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Abstract

Background: Tuition fee in Indonesian public universities is determined based on the socioeconomic status of prospective
students. In this context, students are assigned to tuition fee groups after passing the selection process through achievement-
based or computer-based exams. However, the current grouping system shows overlapping distributions, indicating the need for
a more precise classification method.

Objective: This research aims to improve the accuracy of tuition fee group assignments by refining the clustering structure and
relabeling the classification dataset.

Methods: A total of 13 socioeconomic variables were used to predict tuition fee groups. This research used K-Means clustering
algorithm and a relabeling process using centroid mapping of principal components to balance original and newly generated
labels. To assess the effectiveness of the relabeling process, six classification algorithms, namely Decision Tree (DT), K-Nearest
Neighbors (KNN), Naive Bayes (NB), Logistic Regression (LR), Random Forest (RF), and Support Vector Machine (SVM),
were used. Statistical tests at a 5% significance level were conducted to evaluate improvements in classification accuracy.
Results: The relabeling process significantly enhanced prediction accuracy compared to the original dataset. The refined
clustering structure reported better classification performance across all six algorithms, showing the effectiveness of the
proposed method.

Conclusion: The results showed that robust clustering and a relabeling method improved the precision of tuition fee
classification systems. The proposed framework provided a data-driven solution for refining classification models, ensuring a
fairer distribution of tuition fee based on socioeconomic indicators. The novelty lies in the centroid-based relabeling, which uses
principal component patterns to enhance interpretability and classification accuracy. The method was adaptable for global use
in any educational system using socioeconomic-based fee classification. Future research should explore alternative clustering
methods and additional socioeconomic factors to enhance classification accuracy.
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1. INTRODUCTION

The issue of financial burden in accessing higher education is a global challenge since many countries ensure
equitable access and maintain financial sustainability of institutions. Different methods, such as income-based tuition,
fee-tiering, and needs-based subsidies, have been implemented to address these challenges. In Indonesia, financial
burden associated with higher education is a central concern, prompting the implementation of Single Tuition Fee
(STF) policy across Public Universities (PUs). Therefore, tuition fee remains affordable, considering the varying
financial capacities of students and families. STF policy was formally introduced in 2013 by the Ministry of Education
and Culture. This policy was consistent with Article 88 of Law No. 12 of 2012 on Higher Education, where operational
costs for students were standardized and adjusted based on economic capacity. The policy was partly driven by the
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increasing burden of non-tuition-related fees. Furthermore, STF rates are implemented in phases and categorized into
several tiers. In this context, students from economically disadvantaged backgrounds pay lower tuition rates, while
those with greater financial means are assigned higher rates. According to the Ministry of Education Regulation No.
2 of 2024, STF applies to all academic levels, from Diploma to Doctoral programs, in Public Universities. However,
specific provisions require that STF rates must be divided into two groups, with the lowest tiers designated for students
from economically disadvantaged backgrounds. Additional higher-level groups may be established by universities,
with fees adjusted up to the maximum standard operational cost of each program. In contrast to other countries
adopting income-based or needs-based tuition models, Indonesia implements STF through a centralized national
policy. The actual application varies across public universities and often lacks a standardized framework for
socioeconomic assessment. This inconsistency creates challenges in categorizing students fairly and accurately to
explore data-driven methods in evaluating and improving existing groupings. These classification tasks belong to
unsupervised learning from a scientific perspective. Theoretically, a good cluster has high homogeneity (similarity)
and heterogeneity (difference) [1].

In a good structure, STF group predictions for new students are expected to be more accurate [2]. All state
universities have adopted a variety of socioeconomic indicators to identify STF category. However, previous research
relied solely on university-derived STF groupings as ground truth without validating internal consistency or cluster
quality. The quality of STF clusters was assessed by using validity indices and relabeling before classification. This
research is among the first to incorporate a cluster validation phase before relabeling and classification, ensuring more
reliable predictions based on structurally valid STF groupings. Previous research [3] identified variables impacting
students’ socioeconomic circumstances, and 16 of the 43 initial variables substantially affected the calculation of
students' STF. The group will use a feature selection method based on Support Vector Machine (SVM) algorithm [4],
and has an accuracy rate of 81% with F1-Score metric. Several research developed a decision-making system based
on the fuzzy-c-means algorithm [5], [6], [7]. A decision tree-based algorithm for determining STF group is also applied
through comparison experiments with the J48, ID3, and Naive Bayes (NB) algorithms. This research [8] concluded
that J48 had better accuracy than ID3 and NB algorithms, with a value using F1-Score of 91.1%. In line with the
efforts, recent research [9], [10], [11], [12] has emphasized the importance of relabeling and clustering methods in
improving classification accuracy. The integration of clustering validity measures is supported before classification.

