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Abstract  
 
Background: Traditional approaches to rice disease identification depend mainly upon visual examination, which is quite labor-
intensive and generally demands a certain skill level from people engaged in this activity. However, these approaches suffer 
from high time costs and potential errors and are impractical for large-scale daily monitoring. The recent rise of deep learning 
has offered opportunities for automated detection process improvement, which needs to be fast-accurate as good farmer-centric.   
Objective: This study aims to enhance the accuracy of image rice leaf disease classification via feature extraction for rice leaf 
disease in four instances of pre-trained CNN models and provide an automated solution for early detection ahead of timely care 
by obtaining insights into crop production through precision agriculture.  
Methods: This study combined transfer learning with four pre-trained CNN models - InceptionResNetV2, MobileNetV2, 
DenseNet121, and VGG16. 
Results: The outcome of this research enables the identification of the optimal model to relate datasets where DenseNet121 
achieved the highest accuracy, i.e. 99.10%, followed by MobileNetV2, having a precision of 97.10%.  
Conclusion: The new framework results in a highly accurate and high-throughput early disease detection element in precision 
agriculture, better than state-of-the-art approaches based on traditional techniques. 
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I. INTRODUCTION  

Detection of crop disease in the early stage with high accuracy is important to ensure more productivity and achieve 
global food security, particularly as fast growth status correlates with precision agriculture. Rice (Oryza sativa) is one 
of the most economically important food staples in the world, but is extremely vulnerable to several forms of disease 
that cause massive reductions in yield and literacy [1], [2]. When leaf disease is treated at the initial stage of 
development, yield can reach a maximum level with and without special assistance. In agriculture, one of the toughest 
areas to study is crop disease prediction, which has been widely recognized and classified using rehabilitation 
programs. The widespread classification is attributed to growing public awareness of agriculture’s importance to food 
security [3]. Rice is affected by bacteria leaf blight (BLB), tungro, brown spot, and blast, which are more serious 
globally. The causal agents include bacteria, viral, or fungal pathogens such as Xanthomonas oryzae pv. oryzae (XOO), 
which continues to pose a great threat to the production rate. 

Xanthomonas oryzae pv. oryzae (XOO) causes a fatal disease of rice BLB, affecting many varieties [4]. The 
infection caused by XOO reduces the efficiency of metabolism and photosynthesis, leading to an 80% decrease in 
production [5]. The target area is often leaf and causes considerable damage in terms of yield. Symptoms of this 
disease first appear as water-soaked streaks, which will become yellow and brown starting from leaf tips and margins. 
Management of BLB, including proper treatment of resistant varieties, clean and sanitation practices in the field, 
combined with suitable chemicals. Early warning is also essential for controlling moths to reduce congestion in healthy 
rice production. 

Tungro disease occurs due to a complex infection with rice tungro spherical virus (RTSV) and rice tungro 
bacilliform virus (RTBV), which is often transmitted through green leafhoppers [6], [7], [8]. These viruses cause 
various symptoms that appear 6 to 15 days after the infection, including stunting, yellow to orange leaf discoloration, 
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and reduced grain quality [9]. The major symptoms include severe stunting and leaf yellowing, poor root development, 
low tiller production, as well as small sterile panicles with black blotches on rice grains [10]. 

Bipolaris oryzae is the primary cause of brown spot (BS) disease that damages crop both qualitatively and 
quantitatively [11], [12]. This disease compromises the photosynthetic capacity of leaf due to the formation of 
elongated spot lesions in the green tissues, which progressively expand after infection [13], [14]. When not properly 
managed, it can lead to considerable reductions in yield, with BS potentially causing an average yield loss of 52% in 
rice [15].  

