shows the architecture of TB Classification system during the study. Input Image was the initial phase, where 
images were introduced into YOLOv5 framework for object detection and classification. Following the process, 
backbone Network (CSPDarknet53) as the foundational feature extractor processed input images to generate 
informative feature maps. The use of Cross Stage Partial (CSP) Networks in this process improved computational 
efficiency and minimized redundant operations. SPPF (Spatial Pyramid Pooling Fast) Layer was used to capture 
contextual information across multiple spatial scales, aiding in the recognition of objects of varying sizes in the images. 
In addition, Neck Component (PANet – Path Aggregation Network) combined feature maps from different resolution 
levels. By aggregating multi-scale data, the tool ensured that the final feature representations used for detection were 
both comprehensive and relevant. The model generated predictions in the form of bounding boxes, which showed 
object locations along with class probabilities identifying the object types to provide information crucial for the 
subsequent quantification of Mycobacterium tuberculosis. In line with this discussion, classification Models could 
evaluate five different IUATLD grouping models. IUATLD-Based Counting included categorizing patients by the 
number of TB bacilli present. During the study, the proposed model incorporated YOLOv5 with IUATLD-based 
quantification standards to perform both classification and enumeration of Mycobacterium tuberculosis. 

F. Classification using YOLO  

During the training phase, the model was developed using a dataset containing labeled images that marked the 
presence of Mycobacterium tuberculosis. Fig. 5 shows that the training output included samples processed with 
YOLOv5 model. Each detection was assigned a confidence value between 0 and 1, showing how certain the model 
was about the presence of the bacterium in the predicted bounding box, as higher values represented greater 
confidence. These scores were crucial for eliminating low-certainty predictions and ensuring that only detections 
meeting a predefined threshold were considered for evaluation. During the process, YOLOv5 was used to assign a 
probability score to each detection, estimating the possibility that a region contained Mycobacterium tuberculosis. 
Predictions with higher confidence were considered more trustworthy for both classification and counting purposes. 
To ensure accurate detection and quantification, specific evaluation criteria were applied, considering bounding box 
precision, confidence levels, and object localization accuracy. Moreover, several major performance metrics were 
used to evaluate the effectiveness of the model. These metrics included Accuracy, reflecting the rate of correct 
detections, Precision, measuring the proportion of true positives out of all positive results, and Recall, which showed 
the sensitivity of the model in identifying real cases of Mycobacterium tuberculosis. Others included mAP (Mean 
Average Precision), which reviewed performance across varying confidence levels, and MAPE (Mean Absolute 
Percentage Error), assessing count precision using IUATLD guidelines. These metrics were calculated using verified 
statistical methods to ensure reliability. Additionally, senior pathologists manually validated the results, comparing 
the outcome with IUATLD guidelines to strengthen the credibility of the results. 

G. Counting Mycobacterium tuberculosis 

In this study, data splitting was conducted using the holdout validation method, commonly known as data 
partitioning [34]. The method automatically separated the dataset into three groups, namely training, validation, and 
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testing subsets. Independent test data played a crucial role in classification workflows, allowing accurate evaluation 
of model performance after training. This method helped determine how well the model could adapt to previously 
unobserved samples [35]. The dataset comprised 1,265 images, divided into three subsets and saved in designated 
directories. During training, the model was trained to learn object detection patterns from these labeled inputs. To 
assess performance across diverse configurations, four partitioning schemes were explored. Scenario 1 assigned 60% 
(759 images) to training, and 20% each to validation (253) as well as testing (253). Additionally, Scenario 2 used 70% 
for training (1,096 images), with the remaining 15% allocated to validation (60) as well as testing (62). In Scenario 3, 
80% of the data (1,096 images) was used for training, 10% for validation (62), and 15% for testing (60). Lastly, 
Scenario 4 applied 90% which was equivalent to 1,138 images for training, with 0.5% each for validation (127) and 
testing (127). 

