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Abstract  
 
Background: Tuition fee in Indonesian public universities is determined based on the socioeconomic status of prospective 
students. In this context, students are assigned to tuition fee groups after passing the selection process through achievement-
based or computer-based exams. However, the current grouping system shows overlapping distributions, indicating the need for 
a more precise classification method.  
Objective: This research aims to improve the accuracy of tuition fee group assignments by refining the clustering structure and 
relabeling the classification dataset. 
Methods: A total of 13 socioeconomic variables were used to predict tuition fee groups. This research used K-Means clustering 
algorithm and a relabeling process using centroid mapping of principal components to balance original and newly generated 
labels. To assess the effectiveness of the relabeling process, six classification algorithms, namely Decision Tree (DT), K-Nearest 
Neighbors (KNN), Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM), 
were used. Statistical tests at a 5% significance level were conducted to evaluate improvements in classification accuracy. 
Results: The relabeling process significantly enhanced prediction accuracy compared to the original dataset. The refined 
clustering structure reported better classification performance across all six algorithms, showing the effectiveness of the 
proposed method. 
Conclusion: The results showed that robust clustering and a relabeling method improved the precision of tuition fee 
classification systems. The proposed framework provided a data-driven solution for refining classification models, ensuring a 
fairer distribution of tuition fee based on socioeconomic indicators. The novelty lies in the centroid-based relabeling, which uses 
principal component patterns to enhance interpretability and classification accuracy. The method was adaptable for global use 
in any educational system using socioeconomic-based fee classification. Future research should explore alternative clustering 
methods and additional socioeconomic factors to enhance classification accuracy. 
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I. INTRODUCTION  

The issue of financial burden in accessing higher education is a global challenge since many countries ensure 
equitable access and maintain financial sustainability of institutions. Different methods, such as income-based tuition, 
fee-tiering, and needs-based subsidies, have been implemented to address these challenges. In Indonesia, financial 
burden associated with higher education is a central concern, prompting the implementation of Single Tuition Fee 
(STF) policy across Public Universities (PUs). Therefore, tuition fee remains affordable, considering the varying 
financial capacities of students and families. STF policy was formally introduced in 2013 by the Ministry of Education 
and Culture. This policy was consistent with Article 88 of Law No. 12 of 2012 on Higher Education, where operational 
costs for students were standardized and adjusted based on economic capacity. The policy was partly driven by the 
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increasing burden of non-tuition-related fees. Furthermore, STF rates are implemented in phases and categorized into 
several tiers. In this context, students from economically disadvantaged backgrounds pay lower tuition rates, while 
those with greater financial means are assigned higher rates. According to the Ministry of Education Regulation No. 
2 of 2024, STF applies to all academic levels, from Diploma to Doctoral programs, in Public Universities. However, 
specific provisions require that STF rates must be divided into two groups, with the lowest tiers designated for students 
from economically disadvantaged backgrounds. Additional higher-level groups may be established by universities, 
with fees adjusted up to the maximum standard operational cost of each program. In contrast to other countries 
adopting income-based or needs-based tuition models, Indonesia implements STF through a centralized national 
policy. The actual application varies across public universities and often lacks a standardized framework for 
socioeconomic assessment. This inconsistency creates challenges in categorizing students fairly and accurately to 
explore data-driven methods in evaluating and improving existing groupings. These classification tasks belong to 
unsupervised learning from a scientific perspective. Theoretically, a good cluster has high homogeneity (similarity) 
and heterogeneity (difference) [1].  

In a good structure, STF group predictions for new students are expected to be more accurate [2]. All state 
universities have adopted a variety of socioeconomic indicators to identify STF category. However, previous research 
relied solely on university-derived STF groupings as ground truth without validating internal consistency or cluster 
quality. The quality of STF clusters was assessed by using validity indices and relabeling before classification. This 
research is among the first to incorporate a cluster validation phase before relabeling and classification, ensuring more 
reliable predictions based on structurally valid STF groupings. Previous research [3] identified variables impacting 
students’ socioeconomic circumstances, and 16 of the 43 initial variables substantially affected the calculation of 
students' STF. The group will use a feature selection method based on Support Vector Machine (SVM) algorithm [4], 
and has an accuracy rate of 81% with F1-Score metric. Several research developed a decision-making system based 
on the fuzzy-c-means algorithm [5], [6], [7]. A decision tree-based algorithm for determining STF group is also applied 
through comparison experiments with the J48, ID3, and Naive Bayes (NB) algorithms. This research [8] concluded 
that J48 had better accuracy than ID3 and NB algorithms, with a value using F1-Score of 91.1%. In line with the 
efforts, recent research [9], [10], [11], [12] has emphasized the importance of relabeling and clustering methods in 
improving classification accuracy. The integration of clustering validity measures is supported before classification. 