Magnaporthe oryzae (M. oryzae) is another disease, recognized as the source of rice blast that threatens production 
globally and causes significant output losses every year [16]. Compared to BS, blast can lead to an average yield loss 
of approximately 30% when not effectively managed [17]. The frequency of rice blast may be increased by several 
variables, including high humidity (>80%), gloomy and damp weather, low temperatures (15–25%), and heavy 
fertilizer treatment [18]. At any stage of rice growth, M. oryzae can infect airborne components and cause neck, node, 
grain, and seedling blast [19]. Therefore, there is a need to identify rice disease as an early process of implementing a 
control strategy. 

The conventional methods of identifying rice disease are highly visual, which often require skill and knowledge to 
be well-trained professionals. However, these methods are extremely slow and labor-intensive for incidental 
monitoring. To address the limitation, artificial intelligence and deep learning have been identified to accelerate the 
process of crop disease detection with high accuracy. Deep learning model, particularly convolutional neural network 
(CNN), has shown promising results in image classification with various applications, such as crop disease detection. 
CNN is extremely powerful in image processing, operating through a multi-layer framework that includes input 
(visible) convolutional, pooling, normalization, and fully connected Layers. These learnable parameters (weights) 
allow CNN to capture spatial relationships in input information and adapt effectively to different classification tasks 
[20]. 

Despite the advancement in technology, detection models for leaf disease still have a limited focus [21][22], lacking 
extensive hyperparameter optimization to maximize performance [23]. The majority works with curated dataset that 

do not extend to large-scale and field-specific data, limiting practical re-usability in real agricultural settings [24]. 
Several solutions have focused on reasonably versatile and localized problems, although some models cannot 
generalize well to broader or more diverse agricultural conditions [25]. There is also limited information on the use 
of modern pre-trained models to investigate full-scale transfer learning for better accuracy and efficiency in 
classification [26]. Therefore, an appropriate innovation is needed to develop intelligent automated systems that can 
be robust and scalable for precisely detecting multiple rice leaf disease in any environmental condition. In this context, 
transfer learning, where pre-trained models on large dataset are adapted for specific tasks, presents a very attractive 
solution to improve performance and efficiency, as well as reduce computational costs and training time [27], [28], 
[29]. 

Numerous similar studies have been conducted on rice leaf disease using CNN models, one of which applied 
InceptionResNetV2 [30], VGG16 [20], VGG19 [31], and SVM Classifier [32]. A similar study by Narasimha applied 
the InceptionResNetV2 model to predict three types of rice leaf disease, namely leaf blast, brown spot, and BLB [30]. 
In comparison, this study predicts four types, such as tungro, brown spot, blast, and BLB, by comparing the 
performance of four models, namely InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16. Although 
previous reports achieved relatively high accuracy, further optimization with additional hyperparameters is 
recommended using alternative method to achieve improved accuracy.  

This study proposes a deep learning-based method for detecting rice leaf disease using transfer learning with four 
pre-trained CNN models, namely InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16. The objective is to 
fill the knowledge gap by exploring the use of CNN through feature extraction capability provided to improve rice 
leaf disease classification accuracy in an automated pattern in precision agriculture. Several rice leaf images need to 
be used, preprocessed, and reshaped to a size appropriate for uniformity. Augmentation methods such as rotations, 
translations, and flips are used to create more variation in dataset and prevent overfitting [33], [34]. Pre-trained models, 
trained on ImageNet, are used as feature extractors that have convolutional layers frozen and keep only general 
features. Specifically, DenseNet121 uses a conv_base set to False to retain pre-trained weights from ImageNet to 
accelerate the training process and reduce the risk of overfitting. By forking the features into several dense layers 
tailor-made for classifying rice leaf disease, this model detects numerous disease categories effectively and accurately. 
The final layer produces softmax outputs that stratify samples into four disease categories. Subsequently, model 
performance is evaluated using accuracy, precision, recall, and F1 score matrices. The results show the advantages of 
transfer learning in improving the accuracy and speed of classification [35], [36], which can provide a powerful, large-
scale solution for precision agriculture. 
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The selection of four models is due to the effectiveness in previous studies. For example, InceptionResNetV2 
performs multiscale feature extraction with residual connections [30], MobileNetV2 is both lightweight and 
computationally efficient [37], DenseNet121 fosters efficient gradient flow and feature reuse [38], while VGG16, a 
strong and simplistic baseline, is well-known for robustness [20]. These architectures are well balanced in their 
performance and computational cost, showing suitability for use in resource-constrained agricultural settings. 

