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Abstract

Introduction: Reservoir management problems are increasing, and tools are needed to categorize 
and predict their eutrophication status in order to provide technical support for the government’s 
decision to protect drinking water resource. Thus, this study aims to predict and classify the tendency of 
eutrophication level in Chengchinghu Reservoir, Kaohsiung City, Taiwan as one of  major water sources 
for industrial and domestical needs by supplying 109,170,00 m3 for Southern Taiwan.  Method: The 
CTSI (Carlson’s Trophic States Index, which calculated from Chl-a, TP, and transparency) datasets 
in winter (December-February), spring (March-May), summer (June-August), and fall (September-
November) from 2000 to 2017 was collected from Taiwan Environmental Protection Administration 
(EPA). This study used the Classification and Regresiion Tree (CART) model provides the explicit 
categorical rules for Chengchinghu Reservoir. Results and Discussion: The CART results for 
Chengchinghu Reservoir showed the good performance of prediction since the accuracy of the CART 
training process value reached 61.89%. According to the CART results, the eutrophic state condition 
is most probably occur in Chengchinghu Reservoir when the TP concentration is greater than 22.86 
mg/L or Chl-a concentration is greater than 5.2 μg/L or SD is less than 1.1 m. Conclusion: The CART 
result may helps the local governments to understand the pollution conditions in Chengchinghu 
Reservoir and take responsibility for reservoir water management and conservation. Therefore, 
they could make policies to treat and manage water pollution sources in Chengchinghu Reservoir.
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INTRODUCTION

The challenge of water quality management 
associated with the sustainable development has been 
concerned to many researchers and managers in the 
current decade (1). It involved not only the reinforcement 
of established principles and technologies but also their 
enlargement to much wider, higher and freer scope 
for the realization of sustainability for water-quality 
management (2). However, the current situation of water 
quality management in the world is far from satisfactory, 
due to the burdens of increasing population and economic 
development (3). In developed countries around 2000’s, 
the increase number of chemical toxic pollutions entering 
the environment through non-point sources has led to 
increasing eutrophication, ecotoxification or even health 
impact concerns; however, many harmful effects are 
unknown, due mainly to the lack of effective detection 
capabilities (4). 

Water resource in reservoir is an essential 
resource for all living organisms (5). Reservoirs provides 
not only pure water for such diverse purposes as 
agriculture, industry, and everyday human consumption, 
but also habitats for a composite variety of aquatic life 
(6). Various water physical and chemical properties in 
reservoirs, especially its quality, must be assessed 
(7). The water quality assessment critically enables 
managers to develop ideal water resources management 
plans (8).

The UNEP (United Nation Environmental 
Protection) investigation result indicates that about 30%-
40% of the lakes and reservoirs all over the world have 
been affected more or less by water eutrophication (9). 
The increasing severity of water eutrophication has 
been brought to the attention of both the governments 
and the public in recent years (10). The nutrient level 
of many lakes and rivers has increased dramatically 
over 50 years ago in response to increased discharge of 
domestic wastes and non-point pollution from agricultural 
practices and urban development (11). According to 
those complexity, it is not easy to predict the behavior of 
nutrient enriched water bodies because of the complex 
physical, chemical, and biological processes involved 
(12). During the last couple of decades, environmental 
engineers have used monitoring and simulation to predict 
and control eutrophication in reservoirs (13). 

Specifically in Taiwan, eutrophication has been 
one of the most serious reservoir water quality problems 
(14-16). Moreover, the Taiwan reservoirs provide 
about 70% of drinking water for a population of nearly 
23 millions and industrial water use. In Chengchinghu 
Reservoir, around 109.170.000 m3 per month water 
supplies for industrial and domestical needs of Southern 

