Rafiqi Rajauddin Amin, Rimbi Rodiyana Sova, Dewinta Intan Laily, Dina Kartika Maharani

Abstract views = 1016 times | downloads = 2062 times


The rapid development of industry causes the need for fuel and energy to increase, especially fossil fuels (petroleum). This has the effect of an energy crisis. Biomass is of particular concern as one of the renewable energy sources to address the current energy crisis.  Biomass consists of hemiselulose, cellulose, and lignin that can be converted into liquids (bio-oils) of pyrolysis. One of the wastes that can be converted into bio-oil is tobacco waste. Tobacco waste is produced by more than 2 million tons eachs. The waste has the potential to be further processed into bio oil using fast pyrolysis method with efficient and quality bio-oil manufacturing measures. The bio-oil results from tobacco waste using the fast pyrolysis method have values of carbon, hydrogen, nitrogen, oxygen and other organic compounds and the H/C ratio is greater than the yield of tobacco waste bio-oil using the low pyrolysis method. Where the bio-oil of tobacco waste using the fast pyrolysis method has a high heating value equivalent to the distribution of hydrocarbons from biodiesel, which means it has the potential as an alternative energy to replace petroleum. The potential as a substitute fuel for petroleum must also be balanced with fast and efficient production, maximizing bio-oil production by selecting the reactor and the optimum temperature used

Keywords: Waste, Tobacco, Bio-Oil, Renewable Energy, Fast-pyrolisis

Full Text:



Akalina, M. K., & Karagöz, S. (2011). Pyrolysis of tobacco residue. Part 2: Catalytic. BioResources, 6(2), 1773–1805.

Astuti, D.S, Sani, Yuandana, Y.G, Karlin. (2018). Pyrolysis Study Biochar ’ S Characteristic From Tobacco Stem , Papaya Stem and Rice Straw With Pyrolysis Process. Jurnal Teknik Kimia, 12(2), 41–46

B. A. Bohm, "The Minor Flavonoids," in The Flavonoids: Advances in Research, J. B. Harborne and T. J. Mabry, Eds. London: Chapman & Hall, 1994.

Barla, F. G., & Kumar, S. (2019). Tobacco biomass as a source of advanced biofuels. Biofuels, 10(3), 335–346.

Booker, C. J., Bedmutha, R., Scott, I. M., Conn, K., Berruti, F., Briens, C., & Yeung, K. K. C. (2010). Bioenergy II: Characterization of the pesticide properties of tobacco bio-oil. International Journal of Chemical Reactor Engineering, 8.

Bridgwater, A. V., Carson, P., & Coulson, M. (2007). A comparison of fast and slow pyrolysis liquids from mallee. International Journal of Global Energy Issues, 27(2), 204–216.

Cahyono, M. S. (2013). Pengaruh Jenis Bahan pada Proses Pyrolysis Sampah Organik menjadi Bio-Oil sebagai Sumber Energi Terbarukan. Jurnal Sains &Teknologi Lingkungan, 5(2), 67–76.

Cardoso, C. R., Miranda, M. R., Santos, K. G., & Ataíde, C. H. (2011). Determination of kinetic parameters and analytical pyrolysis of tobacco waste and sorghum bagasse. Journal of Analytical and Applied Pyrolysis, 92(2), 392–400.

Chen, H., Lin, G., Chen, Y., Chen, W., & Yang, H. (2016). Biomass Pyrolytic Polygeneration of Tobacco Waste: Product Characteristics and Nitrogen Transformation. Energy and Fuels, 30(3), 1579–1588.

Chumsawat, L., & Tippayawong, N. (2020). Utilizing tobacco residues to generate bio-oil and biochar via ablative pyrolysis. Chemical Engineering Transactions, 78, 49–54.

Hassan, M. M., Perves, M., Alam, M. J., Roy, A., & Nabi, M. N. (2015). Design & Construction of a Pyrolysis Reactor for Liquid Oil Production from Olive Seeds. Proceedings of the International Conference on Mechanical, Industrial and Materials Engineering 2015 (ICMIME2015), December.