This study focuses on the application of transfer learning frameworks to evaluate the detection of rice leaf disease 
using deep learning in precision agriculture. The analysis includes estimating InceptionResNetV2, MobileNetV2, 
DenseNet121, and VGG16 by proposing a custom convolutional block design that improves model generalization and 
feature extraction for diverse classes of disease. The results support the constructive role of deep learning in 
agricultural diagnostics and practical application in farming environments, showing the need for timely and precise 
disease identification. Additionally, this study contributes to the development of more efficient and robust systems for 
crop disease recognition in precision agriculture by analyzing the strengths and weaknesses of the examined 
architectures, providing methodological recommendations. The structure of this study is as follows, Section II covers 
the related works, and Section III defines methods. Section IV discusses the results, Section V shows the performance 
of model compared to existing method, and Section VI consists of conclusions and recommendations for future 
studies. 

II. LITERATURE  REVIEW  

Dogra et al. [31] presented the significance of rice as a crucial crop, feeding over half of the world’s population. In 
the study, CNN-VGG19 model was introduced with transfer learning for detecting brown spot rice leaf disease, which 
achieved 93.0% accuracy. The model performance metrics included 89.9% sensitivity, 94.7% specificity, 92.4% 
precision, and 90.5% F1 score. The proposed model outperformed the existing baseline model in identifying and 
classifying rice leaf disease. Another study by Mannepalli et al. [20] presented VGG16 CNN to identify BLB, Leaf 
Smut (LS), and Brown Spot in rice leaf. During the experiment, VGG16 model was used for feature extraction and 
classification. The results showed that the implementation of VGG16 contained a high ability to differentiate rice leaf 
disease with 97.77% classification accuracy. The early and accurate disease diagnosis helped in taking necessary 
measures that reduced crop loss and the declining economic power of farmers. 

Narasimha et al. [30] presented InceptionResNetV2 model with deep neural networks in transfer learning to predict 
rice leaf disease. A proprietary dataset of rice leaf images was used for the experiment, with image pre-processing and 
augmentation performed before classifying using a fine-tuned InceptionResNetV2. The model achieved an accuracy 
of 95.67% in detecting rice leaf disease, which was better than a basic CNN model. This study proved the potential 
use of transfer learning to increase classification accuracy and proposed future investigation on other crops and 
optimization for hyperparameters. 

Shrivastava and Pradhan [32] showed an image-based method that used color cues to categorize disease affecting 
rice. The study assessed seven classifiers by observing 14 different color spaces and extracting 172 characteristics. 
Based on the results, Support Vector Machine (SVM) had the best accuracy, at 94.65%. A dataset of 619 images, 
divided into four classes such as Rice Blast, BLB, Sheath Blight, and Healthy Leaf, was used to train and evaluate the 
model. The results showed color cues in an automated rice disease classification system that could help farmers 
improve crop quality and output. 

Chen et al. [39] presented an automated detection and diagnosis system for food safety and quality. Pre-trained deep 
CNN, VGGNet, and Inception modules, and transfer learning were used to improve accuracy. This solution improved 
performance by a large margin using pre-trained weights of model trained for ImageNet. The model achieved 
validation accuracies of 91.83% on the common dataset and 92.00% on rice planting images in challenging 
backgrounds, despite using computationally inefficient backbone layers. This proved the method efficacy and 
efficiency in real-time plant disease detection. 