Based on the description above, this research aims to address the problem of unreliable STF group labels by
introducing a systematic validation and relabeling framework before classification. Before conducting supervised
learning-based modelling, the results neglect the conditions of variety inside and across clusters. Previous research
reported that the outcomes of grouping with the university formulations were sufficient for use as training and testing
materials to forecast STF level of new students. Therefore, this research aims to (1) assess the quality of STF grouping
results produced by the university formula using cluster validity metrics, (2) implement STF grouping labelling
process based on the cluster goodness index, and (3) conduct experiments for classification algorithm-based cluster
relabeling to compare the accuracy before and after the process. The results are expected to contribute to (1) improving
the structure of the dataset used for predicting new student STF and (2) providing recommendations for a classification
algorithm with the best performance.

The main contributions and novelty of this research are threefold. First, a validation process is introduced using
clustering validity indices to assess quality. Second, a relabeling method is proposed to improve label reliability before
classification, which addresses potential inconsistencies in the original data. Third, the impact of the relabeling method
is evaluated through classification experiments using multiple algorithms. In Indonesian higher education context, this
is among the first research to incorporate a systematic validation and relabeling framework in STF classification
process.

II. METHODS

The research framework adopted Knowledge Data Discovery (KDD) process in data mining, which was proposed
by the knowledge discovery community [13]. KDD process consisted of five phases, namely (1) Selection, (2) Pre-
processing, (3) Transformation, (4) Data Mining, and (5) Evaluation. The general phases in KDD procedure started
from selection to obtain relevant data from the source, and continued with the pre-processing phase. The next phase
was transformation, which included converting the data into a format suitable for analysis. This was followed by the
data mining phase, where analytical methods were applied to identify patterns or models. Finally, the interpretation
or evaluation phase focused on assessing and interpreting the results. Fig. 1 shows the overview of this process,
including the modifications applied. In this research, procedure modifications were carried out in the transformation
and modelling phases. During the transformation process, the raw data used as input in the clustering method were
standardized and dimensionally reduced with principal component analysis. The value of the main component was
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used as input in the clustering method. The results produced a random label from index 0 to k. For the cluster to be
meaningful, pattern matching of the origin and random labels was carried out using a component analysis with a
loading factor of more than 0.5 [14]. The following explanation provided a more detailed understanding of the phases
in KDD process.

1) Data Selection

Table 1 shows the distribution of STF dataset from 15875 students at Universitas Negeri Surabaya with categories
1 to 8 over 5 years (2017-2021). The lowest and highest categories (1% and 8™") have the smallest and largest tuition
fees, respectively. Tuition fee is the amount of student payment per semester applied consistently in the research
period. This STF scheme is applied to undergraduate programs as regulated by the Ministry of Education. Tuition fee

ranges from IDR 500,000 to IDR 7,500,000 in Categories 1 to 8, respectively.

' = ® — o
|
DATA SELECTION L PRE_PROCESSING TRANFORMATION
—
Single tuition fee Cleaning, standarization, Clustering, Internal Validity
dataset from removing dimension Relabelling Cluster Cluster based on
public university duplicate, reduction based and Classification Sillhouete Index,
(case studi in encoding, on Principle F1-Score and
Universitas Negeri imputation, outlier Component AUC, Statistics
Surabaya) detection Analysis (PCA) Test

Fig. 1 Research Framework based on KDD Process.

The categorization is based on socio-economic criteria, including household income, electricity usage, parental
occupation, and other verifiable indicators submitted during the registration process. The final STF category is
determined by the university after evaluating the documents and data submitted. Furthermore, the class value for the
tuition category group will be the label or target variable in the classification modelling. Table 1 shows the unequal
distribution of the student population across STF categories, with high and low concentration in Categories 4 to 6 and
1 and 8, respectively. This class imbalance may affect the performance of classification models, which tend to be
biased toward the majority classes. Therefore, addressing the imbalance through optimized relabelling and modelling
strategies is a key focus of this research.