Based on the description above, this research aims to address the problem of unreliable STF group labels by 
introducing a systematic validation and relabeling framework before classification. Before conducting supervised 
learning-based modelling, the results neglect the conditions of variety inside and across clusters. Previous research 
reported that the outcomes of grouping with the university formulations were sufficient for use as training and testing 
materials to forecast STF level of new students. Therefore, this research aims to (1) assess the quality of STF grouping 
results produced by the university formula using cluster validity metrics, (2) implement STF grouping labelling 
process based on the cluster goodness index, and (3) conduct experiments for classification algorithm-based cluster 
relabeling to compare the accuracy before and after the process. The results are expected to contribute to (1) improving 
the structure of the dataset used for predicting new student STF and (2) providing recommendations for a classification 
algorithm with the best performance. 

The main contributions and novelty of this research are threefold. First, a validation process is introduced using 
clustering validity indices to assess quality. Second, a relabeling method is proposed to improve label reliability before 
classification, which addresses potential inconsistencies in the original data. Third, the impact of the relabeling method 
is evaluated through classification experiments using multiple algorithms. In Indonesian higher education context, this 
is among the first research to incorporate a systematic validation and relabeling framework in STF classification 
process. 

II. METHODS 

The research framework adopted Knowledge Data Discovery (KDD) process in data mining, which was proposed 
by the knowledge discovery community [13]. KDD process consisted of five phases, namely (1) Selection, (2) Pre-
processing, (3) Transformation, (4) Data Mining, and (5) Evaluation. The general phases in KDD procedure started 
from selection to obtain relevant data from the source, and continued with the pre-processing phase. The next phase 
was transformation, which included converting the data into a format suitable for analysis. This was followed by the 
data mining phase, where analytical methods were applied to identify patterns or models. Finally, the interpretation 
or evaluation phase focused on assessing and interpreting the results. Fig. 1 shows the overview of this process, 
including the modifications applied. In this research, procedure modifications were carried out in the transformation 
and modelling phases. During the transformation process, the raw data used as input in the clustering method were 
standardized and dimensionally reduced with principal component analysis. The value of the main component was 
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used as input in the clustering method. The results produced a random label from index 0 to k. For the cluster to be 
meaningful, pattern matching of the origin and random labels was carried out using a component analysis with a 
loading factor of more than 0.5 [14]. The following explanation provided a more detailed understanding of the phases 
in KDD process. 

1) Data Selection 
Table 1 shows the distribution of STF dataset from 15875 students at Universitas Negeri Surabaya with categories 

1 to 8 over 5 years (2017–2021). The lowest and highest categories (1st and 8th) have the smallest and largest tuition 
fees, respectively. Tuition fee is the amount of student payment per semester applied consistently in the research 
period. This STF scheme is applied to undergraduate programs as regulated by the Ministry of Education. Tuition fee 
ranges from IDR 500,000 to IDR 7,500,000 in Categories 1 to 8, respectively.  

 
Fig. 1 Research Framework based on KDD Process. 

 
The categorization is based on socio-economic criteria, including household income, electricity usage, parental 

occupation, and other verifiable indicators submitted during the registration process. The final STF category is 
determined by the university after evaluating the documents and data submitted. Furthermore, the class value for the 
tuition category group will be the label or target variable in the classification modelling. Table 1 shows the unequal 
distribution of the student population across STF categories, with high and low concentration in Categories 4 to 6 and 
1 and 8, respectively. This class imbalance may affect the performance of classification models, which tend to be 
biased toward the majority classes. Therefore, addressing the imbalance through optimized relabelling and modelling 
strategies is a key focus of this research. 

TABLE 1 
THE NUMBER OF STUDENTS DISTRIBUTED IN STF CATEGORY 

Year 
Single Tuition Fee (STF) Category 

1 2 3 4 5 6 7 8 
2017 20 103 294 1266 1367 36 0 0 
2018 21 126 298 1481 1557 44 0 0 
2019 54 240 306 830 999 501 48 0 
2020 30 211 86 1112 964 355 35 1 
2021 36 72 311 1122 1201 709 39 0 
Total 161 752 1295 5811 6088 1645 122 1 

Total 15875 

 
The variables used reflect the socio-economic characteristics of students' parents. The target variable was tuition 

fee group (Y), and the predictors X1 to X13 are socio-economic indicators seen in Table 2. 
2) Pre-Processing 

 Pre-processing process is an important phase before implementing Principal Component Analysis (PCA) to ensure 
that the data provides optimal results. This phase consists of three main phases, namely (1) data cleaning to address 
missing or inconsistent values, (2) normalization to ensure all variables are on the same scale, and (3) outlier detection 
to minimize distortion in PCA results. The encoding process is required to convert categorical data into a numerical 
format [15]. After the data is clean and standardized, the next phase is to evaluate the correlation between the variables. 
This ensures that PCA can effectively reduce the data dimensions and retain relevant information. A meticulous pre-
processing process improves the quality of PCA analysis and interpretation of results. 