Bari et al. [40] identified the main threat to sustainable production and food security, suggesting early detection 
strategies to secure crop health. One of the reasons for this transition was that classical diagnosis systems used to be 
sluggish, erroneous, and pricey, producing inefficient outcomes-focused machines. However, the system performance 
has been affected by challenges in terms of various image backgrounds (making images harder to find schema-related 
patterns), fuzzy borders of symptoms, inconsistent weather conditions, and co-occurring disease. These challenges 
have been recently explored using Faster R-CNN algorithm to build a real-time rice leaf disease detection system. 
Combined with public and field-specific dataset, high accuracy was obtained in diagnosing rice blast (98.09%), brown 
spot (98.85%), and hispa damage at the seedling stage, along with healthy lead (99.25%). Faster R-CNN model has 
shown good results in identifying rice leaf disease accurately and quickly. 
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Nandhini and Bhavani [41] presented machine learning methods for classifying crop disease, using SVM, K-NN, 
and decision trees. The experiment used feature extraction methods to obtain the infected area from leaf image. This 
method enhances the contrast between healthy and diseased leaf areas for model to learn more distinctive 
representations from weakly labeled data (color and geometry), while effectively extracting diverse features from the 
leaf’s structural patterns. The other two methods were less accurate at classification using the algorithms than SVM. 

III. METHODS 

This section presents the methodology for classifying rice leaf disease using a deep learning pipeline, mainly 
focusing on transfer learning with InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16. The process 
includes several critical stages, namely image acquisition, pre-processing, augmentation, feature extraction, model 
evaluation, and visualization. Each stage is described below, and relevant equations are introduced to formalize key 
concepts, showing a six-stage method for identifying rice leaf disease, as presented in Fig. 1. 

 
Fig. 1 Framework for rice leaf disease identification using pre-trained model. 

 

A. Image Acquisition 

The experiment was conducted using 5932 rice leaf images sourced from Kaggle, which were divided into four 
categories. These included tungro, blast, brown spot, and BLB, with each image containing only one disease, as shown 
in Fig. 2 [42]. Training and testing sets of the data were split 90:10 from each other. The images were classified using 
InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16. Subsequently, dataset was divided into training and 
testing set using a ratio of 90:10 based on the Pareto principle of 80:20. In this study, 90:10 was selected because 
training required more data.  

 

 

Fig. 2 Samples of rice leaf disease [42] 

 
Deep learning model such as InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16 perform better with 

larger training sets to learn more robust and generalizable features. Since the dataset used in this study was large, 
allocating 10% for testing was considered feasible and sufficient to evaluate reliable performance. A function called 
tf.keras.preprocessing.image_dataset_from_directory was used to load and manage images. By the folder names, this 
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program pulls images from folders, resizes, and labels. The primary settings for loading the data included resizing all 
images to 150 × 150 pixels, thereby ensuring a consistent input size. The images obtained were processed in batches 
of 32 during training to optimize memory usage and computational efficiency. Furthermore, the dataset was shuffled 
to avoid model learning unintended patterns from the order of the data. 

Mathematically, in Eq. (1), the input image data � is resized, where �resized presents the resized image, and the 
operation ensures all images � conform to the same dimensions of 150 � 150 ������. 
 

�resized  =  Resize��,  (150,  150)�    (1) 

B. Image Pre-Processing 

Image pre-processing prepared the data for effective model training. The first step scales the image pixel values to 
a range from 0 to 1 using Eq. (2). 

 

�normalized  =  
�original

���
    (2) 

 
where �original stands for the original pixel values. This scaling helps to make the training process more stable and 

faster. Additionally, dataset splits into training and validation sets. 10% of the data goes to the validation set. This 
split allows to check how well the model works on new data during training. 

