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Abstract  
 
Background: Diabetic retinopathy (DR) is a condition that impairs the blood vessels in the retina, resulting in vision loss ranging 
from temporary to permanent blindness. It commonly affects individuals diagnosed with diabetes mellitus (DM). Fundoscopy 
is a technique used to identify DR by examining the fundus of the eye during an eye examination. This process is time-consuming 
and can be expensive. 
Objective: This study aimed to examine the identification of DR using digital image processing methods.  
Methods: The self-organizing map (SOM) artificial neural network was employed. Diabetic retinopathy will be categorized 
according to its severity, including normal, mild, moderate, or severe. This classification considers the quantity of exudates and 
microaneurysms and the blood vessel structure in the fundus image. The dataset used in this investigation comprised 1000 
fundus images acquired from the MESSIDOR ophthalmology database. 
Results: The findings indicate that the SOM approach achieves a training accuracy of 72% and a testing accuracy of 62%. 
Conclusion: The DR severity classification system can effectively extract DR-related features by segmenting exudates, blood 
vessels, and microaneurysms from funduscopic images during training, testing, and evaluation. 
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I. INTRODUCTION  

Hyperglycemia occurs when the blood glucose level is higher than usual. It affects people with diabetes mellitus 
(DM), but it can also develop in nondiabetics. Patients with diabetes cannot metabolize glucose because either their 
pancreas does not produce enough insulin, which is essential to control glucose levels, or their body cannot effectively 
use the insulin it produces. Hyperglycemia can lead to several complications, such as skin problems and infections, 
kidney damage, eye diseases, cardiovascular diseases, and nerve damage, over time [1]. Diabetic retinopathy (DR) is 
a severe eye condition caused by diabetes mellitus, leading to potential blindness if left undiagnosed and untreated. 
Fundus imaging is a standard noninvasive method used for the screening of DR. ML and deep learning techniques 
have enhanced DR detection, classification accuracy, and efficiency. 

In 2021, Indonesia ranked fifth among countries with the highest prevalence of DM, with 19.5 million individuals 
affected [2]. DR is higher in older individuals with DM due to their advanced age and longer duration of diabetes [3]. 
DR can be classified into two main categories: NPDR and PDR. NPDR is the deterioration of the retina’s blood 
vessels. Fluid and blood can sometimes flow into the retina in specific instances. Blood vessels appear dilated, with 
uneven vessel margins. Proliferative diabetic retinopathy (PDR) can develop from NPDR-type diabetic retinopathy 
when the damage to blood vessels in the retina increases. The PDR type results in vascular damage, forming aberrant 
blood vessel segments in the retina [4]. This disrupts the regular circulation of fluid in the eye. The ocular globe will 
undergo elevated IOP. In 2020, the number of adults worldwide with DR was estimated to be approximately 103 
million, projected to increase to approximately—160 million by 2045 [5]. An early study showed that of 1785 patients 
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in Indonesia who had T2DM, a significant 42% developed several complications [6]. Of the total number of people 
with DR, 8.3% have NPD Retinopathy. 

Various classification algorithms have been explored, including CNNs, SVMs, and ensemble methods [7], [8], [9], 
[10]. A specific study on SOM for DR classification involved converting fundus images to grayscale, applying edge 
detection and morphological operations, and then using SOM for classification. This method achieved 93.7% accuracy 
in identifying different eye conditions, including DR [11]. Fundoscopy is one method for identifying individuals with 
DR. Funduscopy is a diagnostic procedure that involves the inspection of the fundus of the eye, which includes the 
structures, such as the retina, located behind and inside the eye. This was examined using an ophthalmoscope or 
Fundus photography [4]. However, even after acquiring the fundus image by fundoscopy, the specialists would still 
need extra time to determine DR. Early detection of DR is crucial in preventing its progression to severe stages. 

While deep learning methodologies have attained superior performance in DR detection, they incur substantial 
expenses regarding computational power and labeled data, rendering their implementation in low-resource settings 
challenging [7], [8], [9]. Furthermore, they possess the black-box problem, rendering clinical interpretation 
challenging [10], [12]. This creates a need for a simpler and more understandable method, such as self-organizing 
maps (SOM), which is still rarely used in classification tasks that reduce data dimensions, despite its potential for 
unsupervised learning and visual interpretation. SOM, introduced by [13], is an unsupervised neural network that 
projects high-dimensional data onto a lower-dimensional space while preserving topological relationships among the 
input data [13]. This makes it highly suitable for analyzing complex biomedical images such as fundus photographs, 
especially in low-resource settings where interpretability and computational efficiency are crucial [14]. SOM also 
offers visual insights into clustering behavior, distinguishing it from black-box models.  

Some prior research supports its applicability, such as [11], which demonstrated the effectiveness of SOM in 
detecting multiple types of eye disease, achieving 93.7% accuracy. Similarly, [15] used SOM to analyze macular 
morphological patterns in diabetic retinopathy, and [16] successfully applied SOM with k-means clustering for retinal 
vessel segmentation. These examples reinforce the rationale for applying SOM in this study, given its strengths in 
unsupervised classification, dimensionality reduction, and clinical interpretability.  