TABLE 1
THE NUMBER OF STUDENTS DISTRIBUTED IN STF CATEGORY
Single Tuition Fee (STF) Category

Year 1 2 3 4 5 6 7 8
2017 20 103 204 1266 1367 36 0 0
2018 21 126 298 1481 1557 44 0 0
2019 54 240 306 830 999 501 48 0
2020 30 211 86 1112 964 355 35 1
2021 36 7 311 1122 1201 709 39 0
Total 161 752 1295 s811 6088 1645 122 1
Total 15875

The variables used reflect the socio-economic characteristics of students' parents. The target variable was tuition
fee group (Y), and the predictors Xi to Xi3 are socio-economic indicators seen in Table 2.

2) Pre-Processing

Pre-processing process is an important phase before implementing Principal Component Analysis (PCA) to ensure
that the data provides optimal results. This phase consists of three main phases, namely (1) data cleaning to address
missing or inconsistent values, (2) normalization to ensure all variables are on the same scale, and (3) outlier detection
to minimize distortion in PCA results. The encoding process is required to convert categorical data into a numerical
format [15]. After the data is clean and standardized, the next phase is to evaluate the correlation between the variables.
This ensures that PCA can effectively reduce the data dimensions and retain relevant information. A meticulous pre-
processing process improves the quality of PCA analysis and interpretation of results.
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TABLE 2

THE RESEARCH VARIABLES
Variable Value Type Description
Y 1,2,3,4,5,6,7,8 Ordinal Single Tuition Fee Level
X1 1,2,3,4,5,6 Ordinal Father’s Occupation
X2 1,2,3,4,5,6 Ordinal Mother’s Occupation
X3 1,2,3,4,5 Ordinal Father’s Salary
X4 1,2,3,4,5 Ordinal Mother’s Salary
X5 1,2,3,4,5 Ordinal Number of Dependent
X6 1,2,3,4,5 Ordinal Building Land Tax Billing
X7 1,5,6 Ordinal Number of Cars
X8 1,4,5,6 Ordinal Number of Motorbikes
X9 1,2 Nominal Electricity Source
X10 1,2,3 Nominal Residential Status
X11 1,2,3,4,5 Ordinal Electricity Billing
X12 1,2,3,4 Ordinal Mother's other income
X13 1,2,3,4 Ordinal Father's other income

3) Transformation

Principal component analysis is a widely used strategy for dimensionality reduction. The central concept generates
new features and projects the original data onto these features to maximize the total variation in the data. The processes
for calculating the principal components are as follows: (a) Standardize variables. (b) Calculating the Covariance
Matrix to determine Correlation. (¢) Determine the Principal Components by calculating the Eigenvalues and
Eigenvectors of the Covariance Matrix. (d) Determine which Principal Components to retain for further research based
on differences in Components utilizing a Scree Plot. (e) Transform data along the Principal Components axis.

PCA is defined as an orthogonal linear transformation that converts the data to a new coordinate system. The highest
and second largest variance by some scalar projection of the data are on the first and second coordinates, respectively
[16].

4) Data Mining

In this phase, three main activities are carried out in data mining modelling. These are (1) clustering using K-Means
algorithm, (2) relabeling the results using principal component loading factors, and (3) classification modelling to
evaluate prediction performance. The first phase is clustering through K-Means algorithm due to the simplicity and
efficiency in grouping data with ordinal and nominal characteristics. K-Means can effectively identify socioeconomic
patterns based on employment, income, and family assets, most of which represent ordinal scales. The algorithm is
computationally efficient, suitable for medium-sized datasets, and capable of providing meaningful insights to support
data-driven decision-making, such as STF level determination. The relatively simple data structure and controlled
number of dimensions allow K-Means to provide informative and relevant cluster results [17]. The second phase is
the relabeling process on the result label. Computationally, cluster labels are randomly assigned to each group formed
from index 0 to k. K-Means algorithm is given a value of k=8, based on the number of STF groups desired by the
university. Furthermore, this research uses the loading factor value of the variable on the main components to interpret
the group related to the socioeconomic level of students. The proposed algorithm for the relabeling method is shown
in Algorithm 1. The third phase includes applying six classification algorithms and three validation scenarios to
evaluate the prediction of STF groupings. The proposed algorithm for the relabeling method is shown in Table 3. A
new dataset is formed after relabeling and used to predict STF groups through the classification method. In this
context, a total of 6 classification algorithms and 3 validation scenarios are compared. The dataset has better prediction
accuracy performance than before relabeling.

5) K-Means Algorithm

K-Means is selected due to wide application and effectiveness in unsupervised partitioning of data with underlying
continuous attributes, including socioeconomic variables related to financial profiles, as reported in previous research
[9], [18]. K-Means is a vector quantization method known as clustering to divide a set of n observations into k clusters.
The procedure of K-Means algorithm is as follows [19]: (a) Determine a random cluster centre and the number of
clusters (k). (b) Determine the distance from each data point to the cluster's center. (c) Assign the data to clusters with
the least distance. (d) Determine the cluster center. (e) Keep going back and forth between phases 2 and 4 until no
more data is moving to the other clusters. (f) Cluster Relabeling.