C. Image Augmentation 

Data augmentation methods enhanced the dataset and improved model generalization ability by introducing 
variability through transformations like rotation, flipping, and scaling. This helped prevent overfitting and allowed the 
model to perform better on unseen data, particularly when addressing limited or imbalanced dataset. 
ImageDataGenerator class was used to perform various data augmentation transformations. Images were randomly 
rotated by approximately 30 degrees, as described by the rotation matrix in Eq. (3). Horizontal and vertical translations 
were applied in a range of 20% of the image dimensions, while random shear transformations were introduced as 
represented in Eq. (4). Additionally, random zooming of 20% was applied to further enhance variability. To increase 
robustness, images were randomly flipped horizontally. Finally, pixels generated in the augmented regions were filled 
using the nearest pixel values through the fill mode setting. 

�� =  �
���� −���� 0
���� ���� 0

0 0 1
�     (3) 

 
 

� =  �
1 �ℎ���_������ 0
0 1 0
0 0 1

�     (4) 

 

D. Feature Extraction with Pre-Trained CNN Models 

Feature extraction was carried out using pre-trained CNN as a basis for transfer learning. The model used comprised 
InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16, which were pre-trained on extensive dataset, 
providing a robust set of learned features. As shown in Fig. 3, DenseNet121 connected each layer to others in a 
feedforward fashion [43]. This suggested that each layer received inputs from all preceding layers and passed output 
to others through concatenation. 

 

 
Fig. 3 DenseNet121 Architecture [43] 
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The convolutional base (conv_base) of pre-trained model was frozen by setting conv_base.trainable = False. This 
prevented the weights of the convolutional layers from being updated during training, preserving the learned features 
from the initial training. The convolutional blocks used in this study were the same as the initial architectures of pre-
trained model (DenseNet121). These blocks were not changed but still used in transfer learning mode with frozen 
weights (conv_base.trainable = False) to ensure that the feature extraction ability remained intact. The originality was 
not in creating a new conv block but in how the architectures were comparatively assessed, improved, and combined 
with personalized dense layers for the classification of a domain-specific task to overcome rice leaf disease. Custom 
classification layers were added to model for the final prediction task. Initially, a flattened layer was used to convert 
the two-dimensional feature maps into one-dimensional vectors. This was followed by a fully connected dense layer 
with 256 units and a ReLU activation function, as described in Eq. (5), where � represented the weight matrix and � 
served as the bias term. Finally, the output layer consisted of a dense layer with four units and a softmax activation 
function for multi-class classification, as shown in Eq. (6), where �� is the logit or score for class �, and ∑ ���

�  is the 

sum of the exponentials of the logits across all classes. 
 

������  =  ReLU(� . ����� +  �)    (5) 
 

���  =  
���

∑ �
��

�  
         (6) 

 
The model is compiled with the Adam optimizer (learning rate of 0.001) and categorical cross-entropy loss function 

in Eq. (7). 
 

L  =   − ∑ ��  log(���)�
���      (7) 

 
where �� is the true label and ���  is the predicted probability for class �. Accuracy is used as the evaluation metric in 
Eq. (8). 

Accuracy  =  
Number of Correct Predictions

Total Number of Predictions
     (8) 

 
 

Compared to DenseNet121, InceptionResNetV2 integrates multi-scale to extract the feature and allows layers to be 
skipped. Meanwhile, MobileNet splits the convolution operation into two, reducing the number of parameters 
significantly, making processing lighter and faster. VGG16 consists of only 3x3 convolution layers in a row, followed 
by a pooling layer. This model has many parameters, which leads to high memory usage and slower computation. 
VGG16 is still frequently used due to the stability and good performance in feature extraction. 

In this study, the experiment was conducted on a high-performance computational platform with an NVIDIA GPU 
to accelerate the training process. The proposed model was implemented using TensorFlow and Keras, with Python 
as the programming language. Rice leaf disease dataset was split into training (90%) and test (10%) sets. The training 
process used data augmentation methods to prevent overfitting, and early stopping was applied to monitor validation 
loss and halt training when performance plateaued. Model hyperparameters and training configuration are shown in 
Table 1. 