Yustanti, Nurhidayat & Java 
 Journal of Information Systems Engineering and Business Intelligence, 2025, 11 (3), 445-458 

448 
 

 TABLE 2 
THE RESEARCH VARIABLES 

Variable Value Type Description 
Y 1,2,3,4,5,6,7,8 Ordinal Single Tuition Fee Level 
X1 1,2,3,4,5,6 Ordinal Father’s Occupation 
X2 1,2,3,4,5,6 Ordinal Mother’s Occupation 
X3 1,2,3,4,5 Ordinal Father’s Salary 
X4 1,2,3,4,5 Ordinal Mother’s Salary 
X5 1,2,3,4,5 Ordinal Number of Dependent 
X6 1,2,3,4,5 Ordinal Building Land Tax Billing 
X7 1,5,6 Ordinal Number of Cars 
X8 1,4,5,6 Ordinal Number of Motorbikes 
X9 1,2 Nominal Electricity Source 
X10 1,2,3 Nominal Residential Status 
X11 1,2,3,4,5 Ordinal Electricity Billing 
X12 1,2,3,4 Ordinal Mother's other income 
X13 1,2,3,4 Ordinal Father's other income 

3) Transformation 
 Principal component analysis is a widely used strategy for dimensionality reduction. The central concept generates 
new features and projects the original data onto these features to maximize the total variation in the data. The processes 
for calculating the principal components are as follows: (a) Standardize variables. (b) Calculating the Covariance 
Matrix to determine Correlation. (c) Determine the Principal Components by calculating the Eigenvalues and 
Eigenvectors of the Covariance Matrix. (d) Determine which Principal Components to retain for further research based 
on differences in Components utilizing a Scree Plot. (e) Transform data along the Principal Components axis. 
 

PCA is defined as an orthogonal linear transformation that converts the data to a new coordinate system. The highest 
and second largest variance by some scalar projection of the data are on the first and second coordinates, respectively 
[16]. 

4) Data Mining 
 In this phase, three main activities are carried out in data mining modelling. These are (1) clustering using K-Means 
algorithm, (2) relabeling the results using principal component loading factors, and (3) classification modelling to 
evaluate prediction performance. The first phase is clustering through K-Means algorithm due to the simplicity and 
efficiency in grouping data with ordinal and nominal characteristics. K-Means can effectively identify socioeconomic 
patterns based on employment, income, and family assets, most of which represent ordinal scales. The algorithm is 
computationally efficient, suitable for medium-sized datasets, and capable of providing meaningful insights to support 
data-driven decision-making, such as STF level determination. The relatively simple data structure and controlled 
number of dimensions allow K-Means to provide informative and relevant cluster results [17]. The second phase is 
the relabeling process on the result label. Computationally, cluster labels are randomly assigned to each group formed 
from index 0 to k. K-Means algorithm is given a value of k=8, based on the number of STF groups desired by the 
university. Furthermore, this research uses the loading factor value of the variable on the main components to interpret 
the group related to the socioeconomic level of students. The proposed algorithm for the relabeling method is shown 
in Algorithm 1. The third phase includes applying six classification algorithms and three validation scenarios to 
evaluate the prediction of STF groupings. The proposed algorithm for the relabeling method is shown in Table 3. A 
new dataset is formed after relabeling and used to predict STF groups through the classification method. In this 
context, a total of 6 classification algorithms and 3 validation scenarios are compared. The dataset has better prediction 
accuracy performance than before relabeling. 

5) K-Means Algorithm 
 K-Means is selected due to wide application and effectiveness in unsupervised partitioning of data with underlying 
continuous attributes, including socioeconomic variables related to financial profiles, as reported in previous research 
[9], [18]. K-Means is a vector quantization method known as clustering to divide a set of n observations into k clusters. 
The procedure of K-Means algorithm is as follows [19]: (a) Determine a random cluster centre and the number of 
clusters (k). (b) Determine the distance from each data point to the cluster's center. (c) Assign the data to clusters with 
the least distance. (d) Determine the cluster center. (e) Keep going back and forth between phases 2 and 4 until no 
more data is moving to the other clusters. (f) Cluster Relabeling. 