This research reports on developing a model that can detect and categorize the degree of DR severity using fundus 
images. The objective is to assist specialists in quickly identifying DR and implementing suitable medical 
interventions. This study categorized the DR levels into four distinct levels: normal mild moderate, and severe. The 
severity of DR is based on the number of exudates and microaneurysms and the condition of the blood vessels. Self-
organizing maps (SOM) can help classify medical images, including fundus images, for detecting drowsiness (DR). 
SOMs were employed to analyze fundus image data acquired from a fusion of MESSIDOR ophthalmology databases 
[17]. 

The primary contributions of the current paper are as follows: (1) We present a hybrid model that utilizes 
morphological preprocessing, CLAHE contrast enhancement, and SOM-based classification for the detection of DR 
stages; (2) We demonstrate that this streamlined model yields results comparable to more complex deep learning 
methods, particularly in identifying the early stages of DR; (3) We demonstrate that our model is interpretable, scalable 
to extensive datasets, and suitable for deployment in resource-limited clinical settings, thereby facilitating the 
democratization of retinal screening technology. 

II. LITERATURE  REVIEW  

Extensive research and development have been conducted on the DR categorization. Several studies, such as the 
one reported in [18], categorize DR severity into four distinct classes: normal, NPDR, PDR, and macular edema. This 
study utilized the statistical characteristics of patient fundus images acquired through a feature extraction technique, 
specifically by comparing two methods: 3D-GLCM extraction and 3D-GLCM projection. Once feature extraction is 
complete, the subsequent phase involves training these features using a backpropagation ANN. The research findings 
demonstrate that the developed system can perform classification with 100% sensitivity, 91% specificity, and 95.83% 
accuracy. In another study [19], 250 test data were used to evaluate the accuracy of a particular extraction and 
classification method based on LVM. The results show an accuracy rate of 93.33% and a computing time of 0.7195 
s. The accuracy of the classification results is affected by various parameters, such as image resizing size, orientation 
angle, and spacing between pixels. 

An additional recent study on DR identification using the Kirsch edge detection and watershed transformation 
technique was conducted in [20]. The watershed transformation is a segmentation method designed explicitly for 
grayscale images. This algorithm was selected based on its superior performance when applied to input images with 
distinct edges. Since the fundus images used in this study are primarily gradient images, the watershed transformation 
can generate segmentations that appear as closed contours representing the segmented regions. This study categorized 
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DR into three classes: mild, moderate, and severe. Based on the results, using the watershed transformation algorithm 
seems useful in facilitating human detection of DR due to its ability to identify anomalies in fundus pictures that are 
imperceptible to the unaided eye. 

A recent study [21] explains that the classification of DR severity in fundus images involves multiple stages of 
image preprocessing and feature enhancement. Their method includes contrast adjustment, preservation of vessel 
structure, and extraction of attention-based features using a hybrid architecture that combines a residual attention 
network and a vision transformer. This approach enables more accurate retinal lesion discrimination by enhancing the 
visibility of pathological features critical to DR diagnosis. DR severity was classified into multiple stages, ranging 
from no DR to proliferative DR. The proposed model outperformed conventional CNN-based methods and achieved 
a classification accuracy of up to 96.08%, demonstrating the effectiveness of combining global and local attention in 
improving DR classification performance. 

Another study [22] proposed a microaneurysm detection framework using mathematical morphology for fundus 
image enhancement, red structure extraction (e.g., blood vessels), and true microaneurysm candidate selection via 
feature extraction. Their approach achieved a sensitivity, specificity, and accuracy of 89.22%, 91%, and 92%, 
respectively, on the DiaretDB1 dataset and 83% sensitivity with 82% specificity on the eophtha dataset. A study on 
microaneurysm identification using the Raspberry Pi and the OpenCV library was conducted in [23]. The test data 
consisted of 55 fundus photographs obtained from the Messidor digital database [17]. The authors of that study 
contend that employing the Raspberry Pi can yield superior computational performance compared to software that 
relies on simulation. A real-time camera equipped with a Raspberry Pi controller board can capture color images. This 
also allows for the inclusion of additional factors and features that can enhance DR identification.. 

III. METHODS 

This section explains the methodology employed in this study. Figure 1 schematically illustrates the processing 
steps undertaken in this study. The following subsections provide a comprehensive explanation of the steps that 
comprise the entire process. Figure 1 shows the research methodology, starting with data collection and preprocessing, 
training and testing, and evaluation. 