TABLE 1 
MODEL HYPERPARAMETERS AND TRAINING CONFIGURATION 

Parameter Value 
Batch size 32 
Image size 150x150 
Epochs 10 
Optimizer Adam 
Learning rate 0.001 
Loss function Categorical Crossentropy 
Validation split 10% 
Metrics Accuracy 

 

E. Model Evaluation 

The validation dataset was used to assess model performance by determining the loss and accuracy with the 
model.evaluate function. Performance metrics were also used, including precision, recall, and F1-score from scikit-
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learn's classification_report. The confusion matrix using confusion_matrix provided a detailed breakdown of how 
model classified across different classes. 

Evaluation of the suggested model was carried out with basic metrics such as the accuracy, precision, recall, F1 
score, and confusion matrix. Precision corresponded to true positive outcomes divided by the total predicted positive 
cases. Accuracy captured the fraction of images that were correctly classified, and recall was the fraction of true 
positive cases. F1 score served as the harmonic mean of precision and recall. All of these measures became 
increasingly important for a multi-class classification, particularly in medical diagnoses, due to the asymmetrical costs 
of false alarms and misses. Furthermore, a confusion matrix was constructed to analyze and visualize class-wise 
distributions of the predictions. These methods of evaluation were based on the definitions provided in Scikit-learn 
library [44]. Accuracy was defined as the total proportion of images that were correctly classified. Precision, for every 
disease class, represented the ratio of true positives to the total of true and false positives. Recall represented the 
proportion of true positives relative to the sum of true positives and false negatives. F1 score, the harmonic mean of 
Precision and Recall, provided a balanced measure of both metrics. Confusion Matrix provided a comprehensive 
overview of the classification outcomes that display each class's true positives, false positives, true negatives, and 
false negatives. Finally, Training and Validation Loss/Accuracy track the model’s accuracy and loss evolution over 
epochs, which were visualized to ensure a proper learning curve. 

F. Visualization 

Visualization methods were used to interpret and present model performance effectively. These methods provide a 
better understanding of model prediction behavior across many classes, assist in spotting trends during training, and 
identify possible problems like overfitting. Therefore, useful insights into the strengths, weaknesses, and reliability of 
model could be obtained by viewing confusion matrices, accuracy/loss curves, and sample forecasts. Training and 
validation curves were plotted for both accuracy and loss to observe the learning process and detect potential issues 
such as overfitting. A heatmap of the confusion matrix was shown using seaborn, offering a visual representation of 
classification performance across different classes. Model architecture was visualized using the plot_model function, 
providing a graphical overview of the network structure, including layers and their connections. Finally, sample 
predictions are shown alongside true labels to qualitatively assess model ability to generalize and perform well on new 
data. 

IV. RESULTS 

The results provide the experimental data of the proposed method described in Chapter 3 based on 
InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16-based CNN for classifying rice leaf disease. This 
section started by explaining the experimental configuration and assessing results in terms of performance metrics. 
The performance of different model was also compared, concluding with a discussion about how well the model might 
work on new, unseen data, along with the potential limitations. 

This study used four advanced pre-trained CNN models, InceptionResNetV2, MobileNetV2, DenseNet121, and 
VGG16, to identify the most effective. The experiment used accuracy (%) and training time as evaluation metrics, 
with the results shown in Table 3. 

TABLE 3 
EXPERIMENTS WITH VARIOUS CNN MODELS 

CNN Model Accuracy Training Time 
InceptionResNetV2 96.45 00:08:53 
MobileNetV2 97.10 00:07:48 
DenseNet121 99.10 00:09:27 
VGG16 96.11 00:09:49 

 
Table 3 compares InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16, based on their accuracy and 

training time. In line with the results, DenseNet121 achieved an accuracy of 99%, although the complexity led to 
longer training time. Meanwhile, MobileNetV2 was recognized for efficiency, reaching an accuracy of 97% while 
requiring the shortest training time. InceptionResNetV2 delivered results with an accuracy of 96%, coupled with a 
training time. Despite the accuracy rate of 96%, VGG16 demanded extensive training time due to high computational 
requirements. These results varied significantly, showing the balance between reaching precision and handling 
training effectiveness.  