In text grouping analysis, cluster labelling issues are frequently experienced. The clarity labelling requires the 
selection of a human-readable descriptive label for the cluster produced by the document method. In this context, 
ordinary clustering algorithms do not produce the labels. The cluster labelling algorithm analyzes the document's 
contents to identify labels. Research related to cluster labelling can be found in [20] and [21], where the method 
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examines interconnection paths between crucial locations separating various cluster contours and analyzes the 
topology of the function representing Support Vector Clustering (SVC) cluster outlines. Distinct clusters are identified 
and connected to the appropriate cluster. Therefore, this research is connected to the results of [22] concerning the 
labelling of SVC. In another research [23], a mechanism known as Maximal Resemblance Data Labeling (MARDL) 
is used. Each unlabeled data point is assigned to the correct cluster based on a new categorical grouping called N-
Nodeset Importance Representative (NNIR). NNIR represents the cluster with the importance of attribute value 
combinations. The cluster labelling method aims to improve the structure that can be differentiated between clusters. 
Therefore, the labelling must be connected to the original data label because the data comes from poor results and is 
geared towards better clustering. In the algorithm, the centroids of the actual labels are mapped to K-Means. Selection 
is based on the closest distance between the original centroid and the cluster to prevent double mapping. The label is 
updated by replacing the original to match the mapping results of the updated prediction. 

Algorithm 1 

Relabelling Cluster 

function relabelling_cluster() 
    # Data Reading and Preprocessing 
    original_data ← read_data_from_database() 
    selected_features ← perform_feature_selection(original_data) 
    pca_features ← apply_pca(selected_features) 
    reduced_features ← select_first_two_principal_components(pca_features) 
 
    # Calculate Real Centroids 
    real_centroids ← calculate_centroids(reduced_features) 
 
    # Clustering with K-Means 
    cluster_centroids ← apply_kmeans_clustering(reduced_features) 
 
    # Centroid Mapping 
    cluster_order ← initialize_empty_list() 
    for each real_centroid in real_centroids 
        closest_index ← find_nearest(real_centroid, cluster_centroids, cluster_order) 
        append_to_cluster_order(cluster_order, closest_index) 
    end for 
 
    # Update Predicted Labels 
    label_mapping ← create_label_mapping(real_centroids, cluster_order) 
    updated_labels ← update_labels_with_mapping(label_mapping) 
 
    # Handle Imbalanced Data 
    x_train, y_train ← oversample_data(reduced_features, updated_labels) 
 
    # Train the SVM Model 
    clf ← train_svm_model(x_train, y_train) 
 
    # Save Model and Results 
    save_trained_model(clf) 
    return updated_labels, clf 
end function 

6) Classification-Based Cluster Relabeling 
 The labeled input data is required for modeling to predict a group from a set of items. Research [24], [25], [26], 
[27], [28], and [29] contains previous investigations reporting the labeling outcomes used in the classification 
modeling procedure. Cluster-based data relabeling (CBDR) is a recent strategy introduced in the latest research [30] 
that enables linear classifiers to operate successfully on nonlinear data. The concept divides the data set into multiple 
class-specific clusters without overlapping and relabelling. A linear classifier can be used on the relabeled data to 
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obtain cluster-based linear decision boundaries. Extensive trials have shown that CBDR significantly improves the 
performance of linear classifiers and outperforms the nonlinear counterparts. According to additional experiments, 
CBDR has also increased the classification performance of nonlinear classifiers. The most substantial outperformance 
was observed with skewed data. Another research used the class decomposition method [31] and [32] investigated the 
hierarchical and K-Means clustering methods. The results showed that class breakdown using K-Means and 
hierarchical clustering enhanced F1-score of NB classifier. An experimental design is also carried out using a 
relabeling dataset based on PCA component to accomplish the third goal. There is an element mpqr, where p is the type 
of dataset used, p=1,2, and q is the fold level in the cross-validation process. In this context, q=3,5,10, while r is the 
type of classification algorithm (r = 1,2,3,4,5,6). Furthermore, m is a metric used to measure the goodness of 
classification predictions in the form of F1-Score or AUC (Area Under the Curve) values. The classification algorithm 
used is Decision Tree (DT), K-Nearest Neighbor (KNN), Logistic Regression (LR), NB, Random Forest (RF), and 
SVM. A substantial difference in the accuracy of the prediction results can be produced between the data with the 
original and new labels based on the proposed method. The experiment used Jupiter-lab on a computer with an Intel 
Core i7 6th-generation processor and 64 GB of RAM. In hyperparameter optimization, the Grid Search method is used 
with the following parameter ranges in Table 3.  
 