Taiwan (17). 
Several empirical models based on linear 

relationships for hypothesised the environmental drivers 
have been derrived for fresh water ecosystem (18-20). 
Classification and regression trees (21) are a data mining 
method for empirical model building and hypothesis 
formulation. A classification and regression tree creates 
a set of decision rules for identifying response variable. 
group membership or value based on a dichotomous 
partitioning of predictor variables. A major advantage of 
partitioning trees is that assumptions which are required 
for the appropriate use of parametric statistics, such as 
Gaussian distribution of predictor variables, do not need 
to be satisfied. Traditional linear techniques such as 
multiple linear regression are also only able to identify 
a limited number of predictor variables, often due to 
multi-collinearity constraints, and predictor and response 
variables must show a linear relationship over their 
entire range. In contrast, tree-based models allow the 
complex interactions between the predictor variables to 
be represented, with no assumptions of linearity. Multiple 
linear regression identifies global relationships in the data 
set, whereas partitioning trees are able to identify local 
relationships. Although classification and regression 
trees can be used for empirical model building, large 
data sets are required for the development of statistically 
valid models.  

Recently, partitioning trees have been used 
to identify potential causal relationships in a variety of 
environmental data sets (22-24). The approach has 
also been used to investigate controls on soil NO3 -N 
in a large watershed with heterogeneous land use 
(25), but has not previously been used to analyse the 
dynamics of nitrogen pollution in a large number of 
forested ecosystems. Thus, we inisiated to connect this 
phenomenon with eutrophication since nitrogen is one of 
the pollutant driving factor causing eutrophication. 

In order to mitigate the uncontrolled nutrient 
increasement of Chengchinghu Reservoir ecosystem, 
this paper aims to use classification and regression tree 
analysis to determine the prediction classification of 
eutrophication conditions in Chengchinghu Reservoir. 
A future aim is to describe if the outcomes from 
this classification and regression tree can help the 
policymakers to create regulations and implement the 
monitoring program for adaptive management strategies 
in the future.

METHOD
Study Area

Chengchinghu Reservoir (22°39’39.0″E, 
120°21’08.1″N) located in Kaohsiung City was selected 
since its major purpose to supply water for industrial and 
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domestic need in Tainan City, Kaohsiung City, and others 
region in Southern Taiwan. Chengchinghu Reservoir is 
currently managed by Taiwan Water Cooperation. The 
type of Chegchinghu Reservoir is Embankment dam 
which Caogong River as a watershed and pumped from 
Mengli Pumping Station, Jiuqutang Pumping Station, 
and Gaoping River Wier. Chengchinghu Reservoir has 
19 m height, 600 m length and 28 km2 catchment area. 
Full water level area and full water level of Chengchinghu 
Reservoir are 1,1 km2 and 17,8 m, respectively.  The 
effective storage capacity of Chengchinghu Reservoir is 
109,17 x 106 m3 (26). 

Figure 1 shows the water quality monitoring 
stations obtained from Taiwan EPA. There are four 
water monitoring station, described as Station 1 (22° 
39’ 16.0992’’ E, 120° 21’ 16.4016’’ N), Station 2 (22° 
39’ 37.2996’’ E, 120° 21’ 8.8992’’ N), Station 3 (22° 39’ 
42.5016’’ E, 120° 20’ 52.1016’’ N), Station 4 (22° 39’ 
50.2992’’ E, 120° 21’ 1.8’’ N). 

Water Quality Dataset
The water quality dataset was obtained from 

Taiwan EPA for CTSI factors (Chl-a, TP, SD)  since 2000 
to 2017. Water quality monitoring data were collected 

Figure 1. Study Area

once in a season: spring (from March to May), summer 
(from June to August), autumn (from September to 
November), and winter (from December to February). 
Every month has two times data sampling in each 
station. The water quality parameters which selected 
for water quality evaluation were measured using the 
following: TP using Spectrophotometer method / Vitamin 
C method, SD (transparency) using Sechi disk.

Carlson’s Trophic State Index 
The TSI defined as the total weight of living 

biological material (biomass) in a waterbody at a 
specific location and time. Time and location-specific 
measurements can be aggregated to produce 
waterbody-level estimations of trophic state. Trophic 
state is understood to be the biological response to 
forcing factors such as nutrient additions, but the effect 
of nutrients can be modified by factors such as season, 
grazing, mixing depth, etc (27).