Data Collection and 
Pre-processing

Training Data

Testing Data

Training Process

Classification Model
Evaluation Process

 
Fig. 1 Research Methodology 

A. Data Collection 

We gathered 1000 fundus image datasets from the MESSIDOR ophthalmology database [17]. The dataset was then 
divided into four distinct data chunks, each representing a different category based on the severity levels of DR. Each 
category is characterized by the quantity of observed exudates and microaneurysms and the blood vessel morphology. 
The following severity levels of DR were considered: normal mild moderate, and severe. Table 1 displays the data for 
each class in pictures, while Table 2 shows the features of each category. Table 1 illustrates the frequency of fundus 
images based on the severity of DR. The data were categorized into four classifications: normal, mild, moderate, and 
severe. Specifically, 546 photos were classified as normal, 153 as mild, 247 as moderate, and 254 as severe.  

TABLE 1 
THE NUMBER OF PICTURES CATEGORIZED BY SEVERITY LEVEL   

Severity Number of Images 
Normal 546 

Mild 153 
Moderate 247 

Severe 254 
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Table 2 presents a detailed description of the severity levels of DR based on its clinical characteristics as 
demonstrated in fundus pictures. The normal group is defined by the lack of DR indicators, including a healthy ocular 
condition and the absence of microaneurysms and hemorrhages. The mild category is characterized by 
microaneurysms within a restricted range without spot or blot hemorrhages. No discernible alterations are seen in the 
blood vessels; however, cotton wool spots (CWS) or soft exudates may occasionally be observed. The moderate stage 
is characterized by microaneurysms of 5–15 m, typically accompanied by no more than five spot and blot 
hemorrhages. IRMA may also manifest at this stage, indicating beading or irregularities in venous blood vessels, with 
either soft or hard exudates. In the Severe stage, numerous microaneurysms (μA), exceeding 15, are present in the 
eye, spread uniformly throughout all fundus quadrants. This phase includes several blot hemorrhages and venous 
beading in two or more quadrants, together with potential intraretinal microvascular abnormalities (IRMA) in one 
quadrant, indicating significant vascular damage and advanced DR stages. 

TABLE 2 
CATEGORIZATION OF THE SEVERITY LEVELS OF DIABETIC RETINOPATHY   

Severity Description 

Normal Good eye health and no signs of Diabetic Retinopathy were seen. 

Mild Microaneurysms were identified with a range of 0 < μA ≤ 5, No spot or spot hemorrhages (dot and blot hemorrhages) were 

found, and the blood vessels appear normal. Cotton wool spots (CWL) or soft exudates may be observed (optional). 

Moderate A microaneurysm is discovered when its size falls within the 5 to 15 μA range. A total of 0 to 5 spots and spot hemorrhages, 

also known as dot and blot hemorrhages, were identified. Intraretinal Microvascular irregularities (IrMA) result in venous 

beading or irregularities in blood vessels. Soft exudates and hard exudates identified (optional) 

Severe Numerous microaneurysms (μA) were discovered, with a minimum of 15 microaneurysms being present. Multiple point 

hemorrhages are evenly distributed in all four quadrants of the fundus, with a minimum count of H >= 5. Venous beading occurs 

when there is an aberrant spread of IrMA to the fundus quadrant or irregularities in the blood vessels. 

 
After collecting the data, a pre-processing step was performed to ensure the consistency of the dataset and filter 

out nonrelevant information. The initial pre-processing steps involved image resizing. Fundus images must be resized 
due to the variability in the dimensions of the image dataset. We resized the input images to dimensions of 80x80 
pixels to provide uniformity and mitigate the computing process. Furthermore, the image color space was converted 
to the green channel. The green channel of the RGB color space offers superior and more discernible contrast among 
blood vessels, exudates, and microaneurysms than the red and blue channels. 

 
TABLE 3 

STAGES OF PREPROCESSING IN FUNDUS IMAGES 
Preprocessing Process Fundus Image 

Resize Image 

 

Green Channel Extraction 

 

CLAHE Algorithm Implementation 

 

Optic Disc Elimination 

 

 
After extracting the green channel from an image, we applied contrast enhancement using the CLAHE algorithm. 

The CLAHE algorithm improves the contrast in the localized regions of the image referred to as tiles. The contrast of 
each tile was carefully boosted to provide a uniform histogram. The augmented photos were amalgamated using 
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interpolation. Optic discs and exudates exhibit analogous colors in fundus pictures but differ in form and size. 
Consequently, optic discs were identified in the preprocessing phase via the Hough Circle transform by locating the 
largest and most luminous circle inside the fundus image region. This step aims to improve the quality of image 
features and remove optical discs. All dataset components, including the training and testing data, were preprocessed. 
An example of the visual representation of one fundus picture as it undergoes several preprocessing phases is shown 
in Table 3. 

B. Data Preprocessing 

After collecting the data, we performed a pre-processing step to ensure the consistency of the dataset and filter out 
non-relevant information from the dataset. The initial pre-processing steps involved resizing the image. Resizing 
fundus images is necessary due to the variability in the dimensions of the image dataset. We resized the input images 
to dimensions of 80x80 pixels to provide uniformity and mitigate the computing process. Further, we converted the 
image color space to the green channel. The green channel of the RGB color space offers superior and more discernible 
contrast among blood vessels, exudates, and microaneurysms than the red and blue channels. 