TABLE 3 
RANGE VALUE OF HYPERPARAMETER TUNING  

Algorithm Parameter Range Value 
DT a. criterion 

b. min_samples_leaf 
c. min_samples_split 

['gini', 'entropy'] 
[1, 10, 100, 500] 
[1, 10, 100, 500] 

KNN a. n_neighbors 
b. weights 
c. metric 

[1, 10, 100, 500] 
['uniform', 'distance'] 
['euclidean', 'manhattan'] 

LR a. penalty 
b. C 
c. F1 
d. solver 

[‘l1’,’l2’] 
[0.1, 1, 10,100] 
[1.0, 0.5, 0.1] 
['liblinear'] 

NB a. prior 
b. smoothing 

None 
np.logspace(0,-9, num=100) 

RF a. min_samples_leaf 
b. max_depth 
c. min_samples_split 

[1, 10, 100, 500] 
[1, 10, 100, 500] 
[1, 10, 100, 500] 

SVM a. kernel 
b. C 
c. Gamma 
d. Decision function shape 

[‘linear’,’rbf’] 
[1, 0.1, 0.01] 
[0.1, 1, 10,100] 
['ovo', 'ovr'] 

7) Evaluation and Validation 
 This research uses the Silhouette Index, widely applied in validating the structure of clusters in unsupervised 
learning tasks to assess the quality of clustering before relabeling and classification [33]. The Silhouette value 
measures the fitting level of a data point in the assigned cluster. The Silhouette score s(i) ranges from -1 to +1, with 
higher values since the object is well and poorly matched to the main and neighboring clusters, respectively. A 
clustering configuration is considered good when most data points have high silhouette values. Conversely, increased 
low or negative values indicate poor clustering or an inappropriate number of clusters. The Silhouette Index is 
computed using various distance measures, such as Euclidean or Manhattan distances. In Equation (1), point i belongs 
to cluster CI, and the value a(i) is defined as the average distance from i in the same cluster. 

�(�) =
�

|��|��
∑ �(�, �)�∈��,���       (1) 

Where d(i,j) is the distance between the i-th and j-th point in the same cluster (CI ), and |CI | is the number of points in 

the CI. The smaller value of a(i) can be interpreted as a better cluster assignment. In contrast, b(i) is the average 

distance between a point I and every other point outside the CI cluster determined by Equation (2): 

          �(�) = ��
���

�
�

|��|
∑ �(�, �)�∈��,���       (2) 

With equations (1) and (2), form the s(i) equation (3), 

�(�) =
�(�)��(�)

���{�(�),�(�)}
, ��|��| > 1       (3) 
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Cross-validation is an effective evaluation method, specifically on multiclass data with an imbalanced distribution. 
The advantage is the ability to provide more stable and accurate model performance estimates than single evaluation 
methods, such as train-test splits. Cross-validation ensures that each point is used to make the evaluation results more 
representative of the overall dataset by dividing the data into multiple subsets [34]. In imbalanced data, the use of 
metrics such as F1-score becomes relevant in combining precision and recall. Cross-validation ensures that the 
resulting F1-score does not rely on a data share but consistently reflects the performance across multiple scenarios to 
provide a more reliable assessment [35], [36] 

III. RESULTS 

Based on the method, the results of initial data exploration are significant in visualizing data structures based on 
STF groups. Dimensional reduction uses PCA to obtain visualization results in a two-dimensional graph. During the 
pre-processing phase, the original data were transformed using ordinal encoding and validated for feasibility through 
the Kaiser-Meyer-Olkin (KMO) and Bartlett statistical test to determine the viability of PCA. Bartlett’s Test of 
Sphericity aims to analyze the hypothesis that the variables are uncorrelated in the population (H0). The null 
hypothesis is rejected when the p-value is small or less than the significance level (5%). The calculation results of the 
p-value for the Bartlett Test are 0.000 since H0 is rejected. The KMO is a measure of Sampling Adequacy (MSA), an 
index used to assess the accuracy of PCA. In this context, PCA is not advised when MSA is less than 0.5. MSA value 
for the dataset is 0.5818, greater than 0.5. The application of PCA is expected to reduce dimension and extract relevant 
components. Based on the eigenvalues in Fig.2, the predictor variable from the dataset can be reduced to 5 components 
(eigenvalue >1). The data is standardized before PCA process is carried out. Furthermore, the five new variables are 
used as a new dataset for the clustering process. The total variation represented by the extracted components is 63.17%. 