In accordance with the definition of trophic state 
given above, the CTSI uses algal biomass as the basis 
for trophic state classification (28). Three variables 
including Chl-a concentration, SD, and TP, independently 

estimate algal biomass. The trophic continuum is divided 
into units based on a base-2 logarithmic transformation 
of SD, each 10-unit division of the index representing a 
halving or doubling of SD. Because TP often correlates 
with SD, a doubling of the TP often corresponds to a 
halving of SD (29).

The index range is from approximately zero to 
100. The index has the advantage over the use of the 
raw variables in that it is easier to memorize units of 10 
rather than the decimal fractions of raw phosphorus or 
Chl-a values. An early version of the index was based 
on a scale of one to ten, but it became tempting to add 
1, 2, or more numbers after the decimal. For this reason, 
the scale was multiplied by ten to discourage any illusory 
precision obtained by using more than whole numbers. 

The logarithmic transformation of the data 
normalizes the skewed data distribution, allowing the 
use of parametric statistics (mean, standard deviation, 
parametric comparison tests). This facilitates not only 
comparison and data reduction, but communication as 
well, because the user does not need to resort to graphs 
with logarithmic axes. The three index variables are 
interrelated by linear regression models, and should 
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CART identifies one input variable and one break-point, 
before partitioning the samples into two child nodes. 
Starting from the entire set of available training samples 
(root node), recursive binary partition is performed for 
each node until no further split is possible or a certain 
terminating criterion is satisfied. At each node, best split 
is identified by exhaustive search, i.e. all potential splits 
on each input variable and each break-point are tested, 
and the one corresponding to the minimum deviations 
by respectively predicting two child nodes of samples 
with their mean output variables is selected. After the 
tree growing procedure, typically an overly large tree is 
constructed, resulting in lack of model generalization to 
unseen samples. A procedure of pruning is employed to 
remove sequentially the splits contributing insufficiently 
to training accuracy. The tree is pruned from the maximal-
sized tree all the way back to the root node, resulting 
in a sequence of candidate trees. Each candidate tree 
is tested on an independent validation sample set and 
the one corresponding to the lowest prediction error is 
selected as the final tree (33, 34). Alternatively, the optimal 
tree structure can be identified via cross validation. After 
building a tree, an enquiry sample is firstly assigned into 
one of the terminal leaves (non-splitting leaf nodes) and 
then predicted with the mean output value of the samples 
belonging to the leaf node. Despite its simplicity, good 
interpretation and wide applications for environmental 
assessment (35), the simple rule of predicting with mean 
values at the terminal leaves often means prediction 
performance is compromised (36).

The decision tree model used in this study was 
produces a classification tree that partitions data into 
parent and child nodes (37-39). The parameters within 
circles of the non-terminal nodes are the ones selected 
as attributes, and the data that reach these nodes are 
divided into some child nodes based on these attributes. 
The decision tree finally does not increase with further 
nodes and become terminal nodes after series of 
successive subdivisions (39). The values inside the 
terminal nodes at the lowest part of the tree indicate 
the classification results estimated by CART (40). CTSI 
factors (SD, TP, and Chl-a) were selected as independent 
variables and the trophic states (eutrophic, mesotrophic, 
and oligotrophic) were selected as dependent variables 
in the CART methodology. The accuracy of the CART 
training process would be defined as high accuracy 
when the performance achieve more than 50% (41).

The criterion used for selecting the splits on the 
nodes was set to ‘Max Split Statistic’. This split selection 
method examines all possible splits for each predictor 
variable at each node. Missing values were assigned 
to ‘Closest’ and the minimum split size for nodes was 

produce the same index value for a given combination of 
variable values. Any of the three variables can therefore 
theoretically be used to classify a waterbody. This is 
particularly useful in citizen lake monitoring programs.  
TP may be better than Chl-a at predicting summer trophic 
state from winter samples, and transparency should only 
be used if there are no better methods available (30). 
The index is relatively simple to calculate and to use. 
The CTSI can determined from average of TSI can be 
computed from three interrelated factors as follows:

 

Where:
CTSI : Carlson Trophic State Index 
TSI : Carlson trophic state index calculated from 
each variable, such as:

 SD (m); Chl-a (μg/L); and TP (μg/L). 
The trophic states are defined as oligotrophic, 

mesotrophic, and eutrophic states, when the value is 
determined in Table 1.