 

 
Fig. 5 Result of training the Image of Mycobacterium tuberculosis with YOLOv5 

 

The quantification of Mycobacterium tuberculosis was derived from the classification output, implemented across 
four distinct TB counting scenarios. The grading of bacilli present in sputum samples followed the standards 
established by IUATLD. According to these guidelines, the categories were arranged in the following order. Negative 
was no acid-fast bacilli (AFB) shown across 100 microscopic fields, 1+ represented detection of 10 to 99 AFBs in 100 
fields, 2+ was between 1 to 9 AFBs per field across at least 50 fields, and 3+ represented more than 10 AFBs observed 
in each field across a minimum of 20 fields. Participant eligibility in this study was limited to newly diagnosed smear-
positive pulmonary TB (Category I) patients aged 17 to 60 who were initiating standard first-line anti-TB therapy. 
Following the discussion, individuals diagnosed with extrapulmonary TB were excluded from this evaluation [36] 

H. Evaluation 

During the evaluation stage, the system measured how well the trained model performed when applied to previously 
unobserved data excluded from the training process. This testing was conducted only after the model had passed 
through full training. Moreover, accuracy was assessed using mAP metric—a widely recognized benchmark for 
evaluating object detection models, including Regional (R)-CNN, Faster R-CNN, SSD (Single Shot Multibox 
Detector), and similar architectures [37].  

This study used three primary metrics to evaluate model performance, namely Precision, Recall, and mAP. Both 
mAP and F1-Score were used to assess the effectiveness of the model. Moreover, mAP was widely adopted in object 
detection tasks as it quantified the ability of the model to correctly locate and classify objects in images. It was derived 
by calculating Average Precision (AP) for each category and averaging these results [24]. The computation of mAP 
followed the formulation described in Equation (1). 
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Where: 
TP : True Positive  
TN : True Negative 
FP : False Positive 
FN : False Negative 
During the analysis, mAP evaluation standard was shown in Table 1. A score of more than 70% signified that the 

model achieved high accuracy. Scores ranging between 50% and 70% showed the model performed at an acceptable 
level. On the other hand, mAP value less than 50% reflected poor model performance. 

 
TABLE 1 

MAP EVALUATION STANDARD [36] 

mAP (%) Value 

mAP > 70% Extremely Accurate: The model performed with high accuracy in object detection and classification. 

50% ≤ mAP ≤ 70%   Decent Accuracy: The model showed good performance generally, but it was not yet fully optimized. 

mAP < 50% Unreliable Accuracy: The model showed significant difficulties in correctly detecting and classifying objects. 

 
Several statistical metrics were used to evaluate model accuracy, including Mean Absolute Deviation (MAD), Mean 

Squared Error (MSE), and MAPE. Among these, MAPE was widely recognized as a preferred metric for assessing 
forecast performance. The model evaluation standard included values less than 10% showed highly accurate 
predictions, and values between 10% and 20% signified good accuracy. A range of 20% to 50% reflected moderate 
accuracy, and values exceeding 50% were considered poor forecasts, as shown in Table 2 [38]. 

 
TABLE 2 

MAPE EVALUATION STANDARD [38] 

MAPE (%) Value 

MAPE < 10% Highly Accurate Forecast 

10 - 20% Good Forecast 

20 - 50% Reasonable Forecast 

MAPE > 50% Inaccurate Forecast 

III. RESULTS 

Data partitioning included separating the dataset into several subsets to facilitate both training and evaluation of the 
model. These different configurations aimed to identify which split achieved the highest mAP, serving as an indicator 
of the optimal performance setup of the model. 

 
TABLE 3 

CONFUSION MATRIX OF CLASSIFICATION MYCOBACTERIUM TUBERCULOSIS WITH YOLOV5 

Data Train  True Positive (TP) False Positive (FP) False Negative (FN) True Negative (TN) 

Data Train 60% 398 92 98 171 

Data Train 70% 413 60 75 337 

Data Train 80% 510 75 80 347 

Data Train 90% 547 98 95 398 

 
Table 3 shows the confusion matrices for Mycobacterium tuberculosis classification task across four experimental 

scenarios. Using Equations (1) to (4), the analysis computed the evaluation metrics, namely accuracy, precision, recall, 
F1 score, and mAP. In 1st scenario, the model produced 398 true positives (TP), 92 false positives (FP), 98 false 
negatives (FN), and 171 true negatives (TN), respectively. The 2nd recorded 413 TP, 60 FP, 75 FN, and 337 TN. The 
3rd scenario had 510 TP, 60 FP, 75 FN, and 347 TN. Lastly, 4th scenario achieved 547 TP, 98 FP, 80 FN, and 171 TN. 
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Fig. 6. Results from Dataset Split Evaluation 

 

Fig. 6 shows the results of four different testing scenarios, each associated with distinct performance metrics. The 
1st through 4th scenario achieved accuracy scores of 74.96%, 84.74%, 84.68%, and 83%. Precision was 81.22%, 
87.31%, 87.17%, and 84.80%. The recall reached 80.24%, 84.63%, 86.44%, and 85.20%. Corresponding F1-scores 
were 80.73%, 85.95%, 86.80%, and 85%, while mAP scores obtained were 76.41%, 84.98%, 87.98%, as well as 
80.85%. 