In text grouping analysis, cluster labelling issues are frequently experienced. The clarity labelling requires the
selection of a human-readable descriptive label for the cluster produced by the document method. In this context,
ordinary clustering algorithms do not produce the labels. The cluster labelling algorithm analyzes the document's
contents to identify labels. Research related to cluster labelling can be found in [20] and [21], where the method
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examines interconnection paths between crucial locations separating various cluster contours and analyzes the
topology of the function representing Support Vector Clustering (SVC) cluster outlines. Distinct clusters are identified
and connected to the appropriate cluster. Therefore, this research is connected to the results of [22] concerning the
labelling of SVC. In another research [23], a mechanism known as Maximal Resemblance Data Labeling (MARDL)
is used. Each unlabeled data point is assigned to the correct cluster based on a new categorical grouping called N-
Nodeset Importance Representative (NNIR). NNIR represents the cluster with the importance of attribute value
combinations. The cluster labelling method aims to improve the structure that can be differentiated between clusters.
Therefore, the labelling must be connected to the original data label because the data comes from poor results and is
geared towards better clustering. In the algorithm, the centroids of the actual labels are mapped to K-Means. Selection
is based on the closest distance between the original centroid and the cluster to prevent double mapping. The label is
updated by replacing the original to match the mapping results of the updated prediction.

Algorithm 1
Relabelling Cluster

Sunction relabelling cluster()
# Data Reading and Preprocessing
original_data — read data_from_database()
selected_features < perform_feature selection(original _data)
pca_features — apply pca(selected features)
reduced_features < select first_two_principal_components(pca_features)

# Calculate Real Centroids
real_centroids < calculate centroids(reduced_features)

# Clustering with K-Means
cluster_centroids < apply_kmeans_clustering(reduced_features)

# Centroid Mapping

cluster_order — initialize_empty list()

for each real_centroid in real _centroids
closest_index — find _nearest(real_centroid, cluster centroids, cluster_order)
append_to_cluster _order(cluster_order, closest_index)

end for

# Update Predicted Labels
label_mapping < create_label mapping(real centroids, cluster order)
updated_labels — update labels with_mapping(label mapping)

# Handle Imbalanced Data
X_train, y_train <— oversample_data(reduced_features, updated labels)

# Train the SVM Model
clf — train_svm_model(x_train, y_train)

# Save Model and Results

save_trained_model(clf)

return updated_labels, clf
end function

6) Classification-Based Cluster Relabeling

The labeled input data is required for modeling to predict a group from a set of items. Research [24], [25], [26],
[27], [28], and [29] contains previous investigations reporting the labeling outcomes used in the classification
modeling procedure. Cluster-based data relabeling (CBDR) is a recent strategy introduced in the latest research [30]
that enables linear classifiers to operate successfully on nonlinear data. The concept divides the data set into multiple
class-specific clusters without overlapping and relabelling. A linear classifier can be used on the relabeled data to
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obtain cluster-based linear decision boundaries. Extensive trials have shown that CBDR significantly improves the
performance of linear classifiers and outperforms the nonlinear counterparts. According to additional experiments,
CBDR has also increased the classification performance of nonlinear classifiers. The most substantial outperformance
was observed with skewed data. Another research used the class decomposition method [31] and [32] investigated the
hierarchical and K-Means clustering methods. The results showed that class breakdown using K-Means and
hierarchical clustering enhanced Fl-score of NB classifier. An experimental design is also carried out using a
relabeling dataset based on PCA component to accomplish the third goal. There is an element mpqr, Where p is the type
of dataset used, p=1,2, and q is the fold level in the cross-validation process. In this context, g=3,5,10, while 7 is the
type of classification algorithm (r = 1,2,3,4,5,6). Furthermore, m is a metric used to measure the goodness of
classification predictions in the form of F1-Score or AUC (Area Under the Curve) values. The classification algorithm
used is Decision Tree (DT), K-Nearest Neighbor (KNN), Logistic Regression (LR), NB, Random Forest (RF), and
SVM. A substantial difference in the accuracy of the prediction results can be produced between the data with the
original and new labels based on the proposed method. The experiment used Jupiter-lab on a computer with an Intel
Core 17 6th-generation processor and 64 GB of RAM. In hyperparameter optimization, the Grid Search method is used
with the following parameter ranges in Table 3.