Table 1. Range of Variable Values Associates with CTSI 

CTSI Trophic State 
Status Attributes

CTSI < 40 Oligotrophic
High water clarity
Low algae value
Low phosphorus

40 < CTSI < 50 Mesotrophic
Moderate water clarity
Moderate algae value
Moderate phosphorus

CTSI > 50 Eutrophic
Low water clarity
High Chl-a value
High phosphorus

Source: Taiwan EPA Standard

Classification and Regression Tree
A decision tree analysis is widely used for 

classification and prediction. A decision tree classifies 
data in the form of a tree structure which is generated 
from the use of training data in a top-down fashion or 
general-to-specific direction. The root node, initial state 
of a decision tree, is assigned all data. If data at the node 
of tree structure belong to the same class, so that no 
more decisions are needed, the node will be a leaf node 
which indicates the value of the target attribute (or class). 
If data at the node belong to two or more classes, such 
that the node has to be split, the node will be a decision 
node (31). 

Classification and regression tree (CART) is 
probably the most well-known decision tree learning 
algorithm in the literature (32). Given a set of samples, 
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set to three. With no independent test sample, a k-fold 
cross validation procedure was used. This procedure 
randomly partitions the data set into k equal sized groups. 
Each group is then sequentially used as a test set for 
the model derived` from the combined set of remaining 
groups. This ensures that roughly unbiased estimates 
for predictions are obtained. In this application five was 
selected for the k-fold cross validationda value commonly 
used for this type of validation (42). Model goodness-of-
fit was assessed using the G2 statistic. The G2 statistic 
is a likelihood-ratio chi-square, analogous to a sum of 
squares for continuous data. The significance of each 
additional split in the tree was assessed using the Akaike 
Information Criterion (AIC). Statistical significance was 
assessed at p < 0,05. Splitting was stopped immediately 
prior to the first split that would have resulted in a leaf 
node with an AIC probability p > 0,05.

Data display and analysis tools
This work aims to assess both predictive 

accuracy and applicability of statistical evaluations for 
the particular demand. Therefore, the software packages 
that provide the user-friendly interface and powerful 
predictive applications are necessary. Microsoft Excel 
2016 for data sorting and organizing, ESRI ArcGIS 10.2 
for geographic information system data, and JMP 5.1 
(SAS Institute) for CART analysis.

RESULT 
Seasonal evaluation of water quality parameters

Table 2 shows the seasonal summary trend of 
water quality and CTSI data in Chengchinghu Reservoir 
currently (from 2000-2017). According to the result, the 
level of CTSI mostly in eutrophic status in average which 
highest in winter. The nutrients presence (in this study 
described as total phosphate) level were getting worse 
in winter (dry season). 

Table 2. Descriptive Statistic of CTSI Parameters in 
Chengchinghu Reservoir 

Water Qality 
Parameters Fall Spring Summer Winter

CTSI observation 
data

Min 44,79 46,13 46,03 48,43
Mean 54,13 55,08 54,01 57,74
Max 68,20 68,63 65,13 70,58
Standard Deviation 6,27 7,13 5,97 7,16

Total phosphate 
(mg/L)

Min 0,01 0,01 0,01 0,02
Mean 0,05 0,05 0,04 0,07
Max 0,22 0,14 0,09 0,25
Standard Deviation 0,05 0,04 0,03 0,07

Water Qality 
Parameters Fall Spring Summer Winter

Chlorophyll-a (µg/L)
Min 2,34 1,22 3,19 0,25
Mean 7,78 12,51 9,10 13,28
Max 25,36 44,63 33,60 46,33
Standard Deviation 6,88 13,41 9,26 13,07

SD (meter)
Min 0,65 0,59 0,35 0,38
Mean 0,98 1,07 1,03 0,83
Max 1,68 1,65 1,78 1,43
Standard Deviation 0,27 0,35 0,35 0,31

Result from study in Basin River has supported 
this study result according to their analysis of managing 
water quality in Kaoping River which is Chengchinghu 
Reservoir’s upstream (43). Water quality in Chengchinghu 
Reservoir may become even worse in the dry season 
according to the point and nonpoint source pollution 
investigation. 