Fig. 7 shows the training graph from the classification of Mycobacterium tuberculosis using YOLOv5 model. 
Train/Box_Loss curve signified a steady downward trend, decreasing from approximately 2.0 to 1.5, showing 
improved accuracy in drawing bounding boxes. Similarly, Train/Cls_Loss curve dropped consistently from around 
1.6 to 0.8, showing improved model performance in object classification. The consistent reduction in both loss curves 
showed stable learning without major fluctuations. This showed a strong sign that the model was training effectively 
without significant signs of overfitting or underfitting. Furthermore, the validation curves—val/box_loss and 
val/cls_loss—also followed a similar downward trajectory, reflecting good generalization to unseen data. This 
grouping between training and validation losses confirmed that the model was learning from the training data and 
adapting well to external datasets. 

 

 
Fig. 7 Training Graph of Mycobacterium tuberculosis Image Classification Using YOLOv5 

IV. DISCUSSION 

Most existing studies focused on detecting and diagnosing TB to determine its presence or absence, without 
following the evaluation process with IUATLD assessment standards. In observation, Mycobacterium tuberculosis 
appeared as elongated, red-colored organisms against a blue background. However, accurate interpretation of sputum 
microscopy results should follow IUATLD grading system [24]. IUATLD offered a globally accepted framework 
with standardized criteria for diagnosing and categorizing TB. Incorporating these guidelines improved the validity 
and comparability of results across studies. Additionally, IUATLD method showed comprehensive benchmarks for 
identifying and classifying TB bacilli. Embedding these standards into YOLOv5 detection model could significantly 
refine the classification and enumeration process, leading to improved precision when identifying Mycobacterium 
tuberculosis in diagnostic imagery. 

The results of the acid-fast bacilli examination in principle observed TB microorganisms, namely Mycobacterium 
tuberculosis, as the cause of TB under a microscope after staining. This allowed the examination data to be obtained 
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in the form of the number of sputum TB adjusted to IUATLD scale represented in negative and positive (1+, 2+, 3+), 
as shown in Table 4 [39]. 
 

TABLE 4 
SCALE IUATLD [38] 

Score Criteria 

Negative 
No acid-fast bacilli were detected across a minimum of 100 
observed microscopic fields. 

Scanty 1-9 acid-fast bacilli were found in 100 visual fields 

1+ 10-99 acid-fast bacilli were found in 100 visual fields 

2+ 1-10 acid-fast bacilli were found in 50 visual fields 

3+ More than 10 acid-fast bacilli were found in 20 visual fields. 

 
IUATLD incorporation or calculation into the prediction results from YOLO had transformed through these 

structured steps: First was raw YOLOv5 Classification, where the model detected Mycobacterium tuberculosis using 
bounding boxes and confidence scores. Second was AFB Count Extraction, where the output from YOLOv5 was 
processed to count the number of Acid-Fast Bacilli (AFB) in microscopic images. Third step was IUATLD Score 
Mapping to detect AFB was translated into IUATLD grades using the following criteria in Table 4. 

During the process, IUATLD classification was applied to a dataset consisting of 1,265 images, which were 
collected from 13 different patients. Each set of approximately 100 images represented sputum sample results from 
an individual patient. Consequently, the dataset enabled IUATLD-based classification for a total of 13 patients. 
IUATLD assessment shown in Table 4 was according to the classification output derived from the second scenario, 
which produced the highest accuracy among all scenarios. 

The following reviewed IUATLD classification outcomes for each patient based on the number of visual fields 
falling into specific scoring categories. The 1st Patient was 1+ (98), 2+ (70), 3+ (28), IUATLD Score was 3+. The 2nd 
Patient was 1+ (98), 2+ (76), 3+ (22), IUATLD Score was 2+. In addition, the 3rd Patient had 1+ (100), 2+ (74), 3+ 
(26), with IUATLD Score of 3+. The 4th Patient was 1+ (98), 2+ (78), 3+ (20), having IUATLD Score of 2+. The 5th 
Patient was 1+ (96), 2+ (66), 3+ (30), IUATLD Score was 3+. The 6th Patient had 1+ (96), 2+ (66), 3+ (30), with 
IUATLD Score of 3+. The 7th Patient was 1+ (99), 2+ (69), 3+ (30), having IUATLD Score of 3+. The 8th Patient had 
1+ (98), 2+ (68), 3+ (30), IUATLD Score was 3+. The 9th Patient was 1+ (99), 2+ (82), 3+ (17), IUATLD Score was 
2+. The 10th Patient had 1+ (98), 2+ (73), 3+ (25), with IUATLD Score of 3+. The 11th Patient was 1+ (98), 2+ (75), 
3+ (23), having IUATLD Score of 3+. The 12th Patient was 1+ (98), 2+ (70), 3+ (28), IUATLD Score was 3+. The 
13th Patient had 1+ (37), 2+ (27), 3+ (10), with IUATLD Score of 1+. These results showed IUATLD-based 
classification effectiveness when incorporated with YOLOv5 model, enabling accurate bacillary quantification per 
patient. 