 

Fig. 2. Scree Plot for Dimension Reduction 
 
The result of dimension reduction using PCA can be used to create visualizations between the first and second 

components based on STF-level labels in the original dataset. Fig. 3a shows that the clusters between STF are not 
separated, and overlap occurs. A value of -0.054 is obtained when measured using the Silhouette Index. Since the 
value of the cluster goodness is close to -1, re-clustering should be conducted to increase the value of the Silhouette 
Index. A new data cluster form is generated using K-Means algorithm, as shown in Fig. 3b. The location of objects 
between clusters in Fig. 3b is clearly separated. The label given by K-Means is a random number with no meaning as 
an STF level. Therefore, a strategy must be developed to map the random label given by K-Means with the original 
label. A value of 0.591(close to 1) is obtained when measured using the Silhouette Index in the right cluster. The 
number of clusters (k) used in K-Means algorithm is eight. This is because there are eight tuition fee categories applied 
in Universitas Negeri Surabaya. In Fig.3b, the dots on the plot represent students grouped by STF class (1 to 8). This 
visualization enables clearer identification of student distributions based on socioeconomic levels, after dimensionality 
reduction and re-clustering. X-axis and Y-axis represent the 1st and 2nd Components, which are a linear combination 
of native features designed to capture variation in data. The first component captures the most dominant variance in 
the dataset, assumed to reflect underlying socioeconomic status. Students with lower STF are located on the left side 
and may have certain centralized and relatively uniform socioeconomic traits. In contrast, students with high STF are 
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located at the top or right side, showing more significant differences in socioeconomic profiles. Clusters with low STF 
appear to be tighter, suggesting similar features between the groups. Furthermore, students in the category of high 
STF may have more diverse socioeconomic backgrounds. This scatter plot indicates overlap or mixing between certain 
groups in areas with overlapping colors and points. In the area around the center, several dots of similar or spatially 
adjacent colors appeared. This shows that the distinguishing features of the groups may be less obvious. Even though 
there is a tendency for more separate distributions, some points are not entirely in the dominant cluster. Therefore, 
there are students in the category with a socioeconomic profile close to a lower STF level. In addition, the unbroken 
color gradient from dark to light indicates that the transition between STF levels is not fully explicitly classified. Some 
STF categories at the intermediate level have similar characteristics in the two-dimensional space of PCA results. The 
scatter plot reports the potential for overlap between several STF levels, specifically at the middle and high levels. 
Therefore, the clustering method should be analyzed using K-Means to make the boundaries between STF groups 
more precise and separable. Fig. 3b is the scatter plot of K-Means clustering result with the number of 8 clusters. 

 

 
Fig. 3 (a) Scatter Plot of Original Dataset based on PCA (b) Scatter Plot of K-Means 

 

Fig. 3b shows the scatter results of K-Means clustering, which is a visual improvement from the initial plot. This 
clustering shows that K-Means algorithm successfully separates the data into several groups based on similarities in 
PCA space. Areas that previously showed overlap between groups, such as clusters at intermediate STF levels, are 
more clearly separated. K-Means manages to group similar points into a more centralized region without significant 
overlaps. Some clusters appear relatively isolated from others, showing the unique characteristics of the algorithm. 
The clusters in the middle are denser and tighter, indicating a substantial uniformity in the data. In contrast, the clusters 
in the top right and bottom right are scattered, suggesting that the data has higher variability. Since the cluster labels 
do not have meaning as STF levels, the next phase is to use the proposed relabeling algorithm. In principle, the center 
point of the clustering labeling is compared with the original STF label. This visualization provides a stronger 
foundation for evaluating the accuracy of K-Means grouping. The clustering shows that the data can be separated 
more systematically than the initial scatter. However, the random labels need validation or interpretation to have 
meaning at STF level.  
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Fig. 4 Scatter Plot K-Means Cluster Relabel-based PCA Centroid Pattern Matching 

 
Fig. 4a is a visualization of K-Means cluster relabeling process to rearrange the clustered labels. In this graph, the 

label is reported with an orange line, which tends to be random because the initial determination of the centroid is 
carried out randomly. The original reference label has a blue line indicating the pattern. To improve the interpretation 
of the results, a relabeling process is carried out by rearranging the cluster labels. This relabeling is shown with a green 
line. The process includes replacing the orange label with green based on the similarity of the pattern to the reference 
centroid. Therefore, the green label indicates a cluster in line with the original pattern. Fig. 4b shows the scatter plot 
results of clustering after the relabeling process. The scatter graph shows the data distribution based on two main 
components with cluster labels. The clustering results report the cluster's clarity level and the boundaries based on the 
data distribution. A well-defined cluster can be used for more accurate analysis or decision-making to predict STF 
cohorts. 