The evaluation metrics offered an in-depth knowledge of model capacity to categorize every rice leaf disease 
accurately. Fig. 4 presents InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16 model. The confusion 
matrix provides a detailed view of model performance across the four classes of rice leaf disease. Table 2 shows the 
details of each model's performance metrics. Most classes were classified with high accuracy, with minor 
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misclassifications between visually similar disease. Figure 5 shows the accuracy and loss trends across ten epochs, 
indicating an enhancement in both metrics without signs of overfitting. 

 

(a)  (b)  

(c)  (d)  
 

Fig. 4 Illustration of the confusion matrix of (a) InceptionResNetV2; (b) MobileNetV2; (c) DenseNet121; (d) VGG16 

 
TABLE 2 

THE DETAILS OF EACH MODEL'S PERFORMANCE METRICS 
CNN Model 
Leaf Disease 

Precision Recall F1-Score Support 

Inception-ResNetV2 
BLB 0.97 0.90 0.93 158 
Blast 0.90 0.92 0.91 144 
Brownspot 0.94 0.99 0.96 160 
Tungro 1.00 1.00 1.00 130 
MobileNetV2     
BLB 0.98 0.94 0.96 158 
Blast 0.90 0.98 0.94 144 
Brownspot 0.99 0.95 0.97 160 
Tungro 1.00 1.00 1.00 130 
DenseNet121 
BLB 0.99 0.99 0.99 158 
Blast 0.99 0.97 0.98 144 
Brownspot 0.99 1.00 0.98 160 

Tungro 1.00 1.00 0.99 130 
VGG16 

BLB 0.96 0.97 0.97 158 
Blast 0.93 0.94 0.93 134 
Brownspot 0.97 0.93 0.95 160 
Tungro 0.98 1.00 0.99 130 
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(a)  
(b)  

(c)  (d)  

 
Fig. 5 Training and Validation Accuracy Curves of (a) InceptionResNetV2; (b) MobileNetV2; (c) DenseNet121; (d) VGG16 

 
The experiment was carried out to evaluate the accuracy of a category classification system by showing random 

test images next to their predicted and actual class labels in a grid layout. This consisted of 24 images, each shown 
with color-coded titles indicating correct (green) and incorrect (red) predictions. The objective was to present an easy-
to-understand display of model precision to help distinguish between accurate and incorrectly classified samples in a 
brief and informative pattern, as shown in Fig. 6 [42]. 

 

 
 

Fig. 6 Random Test Images [42] 
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The image shows a grid displaying 24 rice leaf disease classification model test samples. Each tile consists of image 
showing a disease leaf with a heading that carries the predicted label and the true one. The predicted label gets the 
upper hand, while the true label is in brackets. Any title in green font indicates that the prediction was correct, 
suggesting appropriate allocation of label. For instance, in the top-left tile, model could correctly predict that the true 
label provided was Brownspot, which led to the green title ‘Brownspot (Brownspot)’. The red titles indicated the 
incorrect class, showing that model output did not match the true label. For example, red title like ‘Tungro 
(Brownspot)’ indicates that the model incorrectly predicted ‘Tungro’ when the true label was ‘Brownspot’. This color-
coding system resolves queries adequately, where correct and incorrect predictions are placed green and red, 
respectively. 

V. DISCUSSION 

The performance of baseline model trained from scratch, such as InceptionResNetV2, MobileNetV2, DenseNet121, 
and VGG16, was compared using the same dataset and experimental setup to assess the efficacy of the suggested 
method. DenseNet121 had the best classification performance and the highest accuracy (99.10%) but required a longer 
time (9:27), as indicated in Tables 2 and 3. With the lowest training time (7:48) and the highest accuracy (97.10%), 
MobileNetV2 showed outstanding efficiency. VGG16, an older architecture, showed lower efficiency and the longest 
training time (9:49), while InceptionResNetV2 provided a good trade-off between computational cost and 
performance. These results showed how transfer learning performed well with contemporary CNN architectures to 
achieve accuracy and efficiency, as presented in Table 4. 