TABLE3
RANGE VALUE OF HYPERPARAMETER TUNING

Algorithm Parameter Range Value
DT a.  criterion ['gini', 'entropy']

b. min_samples_leaf [1, 10, 100, 500]

c.  min_samples_split [1, 10, 100, 500]
KNN a.  n_neighbors [1, 10, 100, 500]

b.  weights ['uniform’, 'distance']

c.  metric ['euclidean’, 'manhattan']
LR a.  penalty [11°,’12°]

b. C [0.1, 1, 10,100]

c. Fl [1.0,0.5,0.1]

d.  solver ['liblinear']
NB a.  prior None

b.  smoothing np.logspace(0,-9, num=100)
RF a. min_samples_leaf [1, 10, 100, 500]

b.  max_depth [1, 10, 100, 500]

c.  min_samples_split [1, 10, 100, 500]
SVM a.  kernel [‘linear’,’rbf’]

b. C [1,0.1,0.01]

C. Gamma [0.1, 1, 10,100]

d.  Decision function shape ['ovo', 'ovr']

7) Evaluation and Validation
This research uses the Silhouette Index, widely applied in validating the structure of clusters in unsupervised
learning tasks to assess the quality of clustering before relabeling and classification [33]. The Silhouette value
measures the fitting level of a data point in the assigned cluster. The Silhouette score s(i) ranges from -1 to +1, with
higher values since the object is well and poorly matched to the main and neighboring clusters, respectively. A
clustering configuration is considered good when most data points have high silhouette values. Conversely, increased
low or negative values indicate poor clustering or an inappropriate number of clusters. The Silhouette Index is
computed using various distance measures, such as Euclidean or Manhattan distances. In Equation (1), point i belongs
to cluster C;, and the value a(i) is defined as the average distance from 7 in the same cluster.
o) = i ecies @) (1)

[Crl-1

Where d(i,j) is the distance between the i-th and j-th point in the same cluster (Cr), and |C;| is the number of points in
the Cr. The smaller value of a(i) can be interpreted as a better cluster assignment. In contrast, b(i) is the average
distance between a point I and every other point outside the C;cluster determined by Equation (2):

. o1 .
b(i) = m nlc—llzj'ec,,iacj ad,j) @)

With equations (1) and (2), form the s(i) equation (3),
s@) = 2O iflGI > 1 (3)

~ max{a(i),b@)}’
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Cross-validation is an effective evaluation method, specifically on multiclass data with an imbalanced distribution.
The advantage is the ability to provide more stable and accurate model performance estimates than single evaluation
methods, such as train-test splits. Cross-validation ensures that each point is used to make the evaluation results more
representative of the overall dataset by dividing the data into multiple subsets [34]. In imbalanced data, the use of
metrics such as Fl-score becomes relevant in combining precision and recall. Cross-validation ensures that the
resulting F1-score does not rely on a data share but consistently reflects the performance across multiple scenarios to
provide a more reliable assessment [35], [36]

III. RESULTS

Based on the method, the results of initial data exploration are significant in visualizing data structures based on
STF groups. Dimensional reduction uses PCA to obtain visualization results in a two-dimensional graph. During the
pre-processing phase, the original data were transformed using ordinal encoding and validated for feasibility through
the Kaiser-Meyer-Olkin (KMO) and Bartlett statistical test to determine the viability of PCA. Bartlett’s Test of
Sphericity aims to analyze the hypothesis that the variables are uncorrelated in the population (HO). The null
hypothesis is rejected when the p-value is small or less than the significance level (5%). The calculation results of the
p-value for the Bartlett Test are 0.000 since Ho is rejected. The KMO is a measure of Sampling Adequacy (MSA), an
index used to assess the accuracy of PCA. In this context, PCA is not advised when MSA is less than 0.5. MSA value
for the dataset is 0.5818, greater than 0.5. The application of PCA is expected to reduce dimension and extract relevant
components. Based on the eigenvalues in Fig.2, the predictor variable from the dataset can be reduced to 5 components
(eigenvalue >1). The data is standardized before PCA process is carried out. Furthermore, the five new variables are
used as a new dataset for the clustering process. The total variation represented by the extracted components is 63.17%.