TABLE 4 
F1-SCORE FROM CLASSIFICATION MODEL 

Dataset (p) fold (q) 
Classification Algorithm (r) 
DT KNN LR NB RF SVM 

Original Labeled Data 
3 82.98 83.11 58.48 59.65 84.29 81.03 
5 83.41 83.41 58.35 59.64 84.69 81.22 
10 83.63 83.49 58.47 59.69 84.85 81.58 

Relabeled 
Data 

3 99.50 98.98 92.82 95.54 99.65 99.85 
5 99.51 99.11 92.85 95.50 99.66 99.85 
10 99.56 99.15 92.93 95.56 99.73 99.60 

A comparison is conducted in response to the accuracy results of the classification algorithm based on the dataset. 
The calculation results for the average of F1-Score and AUC can be shown in Tables 4 and 5, respectively. In general, 
there are differences in results between F1-score measurements for data with the original label and the new label. 
Statistical tests for two paired samples are necessary to determine the significance. The selection of the appropriate 
test statistic must be checked against the normal distribution. The normality test was carried out through the 
Kolmogorov-Smirnov test. The results showed that F1-score and AUC data were not normally distributed.  
 Fig. 5 presents the graphical representation of the data shown in Table 4. The average F1-score accuracy of the 
dataset with the new labels is consistently original labels. X-axis represents the experiment index, ranging from 1 to 
18, which corresponds to the combination of 3-fold cross-validation and 6 classification algorithms (3 × 6 = 18 data 
points). 
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Fig. 5 F1-Score Between Original Label and New Label dataset 
 

The graph compares the accuracy performance based on F1-Score between the data with the original and the 
relabeled labels. The red line shows better stability than the blue. This is important to ensure that model performance 
remains optimal across the various data conditions and classification methods. The average F1-score for the new label 
is consistently higher than the original, indicating an improvement in the quality of predictions. Fig. 5 visualizes F1-
Score values, and the results presented in Table 5 are reported in a comparative chart in Fig. 6. 

TABLE 5 
AUC FROM CLASSIFICATION MODEL 

Dataset (p) fold (q) 
Classification Algorithm (r) 

DT KNN LR NB RF SVM 

Original Labeled Data 
3 96.33 97.73 91.54 92.49 98.48 97.38 
5 96.51 97.84 91.54 92.48 98.55 97.44 
10 96.62 97.92 91.55 92.48 98.59 97.49 

Relabeled 
Data 

3 99.81 99.96 99.18 99.66 100.0 100.0 
5 99.81 99.63 99.17 99.66 100.0 100.0 
10 99.56 99.15 92.93 95.56 99.73 99.60 

 

 

Fig. 6 AUC between the Original Label and the New Label dataset 
 

This graph shows a comparison of AUC values between the original and the relabeled dataset. The red line tends 
to be more stable and has a higher AUC value than the blue line. Therefore, relabeling improves the performance of 
the model in differentiating between STF classes. Fluctuations in the blue line show that the original dataset is less 
consistent. The relabeling results positively impact data quality and model stability. Hypothesis testing is carried out 
since there is a difference in the accuracy results of the dataset structure with the original label and relabeling. The 
hypotheses to be tested are as follows: 
 

H0: There is no difference between F1-score or AUC measurements before and after K-Means cluster relabeling. 
H1: There is a difference between F1-score and AUC measurements before and after K-Means cluster relabeling. 

 
 

TABLE 6.  
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THE WILCOXON SIGNED-RANK TEST FOR F1-SCORE AND AUC 
Null Hypothesis Z-Statistics P-Value (Asymp. Sig. 2-tailed) Decision 
F1-Score New Label = 
F1-Score Original Label 

-3.724b 0.000 H0 Rejected 

AUC New Label = 
AUC Original Label 

-3.724b 0.000 H0 Rejected 

a. Wilcoxon Signed Ranks Test 
b. Based on negative ranks. 

   

The Wilcoxon statistical test for paired samples shows that the results of F1 Score or AUC average on the dataset 
with the new label are significantly improved since the p-value is less than 5%. The data statistically support the results 
of F1-Score or AUC being significantly different between the dataset with the new and original labels. 

IV. DISCUSSION 

The application of clustering and relabeling methods to student socio-economic data significantly improves the 
accuracy of tuition fee grouping predictions in public universities. Therefore, this research addresses the issue of 
ambiguous label distributions in existing institutional datasets using centroid-based relabeling. Several research using 
fuzzy clustering [5], [6], [7] successfully applied unsupervised methods to categorize students. However, systematic 
validation of the resulting clusters was unavailable. This method introduces a validation phase before classification, 
ensuring that the clusters are generated and evaluated for structural quality using validity indices. The validation phase 
ensures that classification models are trained on reliable and meaningful labels. Table 7 shows the summary of relevant 
previous research.  