After extracting the green channel from an image, we applied contrast enhancement using the Contrast Limited 
Adaptive Histogram Equalization (CLAHE) algorithm. The CLAHE algorithm improves contrast in localized regions 
of the image referred to as tiles. Each tile's contrast was carefully boosted to provide a uniform histogram. The 
augmented photos were amalgamated by interpolation. Optic discs and exudates exhibit analogous colors in fundus 
pictures but differ in form and size. Consequently, optic discs were identified in the preprocessing phase via the Hough 
Circle transform by locating the largest and most luminous circle inside the fundus image region. This step aims to 
improve the quality of image features and remove optical discs. The preprocessing step was performed on all dataset 
components, including the training and testing data. Table 3 shows an example of the visual representation of one 
fundus picture as it undergoes several preprocessing phases. 

C. Image Segmentation 

The next step consisted of a segmentation task. Three segmentation processes were conducted: exudate, 
microaneurysm, and blood vessel segmentation. All segmentations were performed on the preprocessed data. The 
method used to extract the exudate feature from the image involved the dilation morphological transformation, which 
was applied to augment pixels at the object’s periphery, enhancing the object’s boundaries’ visibility. A binary 
threshold was used to convert the image pixels from grayscale to a binary format for enhanced analysis. Upon 
obtaining the picture segmentation, a median filter was employed on the resulting image to reduce noise.  

The segmentation approach employed to extract the microaneurysm feature from preprocessed images involved 
gamma compensation through color mapping to an array. After obtaining the array via color mapping, two 
morphological operations were applied: top-hat transform with a 9x9 kernel and opening morphological operator with 
a 7x7 kernel. Eventually, a threshold was used to convert the image into a binary format.  

TABLE 4 
DIABETIC RETINOPATHY FEATURES SEGMENTATION RESULTS 

Segmentation Exudates Blood Vessels Microaneurysms 

Result 

    

 

The segmentation approach utilized to extract blood vessel characteristics from the preprocessed image involved 
the application of alternate sequential filtering (ASF), which consists of three closure and opening morphological 
transformation procedures using varying kernel sizes. The ASF results were deducted from the CLAHE results during 
preprocessing. Additionally, the resultant image from the subtraction was processed once through the thresholding 
and erosion procedures. The final segmentation method relied on the findContours function in OpenCV, which was 
used to identify intricate blood vessel architecture in fundus pictures. 

Then, the three segmentation results of the DR features were integrated. The aggregated image segmentation 
results are used as input in the training, testing, and classification procedures. Table 4 displays images obtained from 
the segmentation of the exudates, blood vessels, and microaneurysms. 
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D. Training Process 

The SOM method was adopted to generate our classification model. The SOM was selected for its proven efficacy 
in unsupervised pattern categorization and dimensionality reduction, especially with high-dimensional medical 
imaging data. high-dimensional, complex inputs onto a lower-dimensional lattice with a topological neighborhood 
structure, rendering the resultant representation interpretable and suitable for clustering applications [13]. Some 
research indicates that self-organizing maps (SOMs) have been effectively utilized in medical imaging and feature 
organization, with retinal vascular segmentation being one such application [15], [16]. Recently, self-organizing maps 
(SOMs) were used to cluster fundus images in a diabetic retinopathy study, demonstrating that this lightweight and 
unsupervised approach can be an efficient and interpretable alternative to DL models [16]. The SOM structure 
comprises nodes associated with a specific weight as a vector representing the node’s position within the dataset space. 
SOM training involves adjusting the weights based on the input data. The goal of training is to reduce the distance 
(different metrics can be used) between the weights and any given input without modifying the node topology. When 
used in classification mode, the idea is to activate the node closer to the input. In other words, the node that responds 
to a specific input has the most similarity to all inputs that follow specific input patterns [24]. Different methods, such 
as k-means, hierarchical clustering, and graph-based approaches, are used to cluster the neurons in SOM, each with 
its advantages and considerations [25], [26], [27], [28]. This study uses the SOM algorithm to partition the data into 
k clusters [29]. The sequential process of how the SOM network performs on the training data is as follows: The initial 
values of the neural network node weight vector (wij) are set by randomly selecting a value or using equation 1.  

 

��� =
���(��)����(��)

�
     (1) 

 
The weight wij represents the strength of the connection between the j-th input variable and the i-th neuron. min(xi) 

represents the smallest value of the ith input variable, whereas max(xi) represents the most significant value of the i-
th input variable. Subsequently, we set the neighbor width (neighborhood function) θ to its initial value. The next step 
is to set the learning rate parameter α to its initial value. Then, iterate through each input vector x and perform the 
following steps. The distance D(j) for each neuron j, which represents the distance between the input data and the 
neuron in the map, as defined by equation 2. 

�(�) =  ∑ ���� − ���
��

�  (2) 

The second step determines the lowest distance, D(j), which determines the winning neuron. Consequently, the 
victorious neuron is modified to resemble the input variable x and its adjacent neurons. The weights assigned to the 
winning neuron j and its adjacent neurons were assessed, as shown in equation 3.  