25
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Fig. 2. Scree Plot for Dimension Reduction

The result of dimension reduction using PCA can be used to create visualizations between the first and second
components based on STF-level labels in the original dataset. Fig. 3a shows that the clusters between STF are not
separated, and overlap occurs. A value of -0.054 is obtained when measured using the Silhouette Index. Since the
value of the cluster goodness is close to -1, re-clustering should be conducted to increase the value of the Silhouette
Index. A new data cluster form is generated using K-Means algorithm, as shown in Fig. 3b. The location of objects
between clusters in Fig. 3b is clearly separated. The label given by K-Means is a random number with no meaning as
an STF level. Therefore, a strategy must be developed to map the random label given by K-Means with the original
label. A value of 0.591(close to 1) is obtained when measured using the Silhouette Index in the right cluster. The
number of clusters (k) used in K-Means algorithm is eight. This is because there are eight tuition fee categories applied
in Universitas Negeri Surabaya. In Fig.3b, the dots on the plot represent students grouped by STF class (1 to 8). This
visualization enables clearer identification of student distributions based on socioeconomic levels, after dimensionality
reduction and re-clustering. X-axis and Y-axis represent the 1st and 2" Components, which are a linear combination
of native features designed to capture variation in data. The first component captures the most dominant variance in
the dataset, assumed to reflect underlying socioeconomic status. Students with lower STF are located on the left side
and may have certain centralized and relatively uniform socioeconomic traits. In contrast, students with high STF are
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located at the top or right side, showing more significant differences in socioeconomic profiles. Clusters with low STF
appear to be tighter, suggesting similar features between the groups. Furthermore, students in the category of high
STF may have more diverse socioeconomic backgrounds. This scatter plot indicates overlap or mixing between certain
groups in areas with overlapping colors and points. In the area around the center, several dots of similar or spatially
adjacent colors appeared. This shows that the distinguishing features of the groups may be less obvious. Even though
there is a tendency for more separate distributions, some points are not entirely in the dominant cluster. Therefore,
there are students in the category with a socioeconomic profile close to a lower STF level. In addition, the unbroken
color gradient from dark to light indicates that the transition between STF levels is not fully explicitly classified. Some
STF categories at the intermediate level have similar characteristics in the two-dimensional space of PCA results. The
scatter plot reports the potential for overlap between several STF levels, specifically at the middle and high levels.
Therefore, the clustering method should be analyzed using K-Means to make the boundaries between STF groups
more precise and separable. Fig. 3b is the scatter plot of K-Means clustering result with the number of 8 clusters.

(a) (b)

Fig. 3 (a) Scatter Plot of Original Dataset based on PCA (b) Scatter Plot of K-Means

Fig. 3b shows the scatter results of K-Means clustering, which is a visual improvement from the initial plot. This
clustering shows that K-Means algorithm successfully separates the data into several groups based on similarities in
PCA space. Areas that previously showed overlap between groups, such as clusters at intermediate STF levels, are
more clearly separated. K-Means manages to group similar points into a more centralized region without significant
overlaps. Some clusters appear relatively isolated from others, showing the unique characteristics of the algorithm.
The clusters in the middle are denser and tighter, indicating a substantial uniformity in the data. In contrast, the clusters
in the top right and bottom right are scattered, suggesting that the data has higher variability. Since the cluster labels
do not have meaning as STF levels, the next phase is to use the proposed relabeling algorithm. In principle, the center
point of the clustering labeling is compared with the original STF label. This visualization provides a stronger
foundation for evaluating the accuracy of K-Means grouping. The clustering shows that the data can be separated
more systematically than the initial scatter. However, the random labels need validation or interpretation to have
meaning at STF level.
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Scatter of K-Mean Clustering Relabeling
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Fig. 4 Scatter Plot K-Means Cluster Relabel-based PCA Centroid Pattern Matching

Fig. 4a is a visualization of K-Means cluster relabeling process to rearrange the clustered labels. In this graph, the
label is reported with an orange line, which tends to be random because the initial determination of the centroid is
carried out randomly. The original reference label has a blue line indicating the pattern. To improve the interpretation
of the results, a relabeling process is carried out by rearranging the cluster labels. This relabeling is shown with a green
line. The process includes replacing the orange label with green based on the similarity of the pattern to the reference
centroid. Therefore, the green label indicates a cluster in line with the original pattern. Fig. 4b shows the scatter plot
results of clustering after the relabeling process. The scatter graph shows the data distribution based on two main
components with cluster labels. The clustering results report the cluster's clarity level and the boundaries based on the
data distribution. A well-defined cluster can be used for more accurate analysis or decision-making to predict STF
cohorts.