TABLE 7 
COMPARISON OF RELATED RESEARCH AND THE PRESENT WORK 

Research Method Used 
Number of 
Clusters 

Accuracy  Advantages Limitations Gap Addressed 

[5], [6], 
[7] 

Fuzzy Clustering 
Varies (e.g., 
3–5) 

Not 
systematically 
validated 

Able to categorize 
students without 
supervision 

Lack of cluster 
validity 
assessment; 
ambiguous labels 
remain 

This research adds a 
validation phase 
before classification 

[9], [10] 
Support Vector 
Machine (SVM) 

– ~81% accuracy 
Strong 
performance on 
structured data 

Dependent on 
raw institutional 
labels; no 
relabeling 

The relabeling 
process increases 
accuracy across all 
algorithms 

[11], [12] 
Label refinement and 
Classification 

– 
Not explicitly 
reported 

Highlighted the 
importance of 
refining data labels 

Did not integrate 
cluster validation 

This research 
combines both 
cluster validation 
and relabeling 

This 
research 

Relabeling with 
Validation and Multi-
Algorithm 
Classification (DT, 
KNN, NB, RF, SVM, 
ANN) 

6–8 
(depending 
on dataset) 

>81%, 
statistically 
significant 
improvements 
(F1-Score & 
AUC) 

Systematic, 
consistent 
improvement, 
practical for tuition 
fee classification 

Relies on high-
quality socio-
economic data 
and 
computational 
resources 

Provides both 
methodological and 
practical 
contributions in the 
Indonesian context 

 

Table 7 compares applied methods, number of clusters, reported performance scores, as well as the strengths and 
limitations. Even though SVM [9], [10] reported accuracy levels of 81%, this research with six classification 
algorithms, namely DT, KNN, NB, RF, SVM, and Artificial Neural Networks (ANN), showed that the relabeling 
process obtained higher score across all models. Statistical tests at a 5% significance level confirm that the 
improvements are statistically significant, as reflected in F1-Score and AUC values. The results of previous 
investigations [11], [12] emphasized the importance of refining data labels before classification. However, this 
research integrates validation and relabeling into a unified and systematic framework directed to the context of STF 
classification. From a practical perspective, accurate tuition fee classification has direct implications for the equitable 
allocation of subsidies and scholarships since students from lower-income families receive the required support. 

 This research should be placed in a broader international context. In the United States, tuition fee is primarily 
market-driven, creating affordability challenges and dependence on financial aid [37]. In Europe, Germany and 
Finland maintain tuition free higher education, while others adopt targeted aid mechanisms to provide more limited 
support [38]. In Asia and Asia-Pacific, financing models are highly diverse, ranging from strong public funding to 
extensive cost-sharing and private provision shaped by challenges of access, equity, and governance [39], [40], [41]. 
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These contrasts suggest the uniqueness of STF policy, which embeds equity directly into tuition-setting through cross-
subsidization. The proposed data-driven method offers insights adapted to other contexts seeking fairer and more 
transparent tuition allocation. However, this research has several limitations that should be acknowledged. First, the 
method depends on the availability of high-quality socio-economic data, which may vary across institutions. Second, 
scalability may be challenged by the computational resources required for large-scale datasets. Third, the results are 
limited to Indonesian higher education context, requiring validation in different educational systems. 

V. CONCLUSIONS 

In conclusion, the quality of the grouping of education costs (STF) is successfully evaluated based on the university 
formula. The results of the preliminary analysis show that the distribution of STF labels is unclear and does not fully 
reflect the socio-economic data structure of students. This reports the need for better methods to ensure a more accurate 
clustering of STF. Furthermore, the grouping is rearranged using a centroid mapping-based relabeling process by 
implementing K-Means algorithm. The method produces new labels in line with the actual data patterns, providing a 
more substantial basis for predictive analysis. The relabeling process is validated by testing six classification 
algorithms, namely DT, KNN, NB, LR, RF, and SVM. The experimental results show that the relabeled data 
significantly improves the accuracy of the predictions compared to the original data, as evidenced by statistical tests 
at a significance level of 5%. Therefore, clustering based on the cluster goodness index can improve the quality of the 
dataset structure for future STF prediction. RF algorithm and SVM are the top recommendations in similar 
applications. This research significantly improves the quality of datasets for STF grouping and provides practical 
recommendations for higher education institutions. Universities can also develop more accurate and fairer prediction 
systems with better data structures and optimal classification algorithms. These results support data-driven decision-
making in education cost allocation and provide a framework applied to various other social policies. The institutional 
context serves as a data source, even though a case from Universitas Negeri Surabaya is used to show the method. 
The primary contribution of this research lies in the methodological framework for cluster relabeling and classification 
optimization, generalized and applied to other institutions with similar tuition grouping challenges. The results 
explicitly answer the questions by confirming that the proposed relabeling method addresses the imbalance between 
original labels and socio-economic patterns.  
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