Annual evaluation of CTSI 
Figure 2 shows the average of CTSI values in 

Chengchinghu Reservoir were tended to be decreased 
from 2000 to 2017. In 2000, the average of CTSI in 
Chengchinghu Reservoir was the highest (64.12). 
In summary, the average of TSI (TP) and TSI (SD) 
showed the high contribution for CTSI than TSI (Chl-a). 
According to the figure above, we can conclude that the 
CTSI in Chengchinghu Reservoir were mostly eutrophic. 
nutrients have given the high contributed from farming 
activity running off to the Kaoping River as an inflow to 
the Chengchinghu Reservoir (42). 

Prediction of CTSI classification using CART
The CART algorithm identifies three independent 

variables (SD, TP and Chl-a) affecting CTSI and provides 
explicit categorical rules for Chengchinghu Reservoir. 
The CART results for all reservoirs showed the good 
performance since the accuracy of the CART training 
process were 61,89%, The CART result provides the 
terminal and non-terminal nodes in each reservoir. The 
total of terminal nodes is 6 and non-terminal nodes is 3. 
In Figure 3., the CART result for Chengchinghu Reservoir 
was successfully conducted. The 396 samples of TP 
with the concentration less than 22,86 µg/L indicating 
the mesotrophic state and TP greater than 22,86 µg/L 
indicating the eutrophic state. Samples in the “Node 1” 
was divided into two discriminators. The first condition 
was if TP concentration less than 22,86 µg/L and SD 
less than 1,1 meters then, it indicates eutrophic states. 
The second condition was if TP concentration greater 
than 22,86 µg/L and SD greater than 1,1 meters then, it 
indicates mesotrophic states.
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Figure 2.  Annual Evaluation Trend of CTSI  in Chengchinghu Reservoir

Figure 3. CART Prediction of CTSI Classification



Jurnal Kesehatan Lingkungan/10.20473/jkl.v12i2.2020.115-125 Vol. 12 No.2 April 2020 (115-125)

121

 In “Node 4” there were two discriminators. First 
condition, if TP concentration greater than 22,86 µg/L, 
SD greater than 1.1 meters, and Chl-a concentration less 
than or equal to 5,2 µg/L, then it would be mesotrophic 
condition. Second condition, if TP concentration greater 
than 22,86 µg/L, SD greater than 1,1 meters, and Chl-a 
concentration greater than or equal to 5,2 µg/L then it 
would be eutrophic condition.

DISCUSSION

Over 67% of nutrient specifically total nitrogen and 
total phosphate loads come from point source pollution. 
Wastewater from livestock farming is still the main source 
of point source pollution during low flow periods. In the 
downstream region, a number of small and medium scale 
industries also generate activities detrimental to water 
quality (43). The nitrification of nitrite and ammonium 
nitrogen would become nitrate which can be consumed 
by algae (44). Ammonium nitrogen can be produced 
during decomposition of algae and then returned nitrogen 
to the aquatic system. When COD increases in lakes or 
reservoirs, ammonia concentration will be increased by 
denitrification (45). In eutrophic reservoir, most of the 
nitrate is reduced from biological use by algae (46-47). 
Nitrogen concentration is thus regarded as key influence 
factor for increase the Chl-a and altering trophic states in 
Chengchinghu Reservoir (48-49). In addition, there was 
a good relationship between SS and SD regarding to the 
high rainfall intensity and high nutrient intake withdraws 
to the Chengchinghu Reservoir. 