���(����) = ���(����)  +  � ∗ � [�� − ���(����)] (3) 

The winning neuron will receive a new weight, denoted as wij(next), which will substitute the prior weight, 
wij(previous), or the former weight. 

The next sequential process of how the SOM network performs is to revise the learning rate α using equation 4.  

�(�) =  �� (1 −  
�

����
) (4) 

The value of the learning rate α will drop as the iteration progresses. Simultaneously, decrease the breadth of the 
neighboring region (neighborhood function) sθ. The last step is to repeat step 4 until the map reaches convergence, 
which is indicated by a lack of substantial weight changes or until the predetermined training cycle value has been 
attained. The weight at the end of the map iteration is used as the categorization model. 

TABLE 5  
THE NUMBER OF TRAINING AND TESTING DATA 

Severity 
The Number of Images 
Training Testing 

Normal 201 95 
Mild 123 66 
Moderate 194 85 
Severe 190 46 
Total 708 292 

 
The training and testing sets were manually divided based on the number of images in each DR severity group. 

Table 5 shows the specifics of partitioning the image dataset into training and testing sets. Table 5 illustrates the 
distribution of training and testing data for the severity of DR. The data were categorized into four severity categories: 
Normal, Mild, Moderate, and Severe. The training set included 708 photos, comprising 201 Normal, 123 Mild, 194 
Moderate, and 190 Severe images. The testing set included 292 photos, including 95 normal, 66 mild, 85 moderate, 
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and 46 severe images. Two methodological modifications were implemented to improve the classification 
performance. To enhance SOM training, we preprocessed the pertinent retinal structures using CLAHE-based 
techniques, followed by morphological operations to improve the quality of the features. Second, we adjusted the 
parameters of the self-organizing map (e.g., map size and learning rate) based on validation using labeled subsets of 
the MESSIDOR database. These improvements enable the SOM to establish more precise boundaries between classes 
and enhance precision in determining the severity of DR. 

IV. RESULTS 

This section analyzes the outcomes obtained from training and testing the classification model and discusses several 
test conditions. 

A. Training Model 

The fundus image model was trained on the PyCharm Community Edition using the NVIDIA GeForce 920MX 
graphics card. The training duration ranges from 45 to 60 minutes. The model was evaluated by adjusting the SOM 
parameters. The setting for the neuron size is set to 20x20. The sigma/neighbor radius parameters are assessed using 
values 4, 5, and 6. The learning rate parameters are estimated using values ranging from 0.1 to 1 with different 
increments. Finally, the number of iterations parameter is assessed using the 2000, 5000, and 6000 values. The 
accuracy of the model testing is determined by comparing the classification results and the outcomes of grouping DR 
severity from the dataset or ground truth. The evaluation process revealed that the highest accuracy was achieved in 
SOM training and testing using neuron size parameters of 20x20, a sigma value of 5, a learning rate of 0.5, and 5000 
iterations. The training accuracy reached 72%. Table 6 displays the highest accuracy values obtained during model 
training and testing. Table 7 shows the training classification report, which shows 72% accuracy. Table 8 presents the 
test classification report, which shows 62% accuracy. Tables 7 and 8 denote class labels using the numbers 0-3, with 
0 signifying normal, 1 indicating mild, 2 representing moderate, and 3 denoting severe.  

TABLE 6 
EVALUATION OF DIABETIC RETINOPATHY SEVERITY MODEL 
SOM Parameter 

Training Accuracy Testing Accuracy 
Neuron Size Sigma Learning Rate Iteration 

20 x 20 4 0.5 2000 65 % 51 % 

20 x 20 4 0.5 5000 70 % 50 % 

20 x 20 4 0.9 5000 68 % 59 % 

20 x 20 4 1.0 5000 59 % 55 % 

20 x 20 5 0.5 2000 63 % 54 % 

20 x 20 5 0.5 5000 72 % 62 % 

20 x 20 6 0.6 2000 54 % 51 % 

20 x 20 6 0.5 5000 57 % 56 % 

20 x 20 5 0.5 6000 71 % 50 % 

20 x 20 5 0.6 6000 69 % 54 % 

TABLE 7 
TRAINING CLASSIFICATION REPORT 

Severity Precision Recall F1-Score Support 
Normal 0.74 0.71 0.72 201 
Mild 0.80 0.67 0.73 123 
Moderate 0.71 0.70 0.70 194 
Severe 0.67 0.77 0.72 190 
accuracy   0.72 708 

macro avg 0.73 0.71 0.72 708 
weighted avg 0.72 0.72 0.72 708 

TABLE 8 
TESTING CLASSIFICATION REPORT 

Severity Precision Recall F1-Score Support 
Normal 0.59 0.56 0.59 95 
Mild 0.89 0.59 0.72 66 
Moderate 0.57 0.53 0.58 85 
Severe 0.47 0.61 0.56 46 
accuracy   0.62 292 

macro avg 0.63 0.57 0.62 292 
weighted avg 0.63 0.57 0.61 292 
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B. Test Conditions 