 
TABLE 5.  

IUATLD OUTCOMES FROM THE SECOND DATA SPLIT EVALUATION 
NO Number of Visual Fields 

with Condition 1+ 
Number of Visual Fields 

with Condition 2+ 
Number of Visual Fields 

with Condition 3+ 
SCORE IUATLD 

1 98 70 28 3+ 
2 98 76 22 3+ 
3 100 74 26 3+ 
4 98 78 20 3+ 
5 97 73 24 3+ 
6 96 66 30 3+ 
7 99 69 30 3+ 
8 98 68 30 3+ 
9 99 82 17 2+ 
10 98 73 25 3+ 
11 98 75 23 3+ 
12 98 70 28 3+ 
13 37 27 10 1+ 

 
Among the 13 patients analyzed, 1 individual was categorized as 1+, 7 were classified as 2+, and 5 fell into the 3+ 

category according to IUATLD classification results, as shown in Table 5. Referring to [39], MAPE score of 84.98% 
signified exceptionally accurate forecasting performance. In this study, MAPE value was derived by comparing 
Mycobacterium tuberculosis counts identified by the proposed detection model with those recorded manually by a 
laboratory assistant from the Clinical Pathology Department, Dr. Soetomo Hospital, Universitas Airlangga. The 
discrepancy between the predicted and actual values, commonly referred to as the residual, was used in calculating 
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forecasting accuracy. A frequently used method for this was MAPE, which expressed the average error as a 
percentage. During the analysis, MAPE was calculated by taking the absolute error percentages across all observations 
and averaging the outcome over the total number of measured periods [24]. The mathematical formula used to compute 
MAPE was provided in Equation (5). 

���� =
�

�
∑�
��� ⃒

�����

��
⃒�100%  (5) 

Information: 
n : Sample Size 
Ai : Actual Data Value 
Fi : Forecasting Data Value 
 

Table 6 shows that the 1st and 2nd scenario had the same mAP value of 76.41% and 0.46% MAPE. The 3rd scenario 
had mAP value of 87.98% and MAPE of 0.38% while the 4th achieved 80.85% mAP as well as 0.46% MAPE.  
 

TABLE 6.  
RESULTS OF MAPE 

No  YOLO Scenario mAP (%) MAPE (%) 

1 YOLOv5 1st scenario 76.41% 0.46% 

2 2nd scenario 84.98% 0.15% 

3 3rd scenario 87.98% 0.38% 

4 4th scenario 80.85% 0.46% 

 
This study used two evaluation metrics, namely mAP for identifying the most accurate classification performance, 

and MAPE for determining the most reliable IUATLD calculation outcome. Table 1 shows that the second scenario 
achieved the highest mAP score at 84.98%, signifying it provided the most effective classification results. However, 
this study also represented the importance of IUATLD-based evaluation. According to Table 2, MAPE value less than 
10% signified highly accurate predictions. The 3rd scenario produced the lowest MAPE value of 0.15%, showing it 
achieved the most precise IUATLD forecasting outcome. Therefore, as the 3rd scenario was observed in classification, 
the 2nd scenario showed superior accuracy in TB grading. 

V. CONCLUSIONS 

In conclusion, this study used YOLO framework to identify Mycobacterium tuberculosis. The dataset was initially 
labeled under a single classification class, and after labeling, a preprocessing step was conducted including the 
arrangement of images to guide the detection of Mycobacterium tuberculosis in each frame. The annotated dataset 
was then used to train the model, generating weight values essential for object detection. Among the four partitioning 
strategies evaluated, the second scenario produced the best performance, achieving 84.74% accuracy, 87.31% 
precision, and mAP of 84.98%. In addition to this outcome, the elevated mAP reflected the strong detection capability 
of the model. When assessment was conducted using MAPE, the system showed a low error rate of 0.15%, signifying 
high prediction accuracy. Based on IUATLD grading applied to 13 patient cases, results showed 1 case classified as 
1+, 7 as 2+, and 5 categorized under the 3+ grade.  
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