The high trophic states level of Chengchenghu 
Reservoir was high due to population growth, industrial 
wastewater and agriculture activities in Kaohsiung since 
this city is the second big city in Taiwan after Taipei (45). 
The other study about eutrophication factor identification 
in Taiwan by 2018 clearly explained that there are three 
possible factors which dominantly contributed for trophic 
states level in Chengchinghu Reservoir (50). The first 
factor might come from rainfall factor, the second factor 
might come from nutrient factor, and the third factor might 
come from temperature factor. The high contribution of 
total precipitation in the first component might have the 
high negative correlation with SD. The Chengchinghu 
Reservoir is the downstream reservoir of Kaoping River 
as its intake water. Another study conducted Taiwanese 
by 2018 reported that the SS, dissolved inorganic 
nitrogen, dissolved oxygen, biological oxygen demand 
and COD in river discharge, and ammonia in submarine 
groundwater discharge significantly influenced Chl-a 
dynamics (51). In the Kaoping River Basin, most of the 
upper catchment is used for agricultural activities, and 
some protected areas of water resource have been 

developed illegally into farmland (48). Study conduct in 
the Kao-Ping River Basin reported that population growth, 
industrial development and hog farming generate excess 
nutrients and high wastewater loads, thereby causing a 
serious water quality problem in Chengchinghu Lake 
(43). In the Kao-Ping River Basin, most of the flat area in 
the upper part is used for agricultural activities including 
cropland and livestock farming. Nutrients, pesticides, 
and sediments are the main hazardous nonpoint source 
pollution constituents. As for the point source pollution, 
hog farming is a particularly harmful activity. There were 
over 1 million pigs raised in the upstream of the Kao-Ping 
River Basin in 1992. The estimated hog population in the 
basin reached 1,7 million in 1996. Most of the untreated 
hog farm wastewater was indiscriminately discharged 
into the Kao-Ping River, causing the deterioration of 
river water quality. However, due to the occurrence of 
the overwhelming foot-and-mouth disease in 1997, the 
hog population dropped to approximately 0.8 million that 
year. The decrease in hog population also coincided with 
the improvement of river water quality. Nevertheless, 
after two years of breeding, the total hog population 
was estimated to be 1 million in the whole Kao-Ping 
River Basin. In addition, for the second factor, the air 
temperature associates with weather or seasonal factor 
plays the important contribution for trophic states level in 
Chengchinghu Reservoir. A marked seasonal variation 
is commonly observed in many eutrophication effects 
and driving forces such as water and air temperature, 
freshwater runoff, and salinity. Similarly, COD, dissolved 
inorganic nitrogen (DIN), and DO concentrations in the 
bottom water change seasonally. 

Study conducted in Kaohsiung Harbor by 2016 
has analyzed the role of eutrophication in the seasonal 
succession of these major measurement elements and 
compared the comprehensive indices of eutrophication 
between the dry and wet seasons (52). Another study 
in two Irish Estraries by 2016 indicated that nutrient 
loading can change seasonally in estuaries and coastal 
systems (53). Phosphorous defiency frequently occurs 
in the spring, whereas nitrogen is often limited during the 
summer months. During summer, algae mass increases 
significantly, accelerating the phosphorous cycle in water 
and releasing nutrients from sediments. 

We have briefly explained the fundamentals of 
classification and regression trees, and have shown how 
they can model complex ecological data. Trees were 
used to determine the environmental characteristics and 
classification of scenario prediction of eutrophication 
phenomenon in Chengchinghu Reservoir. From this 
research, we could describe that CART are powerful tools 
for analyze some features include: (1) the ability to use 
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different types of response variables; (2) the capacity for 
interactive exploration, description, and prediction; (3) 
invariance to transformations of explanatory variables; 
(4) easy graphical interpretation of complex results 
involving interactions; (5) model selection by cross-
validation; and (6) procedures for handling missing 
values. In summary, classification and regression trees 
are a valuable addition to the statistical toolbox of every 
ecologist and environmental scientist. 