TABLE 4

F1-SCORE FROM CLASSIFICATION MODEL
Classification Algorithm (1)

Dataset (p) fold (q) DT KNN LR NB RF SVM
3 $2.98 83.11 58.48 59.65 84.29 81.03
Original Labeled Data 5 83.41 83.41 58.35 59.64 84.69 81.22
10 83.63 83.49 58.47 59.69 84.85 81.58
Relabeled 3 99.50 98.98 92.82 95.54 99.65 99.85
Doty 5 99.51 99.11 92.85 95.50 99.66 99.85
10 99.56 99.15 92.93 95.56 99.73 99.60

A comparison is conducted in response to the accuracy results of the classification algorithm based on the dataset.
The calculation results for the average of F1-Score and AUC can be shown in Tables 4 and 5, respectively. In general,
there are differences in results between F1-score measurements for data with the original label and the new label.
Statistical tests for two paired samples are necessary to determine the significance. The selection of the appropriate
test statistic must be checked against the normal distribution. The normality test was carried out through the
Kolmogorov-Smirnov test. The results showed that F1-score and AUC data were not normally distributed.

Fig. 5 presents the graphical representation of the data shown in Table 4. The average F1-score accuracy of the
dataset with the new labels is consistently original labels. X-axis represents the experiment index, ranging from 1 to
18, which corresponds to the combination of 3-fold cross-validation and 6 classification algorithms (3 x 6 = 18 data
points).
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Fig. 5 F1-Score Between Original Label and New Label dataset

The graph compares the accuracy performance based on F1-Score between the data with the original and the
relabeled labels. The red line shows better stability than the blue. This is important to ensure that model performance
remains optimal across the various data conditions and classification methods. The average F1-score for the new label
is consistently higher than the original, indicating an improvement in the quality of predictions. Fig. 5 visualizes F1-
Score values, and the results presented in Table 5 are reported in a comparative chart in Fig. 6.

TABLE 5
AUC FROM CLASSIFICATION MODEL

Classification Algorithm (1)

Dataset (p) Pld(@ 57— ¢NN IR NB  RF SVM

3 9633 9773 9154 9249 9848 9738

Original Labeled Data 5 96.51 97.84 91.54 9248 98.55 97.44

10 96.62 97.92 9155 9248 98.59 97.49

Relabeled 3 99.81 99.96 99.18 99.66 100.0  100.0

Datz c 5 99.81 99.63 99.17 99.66 100.0 100.0

10 99.56  99.15 9293 9556  99.73  99.60
102.00
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Fig. 6 AUC between the Original Label and the New Label dataset

This graph shows a comparison of AUC values between the original and the relabeled dataset. The red line tends
to be more stable and has a higher AUC value than the blue line. Therefore, relabeling improves the performance of
the model in differentiating between STF classes. Fluctuations in the blue line show that the original dataset is less
consistent. The relabeling results positively impact data quality and model stability. Hypothesis testing is carried out
since there is a difference in the accuracy results of the dataset structure with the original label and relabeling. The
hypotheses to be tested are as follows:

Ho: There is no difference between F1-score or AUC measurements before and after K-Means cluster relabeling.
Hi: There is a difference between F1-score and AUC measurements before and after K-Means cluster relabeling.

TABLE 6.
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THE WILCOXON SIGNED-RANK TEST FOR F1-SCORE AND AUC

Null Hypothesis Z-Statistics P-Value (Asymp. Sig. 2-tailed) Decision
F1-Score New Label = .
F1-Score Original Label -3.724b 0-000 HO Rejected
AUC New Label = -3.724b 0.000 HO Rejected

AUC Original Label
a. Wilcoxon Signed Ranks Test
b. Based on negative ranks.

The Wilcoxon statistical test for paired samples shows that the results of F1 Score or AUC average on the dataset
with the new label are significantly improved since the p-value is less than 5%. The data statistically support the results
of F1-Score or AUC being significantly different between the dataset with the new and original labels.

IV. DISCUSSION

The application of clustering and relabeling methods to student socio-economic data significantly improves the
accuracy of tuition fee grouping predictions in public universities. Therefore, this research addresses the issue of
ambiguous label distributions in existing institutional datasets using centroid-based relabeling. Several research using
fuzzy clustering [5], [6], [7] successfully applied unsupervised methods to categorize students. However, systematic
validation of the resulting clusters was unavailable. This method introduces a validation phase before classification,
ensuring that the clusters are generated and evaluated for structural quality using validity indices. The validation phase
ensures that classification models are trained on reliable and meaningful labels. Table 7 shows the summary of relevant
previous research.