This section presents the test results for multiple variations of the input image conditions. 
1) Input image containing noise 
Noise refers to the random variation in the brightness or color data of an image. Noise refers to the reduction in an 

image’s signal due to external factors. Images with noise exhibit a direct relationship between an area’s brightness 
and the level of the noise present in that area. Noise may arise in funduscopic images when using a fundus camera due 
to inadequate lighting, lens magnification, and improper image capture angles. The system underwent testing by 
segmenting blood vessel features due to its larger segmentation area scale compared with exudates or microaneurysms. 
This choice was made to ensure that the impact of noise would be easily discernible. Table 9 presents the noise test 
results for the blood vessels feature, which includes 6 test photos displaying both noise and the corresponding blood 
vessel segmentation results. 

TABLE 9 
NOISE TEST RESULTS 

Number 1 2 3 4 5 6 

Input Image 

       

Blood Vessel 
Segmentation 

       

2) The input image does not contain a distinct optical disc object 
Incorrect fundoscopy can lead to indistinct or absent depiction of specific characteristics in the image. The optic 

disc/retina of the eye might be affected in this particular region. An indistinct region of the optic disc/retina can impede 
the segmentation process of exudates because the optic disc area must be excluded during this procedure. We 
hypothesize that the system may inaccurately identify the optic disc area when it is either not visible or absent in the 
input image. Table 10 presents the test results for optical disc areas that are not easily distinguishable in the exudate 
feature. This includes six test photos containing indistinct optical disc objects. 

TABLE 10 
OPTICAL DISC TEST RESULTS 

Number 1 2 3 4 5 6 

Input Image 

       
Exudates 
Segmentation 

       

 
3) Abnormal morphology of blood vessels 
Multiple input images exhibit funduscopy with intricate blood vessel structures resulting from blood vessel irregular 

branching or broadening. The frequency of these occurrences seems to increase in correlation with DR severity. Under 
specific circumstances, the anatomy of blood vessels can appear more straightforward due to the varying angles at 
which fundoscopic images are captured. When certain sections of the vessels get obstructed by other elements, such 
as exudates or microaneurysms, separating the branching pathways, an additional issue with the arrangement of blood 
arteries arises. This test evaluated the ability of the system to accurately separate blood vascular characteristics with a 



Prabowo, Dwiandiyanta, Maslim & Corradini  
 Journal of Information Systems Engineering and Business Intelligence, 2025, 11 (3), 500-513 

508 
 

complicated and aberrant structure. Table 11 presents the findings of the abnormal blood vessel structure segmentation 
test, which comprises six images of abnormal blood vessel structures. 

TABLE 11 
ABNORMAL BLOOD VESSEL TEST RESULTS 

Number 1 2 3 4 5 6 

Input Image 

       
Blood Vessels 
Segmentation 

       

 
4) Abnormal color parameters of the input image 

Variations in the color code of the funduscopy input image result from the lighting capacity and type of fundus 
camera used during the image-capturing procedure. Clusters of images within this collection of funduscopic photos 
exhibit anomalous color coding. This examination assesses the capacity of the system to classify funduscopic images 
based on aberrant color codes. Table 12 displays the test results, which show the classification test results with 
abnormal input image color parameters. 

TABLE 12 
CLASSIFICATION TEST RESULTS WITH ABNORMAL INPUT IMAGE COLOR PARAMETERS 

Number 1 2 3 4 5 6 

Input Image 

       
Class. Result normal normal severe normal mild normal 
Ground truth normal severe severe normal mild normal 

 

 
5) A region in the fundus has a higher level of brightness than the area around the optic disc. 

The exudate characteristics are occasionally the most prominent in fundoscopic images. This can disrupt the 
segmentation process of exudates because this characteristic shares a similar color coding with the optic disc, causing 
the optic disc area to be mistakenly identified as an exudate feature. This test assesses the ability of the system to 
handle segmentation with exudate patches that have a higher brightness than the optic disc. Table 13 presents the test 
results for the input image, where the fundus area is brighter than the optic disc area. 

TABLE 13 
EXUDATES SEGMENTATION RESULTS WITH THE EXUDATES AREA BEING BRIGHTER THAN THE OPTIC DISC 

Number 1 2 3 4 5 6 

Input Image 

       

Exudates 
Segmentation 
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6) The microaneurysm segmentation failed due to the input image scaling 
As part of the preprocessing for diabetic retinopathy feature segmentation, the image is resized to dimensions of 

80x80 pixels to decrease the computational burden. However, if the image dimensions are too small during the 
segmentation phase, the system will fail to distinguish microaneurysms, which are the smallest among the other 
attributes. The author’s technique involves segmenting these characteristics using an input image of the exact 
dimensions. Table 14 displays the outcomes of the microaneurysm segmentation testing. 