The comprehensive use of CART in long-
term trend analysis for water quality evaluation and 
prediction could offer effective support for government 
implementing reservoir water resources management 
and regulation. The results obtained from CART 
provide insights into the prediction in water quality and 
eutrophication phenomenon, making it possible to carry 
out a sampling arrangement in a more rational way (42, 
44). The prediction of water quality may also help local 
governments to understand  the pollution conditions in 
the area under administration and to take responsibility 
for conservation of the respective aquatic ecosystems. 
The CART can be used to predict the water quality and 
eutrophication not only in one area, but also could be 
useful too in different areas. Thus, it helps the government 
to determine their priorities by emphasizing the regional 
distinction. Based on the information extracted from this 
study, different policies can be established to treat the 
pollution sources in different areas. Study in in the Kao-
Ping River Basin find that eutrophication will become 
a problem again after 2017 without new wastewater 
treatment plants in the Kao-Ping River and Chengchinghu 
Reservoir (43). Then, the new approach technology of 
water treatment to remove the nutrient (TP or TN) before 
discharge to the water surface body is indispensable. 
Some studies using ultrafiltration membrane microreactor 
(MMR) (54), adsorbents (55), chalcogenide (56), and 
many more appropriated processes or technologies for 
water treatment as long as they have the features of high 
efficiency and stability, lower energy consumption and 
operational cost, easy operation and maintenance, and 
lower specific footprint to reduce the occupied land area 
and the investment. Furthermore, the natural purification 
methods to treat domestic wastewater or stormwater has 
become a popular study in recent years. If the pollutant 
concentrations are not too high, natural purification 
methods, like structural free water surface (FWS) 
wetland, are a cheaper approach that also considers wild 
life rehabilitation and ecosystem. The reported average 
pollutant removal rates of BOD5, ammonia nitrogen and 
inorganic phosphorus are 58,3%, 58,1% and 37,5%, 
respectively (57). 

In general, another study conducted in Bhindara 
Lake of India by 2017 has reviewed the general important 
features of a long-term monitoring and assessment 
program to control the trophic state level include: 
Sampling  to detect the trophic states index trends; routine 
monitoring, spatially and temporally extensive monitoring 
of key environmental variables, using continuous and 
time-integrative sampling of water quality, productivity, 
and turbidity, possibly making use of satellite- and 
aircraft-remote sensing, and large-scale, long term, real 
time monitoring using existing infrastructure such as 
bridges, platforms, commercial and government vessels, 
and ferries; assess the sediments which contain a wealth 
of paleo-climate and paleo-sea level information for the 
past 10.000 years of coastal history (58). Recent paleo-
sediment studies using indicators aimed at elucidating 
the history of cultural eutrophication of another previous 
studies, such as the Chesapeake Bay (59) and the Baltic 
Sea (60) are examples of the applicability of this approach; 
aggregation of meteorological data on storm paths, winds, 
rainfall, and flooding to provide a quantitative context for 
large-scale storm events and consequent environmental 
perturbations; and assessment of effects of hydrologic, 
chemical, and sediment loading on biotic communities 
impacting production, nutrient cycling, finfish and 
shellfish habitats, including water column (planktonic), 
salt marsh, sea grass, and sediment habitats.
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CONCLUSION 

According to the observed data the trophic 
state status from 2000 to 2017, we can conclude that 
CTSI trend in Chengchinghu Reservoir were mostly 
eutrophic. The eutrophic state probably would occur in 
Chengchinghu Reservoir when the TP concentration is 
greater than 22,86 mg/L or Chl-a concentration is greater 
than 5,2 μg/L or SD is less than 1.1 m. Thus, according 
to this study we suggest the government create the 
strict regulations and standard for phosphorous usage 
or the other nutrients and do the countinous monitoring 
and assessment. We also suggest the next future study 
considering the temperature level as a CART factor 
prediction.

Water quality and eutrophication evaluation and 
prediction agendas require the complex multidimensional 
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data that need statistical model treatment for analysis 
and interpretation to obtain better information about the 
quality of reservoir ecosystem. Such information can help 
environmental managers or desicion maker create better 
decisions regarding action plans. The management of 
nutrient influent to should strive for low accumulation in 
reservoir for minimize environmental degradation. This 
objective can be achieved by installing proper treatment 
methods for municipal and industrial wastewater before 
being released to the environment.
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