TABLE 7
COMPARISON OF RELATED RESEARCH AND THE PRESENT WORK
esearc ethod Use ccurac, vantages imitations aj resse
Rescarch  Method Used Igﬁf:f;:"f Accuracy Advantag Limitati Gap Addressed
Lack of cluster This research adds a
. Not Able to categorize validity validation phase
5}’ (61, Fuzzy Clustering ;/_a;‘;es g, systematically students without assessment; before classification
validated supervision ambiguous labels
remain
Stron Dependent on The relabeling
Support Vector & raw institutional process increases
[9]1,[10] . - ~81% accuracy performance on
Machine (SVM) structured data labels; no accuracy across all
relabeling algorithms
Lo This research
Label refinement and Not explicitly nghhghted the Did not integrate combines both
[11], [12] e - importance of o OOt
Classification reported . cluster validation  cluster validation
refining data labels and relabeling
Relabeling with >81%, Systematic Relies on high- Provides both
Validation and Multi- statistically . ’ quality socio- methodological and
This Algorithm (6(;: endin significant icsqnsrlcjs\t]:l;en " economic data practical
research Classification (DT, on gataset)g improvements reE: tical for t,ui tion and contributions in the
KNN, NB, RF, SVM, (F1-Score & I;ee classification computational Indonesian context
ANN) AUC) resources

Table 7 compares applied methods, number of clusters, reported performance scores, as well as the strengths and
limitations. Even though SVM [9], [10] reported accuracy levels of 81%, this research with six classification
algorithms, namely DT, KNN, NB, RF, SVM, and Artificial Neural Networks (ANN), showed that the relabeling
process obtained higher score across all models. Statistical tests at a 5% significance level confirm that the
improvements are statistically significant, as reflected in F1-Score and AUC values. The results of previous
investigations [11], [12] emphasized the importance of refining data labels before classification. However, this
research integrates validation and relabeling into a unified and systematic framework directed to the context of STF
classification. From a practical perspective, accurate tuition fee classification has direct implications for the equitable
allocation of subsidies and scholarships since students from lower-income families receive the required support.

This research should be placed in a broader international context. In the United States, tuition fee is primarily
market-driven, creating affordability challenges and dependence on financial aid [37]. In Europe, Germany and
Finland maintain tuition free higher education, while others adopt targeted aid mechanisms to provide more limited
support [38]. In Asia and Asia-Pacific, financing models are highly diverse, ranging from strong public funding to
extensive cost-sharing and private provision shaped by challenges of access, equity, and governance [39], [40], [41].
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These contrasts suggest the uniqueness of STF policy, which embeds equity directly into tuition-setting through cross-
subsidization. The proposed data-driven method offers insights adapted to other contexts seeking fairer and more
transparent tuition allocation. However, this research has several limitations that should be acknowledged. First, the
method depends on the availability of high-quality socio-economic data, which may vary across institutions. Second,
scalability may be challenged by the computational resources required for large-scale datasets. Third, the results are
limited to Indonesian higher education context, requiring validation in different educational systems.

V. CONCLUSIONS

In conclusion, the quality of the grouping of education costs (STF) is successfully evaluated based on the university
formula. The results of the preliminary analysis show that the distribution of STF labels is unclear and does not fully
reflect the socio-economic data structure of students. This reports the need for better methods to ensure a more accurate
clustering of STF. Furthermore, the grouping is rearranged using a centroid mapping-based relabeling process by
implementing K-Means algorithm. The method produces new labels in line with the actual data patterns, providing a
more substantial basis for predictive analysis. The relabeling process is validated by testing six classification
algorithms, namely DT, KNN, NB, LR, RF, and SVM. The experimental results show that the relabeled data
significantly improves the accuracy of the predictions compared to the original data, as evidenced by statistical tests
at a significance level of 5%. Therefore, clustering based on the cluster goodness index can improve the quality of the
dataset structure for future STF prediction. RF algorithm and SVM are the top recommendations in similar
applications. This research significantly improves the quality of datasets for STF grouping and provides practical
recommendations for higher education institutions. Universities can also develop more accurate and fairer prediction
systems with better data structures and optimal classification algorithms. These results support data-driven decision-
making in education cost allocation and provide a framework applied to various other social policies. The institutional
context serves as a data source, even though a case from Universitas Negeri Surabaya is used to show the method.
The primary contribution of this research lies in the methodological framework for cluster relabeling and classification
optimization, generalized and applied to other institutions with similar tuition grouping challenges. The results
explicitly answer the questions by confirming that the proposed relabeling method addresses the imbalance between
original labels and socio-economic patterns.
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