TABLE 14 
RESULTS OF THE MICROANEURYSMS SEGMENTATION TEST 

Number 1 2 3 4 5 6 

Input Image 

      

Microaneurysm 

Segmentation 

      

V. DISCUSSION 

Table 7 shows the classification test report of each class. The evaluation of the SOM model on the training data 
indicates that the trained model applies to the classification of DR severity levels, achieving optimal and stable top 
classification results. The precision, recall, and F1-score for the Normal class (label 0) were 0.74, 0.71, and 0.72, 
respectively, demonstrating the effective differentiation of healthy retinal images. The Mild DR class (label 1) 
exhibited the best precision of 0.80, suggesting that predictions of mild cases are likely accurate; however, the recall 
was lower at 0.67, indicating that some mild cases were misclassified as other levels. The moderate DR class (label 
2) exhibited balanced precision and recall, with both metrics at 0.70. However, there was a minor disparity in the 
difficulty of data separation, rendering classification more challenging. The elevated recall (0.77) for the Severe DR 
class (label 3) suggests that the model is reasonably adept at identifying advanced-stage DR cases; however, the 
accuracy is only 0.67, indicating a propensity for false positives in related categories. The SOM model achieves a 
training accuracy of 72%, with both macro and weighted average F1-scores of 0.72, indicating a clear and fairly 
consistent classification of all DR levels. The results suggest that the model has potential as an accessible and cost-
effective instrument for detecting DR, particularly in resource-limited settings. 

Table 8 presents the testing classification report of each class. The evaluation of the SOM model within the test 
range, comprising 292 fundus pictures, indicates moderate classifier performance across various DR severity phases. 
For the Normal class (label 0), the model exhibited an accuracy of 0.59 and a recall of 0.56, resulting in a suboptimal 
F1-score of 0.59, indicating that the model’s ability to distinguish healthy retinas is inconsistent. The model performed 
optimally on the Mild DR class (label 1), achieving a notable precision of 0.89 and an F1-score of 0.72; however, the 
recall decreased to 0.59. Although the model exhibits considerable confidence in classifying a case as mild DR, it still 
fails to identify many mild instances. The model exhibited satisfactory performance for the Moderate DR class (label 
2), albeit with marginally lower precision and recall values of 0.57 and 0.53, respectively, resulting in an F1-score of 
0.58. The most challenging category was Severe DR (label 3), with the model exhibiting a precision of 0.47 and a 
recall of 0.61, indicating that other instances are more frequently misclassified as severe, whereas severe cases are 
correctly identified. The SOM model achieved a test accuracy of 62%, with a macro-average F1-score of 0.62 and a 
weighted average F1-score of 0.61. The results suggest that while the SOM model shows promise in accurately 
detecting mild DR, further refinement is necessary to improve its recall and provide consistent stability across all DR 
severity levels.  

Table 9 shows that the system accurately segmented blood vessel characteristics in the first, second, third, and sixth 
test images, even when the input images contained noise. When input photos are used, noise levels within acceptable 
limits do not impede the blood vessel segmentation procedure. In the fourth test image, the system failed to detect the 
blood vessels to the right of the optic disc due to their excessive brightness produced by their proximity to exudate 
characteristics. The ability of the system to segment the blood vessels of the input image is hindered when the image 
has excessive and artificial noise, as seen in the fifth image, which obscures the crucial aspects of DR. 
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The system successfully identified and removed the optic disc in the first, fourth, fifth, and sixth test images (Table 
10). The technology can effectively address areas of the optic disc that exhibit blurriness or noise. Nevertheless, the 
method failed to identify and remove the optic discs that were not distinctly evident in the second and third test images. 
This is due to a lack of good visibility of the optic disc area, leading to reduced brightness in the optic disc’s 
surrounding area. Applying this criterion, the algorithm will identify the brightest circle within a given location. The 
illumination intensity in the optic disc region is often diminished, causing the system to detect additional circular 
shapes that are not optical disc objects. The algorithm identified an area in the top left portion of the fundoscopy that 
exhibited more illumination than the optic disc in the second and third test images. 

The result in Table 11 explains that the system successfully segmented blood vessel features with abnormal 
structures in all six test photos, including complicated abnormal branches in the first, second, and fifth images and 
fundamental abnormalities in the fourth and sixth images. The system remains unaffected by a hemorrhage feature in 
the bottom center of the third test image, even if it partially obscures the feature of the blood vessel. 

Table 12 shows that the method accurately classifies the severity of DR on the first, third, fourth, fifth, and sixth 
test photos, matching the ground truth class. However, the system failed to accurately categorize the second test 
image’s fundus image as severe. The proximity of the color parameters of the input image to the color of the exudates 
causes this phenomenon. The second image exhibits exudates as the primary characteristic, leading to the severity 
classification as severe. The second image is categorized as having normal severity due to the inability of the system 
to detect exudates. 

Table 13 shows that the method accurately segmented the exudate features in the second and sixth test images. 
Although most exudate features in the first and third test images could be successfully segmented, the exudates on the 
right side of the fundoscope were not detected. The exudates are positioned at the periphery of the fundoscopy, near 
the interference caused by inadequate image acquisition. Exudates were detected in the optic disc area of the fourth 
and fifth test photos. This is due to the elimination process of the optic disc, which identifies the location of the exudate 
with the highest brightness level. 