TABLE 4 
COMPARATIVE PERFORMANCE OF BASELINE AND PROPOSED MODEL  

Author Method Accuracy 
Dogra et al. [31]  CNN-VGG19 93.00% 
Mannepalli et al. [20]  CNN-VGG16 97.77% 
Narasimha et al. [30] InceptionResNetV2 95.67% 
Shrivastava and Pradhan [32]  Color cue-based method with SVM classifier 94.65% 
Chen et al. [39]  VGGNet and Inception 92.00% 
Proposed Method DenseNet121 with conv_base 99.10% 

 
Table 4 shows the analysis of image classification methods for rice disease detection. Based on the results, the 

proposed method with DenseNet121 and convolutional base offered better feature extraction and classification, 
achieving a higher accuracy of 99.10% among the classification methods. A high accuracy of 97.77% was recorded 
by CNN-VGG16 model [20], 95.67% by InceptionResNetV2 [30], and 94.65% by the color cue-based SVM method 
[32]. The hybrid model combining VGGNet and Inception networks produced 92.00% accuracy [39], and CNN-
VGG19 method achieved 93.00% [31]. The results emphasized the performance that advanced deep learning 
architecture, and particularly DenseNet121, could achieve in terms of classification accuracy. 

In a recent report, Rahman et al. [45] introduced an explainable deep transfer learning ensemble to rice leaf disease 
diagnosis. However, this study did not develop ensemble model, but compared the individual capabilities of the 
modern CNN architectures (InceptionResNetV2, MobileNetV2, DenseNet121, and VGG16) with the unified transfer 
learning pipeline. The results showed that DenseNet121, with dense connectivity and a lower parameter count, was 
the best performer among others, regarding accuracy and efficiency. A simple framework that could be run on limited 
computational environments without the loss of accuracy was also developed, which was important for the application 
in agricultural areas with fewer resources. 

Despite the significant contribution, this study has several contributions. First, the comprehensive analysis of four 
pre-trained CNN models for the multi-class classification of rice leaf disease is a novel contribution. Second, the 
analysis shows the powerful performance of DenseNet121, which tends to do well in the same training conditions due 
to dense connectivity and feature reuse. The performance is mainly due to the transfer learning used, along with data 
augmentation and the custom dense classification layers, which increase feature extraction and generalization. Lastly, 
the results offer a foundation that can be advanced towards the design of automated disease detection for use in various 
agricultural technology. 

After conducting the comparison shown in Table 4, this study presents several limitations, particularly regarding 
the variability in the image dataset. Factors such as lighting conditions, different stages of disease progression, and 
leaf damage unrelated to disease are not fully represented. There is no real-world validation, and the evaluation is only 
performed on the testing part of the dataset used. Therefore, future studies should include testing in different real-life 
conditions to find the applicability of this model. The excellent classification accuracy, more hyperparameter 
adjustment is also required to enhance functionality. 
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VI. CONCLUSIONS 

In conclusion, this study shows the efficiency of pre-trained CNN models in rice leaf disease identification. Among 
the four models evaluated, DenseNet121 shows the best accuracy of 99.10% using CNN power in image classification 
and feature extraction to enhance model generalization through data augmentation. Furthermore, four kinds of rice 
leaf disease, including tungro, brown spot, blast, and bacterial leaf blight, are detected by accuracy, precision, recall, 
and F1-score metrics. The results indicate that this method outperforms previous reports, offering a reliable tool for 
precision agriculture to support rapid and accurate decision-making in plant disease management. This study has some 
drawbacks, which include the inability to test under real field conditions and the limited representation of dataset. 
Therefore, future investigations are recommended to evaluate this model under different real-world conditions and 
optimize hyperparameters.  
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