The results in Table 14 explain that the algorithm successfully identified and separated microaneurysm features 
accurately and precisely in all six test images. This was achieved when the input image used for segmentation 
maintained its original size and no shrinking was performed during preprocessing. The system discovered 6, 8, 9, 7, 
9, and 2 microaneurysms in the first and sixth test photos, respectively. The input image used is of its original 
dimensions, and it will undergo resizing during postprocessing to a size of 80x80, as seen in the feature segmentation 
of other DR. 

TABLE 15 
COMPARATIVE EVALUATION WITH PREVIOUS STUDIES   

Studies Accuracy 
This Study* 62% 
[30] 43.75% 
[31] 70.5% 

 
We present a performance benchmark in response to the comparative evaluation of our SOM-based model against 

previous studies on diabetic retinopathy classification (Table 15). The models created by [30] and [31] achieve an 
accuracy of 43.75% and are tailored to specific working environments with particular devices (e.g., Raspberry Pi). 
Despite the poor accuracy of our approach, it exhibits robustness in the feature extraction process across many testing 
situations (e.g., input noise, distorted vascular architecture).  

Table 15 compares our study with previous DR classification models, including those by [30] and [31]. Although 
our approach achieved testing accuracy of only 62%, this result must be interpreted in the context of several 
contributing factors. First, our dataset was downscaled to 80x80 pixels to reduce the computational complexity of 
SOM training. Although this downscaling improved the training speed and memory usage, it may have led to the loss 
of fine-grained features, such as microaneurysms, which are critical for detecting early-stage DR. In contrast, studies 
by [30] and [31] used larger image dimensions or did not specify size reduction. Our study also focused on three 
specific retinal features—exudates, blood vessels, and microaneurysms—through detailed segmentation. Although 
this feature engineering promotes interpretability, other relevant features such as hemorrhages, cotton wool spots, or 
the optic disc area may have been excluded, potentially affecting classification performance.  
The advantages of our method lie in its interpretability, low computational resource requirement, and ease of 
deployment in low-resource settings—especially important for screening DR in underdeveloped regions. Unlike deep 
learning models, which are computationally intensive and often require graphics processing units (GPUs), our SOM-
based model can be trained and deployed on standard hardware. The limitations of our research include lower 
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classification accuracy compared to state-of-the-art DL models, performance sensitivity to image size and feature 
selection, and class imbalance in the dataset. 

VI. CONCLUSIONS 

This study concludes that the DR severity classification system can effectively extract DR-related features by 
segmenting exudates, blood vessels, and microaneurysms from funduscopic images during training, testing, and 
evaluation. DR severity could be classified by the system using a SOM. When the neuron size is set to 20, the sigma 
is set to 5, the learning rate is set to 0.5, and the number of iterations is set to 5000, the system achieves a training 
accuracy of 72% and a testing accuracy of 62%. 

The limited accuracy results from the MESSIDOR database’s characteristics, which contains fundus images with 
an imbalanced class distribution. This is evidenced by the number of pictures in each severity level class: 547 images 
in the first class (normal severity level), 153 images in the second class (mild severity level), 246 images in the third 
class (moderate severity level), and 254 images in the fourth class (severe severity level). This can affect the quality 
of the training and testing process, resulting in suboptimal accuracy levels in both training and testing. 

The results demonstrate that the SOM model performs competitively compared with traditional supervised models. 
It offers the benefits of computing efficiency and interpretability, making it appealing for clinical applications in 
resource-limited settings. The proposed study’s primary contribution is its successful application of an unsupervised 
method to address a classification problem that is typically excluded from supervised deep learning approaches. 
Furthermore, the system’s elevated sensitivity and specificity in identifying mild types of diabetic retinopathy 
demonstrate its potential to facilitate early screening, a critical necessity in diabetic eye care.  

This study identified some drawbacks. The dataset exhibits an uneven class distribution, with photos of the normal 
class predominating. This imbalance can diminish categorization accuracy for minority groups, such as moderate and 
mild. Downscaling photos to 80x80 pixels may result in the loss of minute details, such as microaneurysms. Third, 
SOM can be used for unsupervised clustering; however, it does not provide probabilistic outputs and may encounter 
difficulties with ambiguous inputs. 

Future considerations will involve integrating SOM with a supervised classifier, such as a support vector machine 
(SVM) or a deep learning model, to enhance precision. Data augmentation and synthetic data generation techniques, 
such as SMOTE, may be employed to equilibrate the dataset. Furthermore, attention mechanisms or ensemble methods 
may be used to improve the identification of early-stage DR. Using a publicly accessible dataset, this study is 
motivated by the practical needs of nations like Indonesia, where limited resources make traditional screening difficult. 
The proposed approach can be effectively modified and used in different contexts, thereby enhancing the overall 
efforts to reduce the incidence of preventable blindness. 
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