Herliati, H., Prasetyo, S. B., & Verinaldy, Y. (2019). Review: Potensi limbah Plastik dan Biomassa sebagai Sumber Energi Terbarukan Dengan Proses Pyrolysis. Jurnal Teknologi, 6(2), 85–98.

Kapoor, L., Mekala, A., & Bose, D. (2017). Auger reactor for biomass fast pyrolysis: Design and operation. International Conference on 21st Century Energy Needs - Materials, Systems and Applications, ICTFCEN 2016.

Kasim, F; Fitrah, A.N; Hambali, E. (2016), Aplikasi Asap Cair pada Lateks. Jurnal PASTI, [S.l.], vol. 9, no. 1, April. 2016. ISSN 2598-4853

Khuenkaeo, N., & Tippayawong, N. (2018). Bio-oil Production from Ablative Pyrolysis of Corncob Pellets in a Rotating Blade Reactor. IOP Conference Series: Earth and Environmental Science, 159(1).

Kim, Y., Shim, J., Choi, J. W., Jin Suh, D., Park, Y. K., Lee, U., Choi, J., & Ha, J. M. (2020). Continuous-flow production of petroleum-replacing fuels from highly viscous Kraft lignin pyrolysis oil using its hydrocracked oil as a solvent. Energy Conversion and Management, 213(December 2019), 112728.

K. T. Sutar and P. U. Singare, "Study of Antioxidant Activity of Hindered Phenols in Bulk Oil and Thin Film Oxidation Conditions in Lubricants," Rasayan J. Chem, vol. 11, no. 2, pp. 465-474, 2018.

Lin Yan. (2016) Agricultural Research Service U.S. Department Of Agriculture. [Online].

Liu, B., Li, Y. M., Wu, S. Bin, Li, Y. H., Deng, S. S., & Xia, Z. L. (2013). Pyrolysis characteristic of tobacco stem studied by Py- GC/MS, TG-FTIR, and TG-MS. BioResources, 8(1), 220–230.

Liu, Y., Dong, J., Liu, G., Yang, H., Liu, W., Wang, L., Kong, C., Zheng, D., Yang, J., Deng, L., & Wang, S. (2015). Co-digestion of tobacco waste with different agricultural biomass feedstocks and the inhibition of tobacco viruses by anaerobic digestion. Bioresource Technology, 189, 210–216.

Mufandi, I., Treedet, W., Singbua, P., & Suntivarakorn, R. (2019). Produksi Bio-Oil dari Rumput Gajah dengan Fast Pyrolysis menggunakan Circulating Fluidized Bed Reactor (CFBr) dengan Kapasitas 45 Kg/H. CHEMICA: Jurnal Teknik Kimia, 5(2), 37.

N. Fachrizal, R. Mustafa, M. P. (2012). Proses Pyrolysis Biomasa Gelombang Mikro. 153–160.

Nurnasari, E., & Subiyakto, S. (2019). Diversifikasi Produk Tembakau Non Rokok Diversification of Non-Cigarette Tobacco Products. Perspektif, 17(1), 40.

Onorevoli, B., da Silva Maciel, G. P., Machado, M. E., Corbelini, V., Caramão, E. B., & Jacques, R. A. (2018). Characterization of feedstock and biochar from energetic tobacco seed waste pyrolysis and potential application of biochar as an adsorbent. Journal of Environmental Chemical Engineering, 6(1), 1279–1287.

Onorevoli, B., Machado, M. E., Polidoro, A. D. S., Corbelini, V. A., Caramão, E. B., & Jacques, R. A. (2017). Pyrolysis of Residual Tobacco Seeds: Characterization of Nitrogen Compounds in Bio-oil Using Comprehensive Two-Dimensional Gas Chromatography with Mass Spectrometry Detection. Energy and Fuels, 31(9), 9402–9407.

Putra, A. E., Rahman, M., & Aminy, A. (2018). Produksi Bahan Bakar Ramah Lingkungan Melalui Proses Pirolisis Limbah Ban. Jurnal Penelitian Enjiniring, 20(2), pp. 26-31. 1.ütün


A. E., Önal, E., Uzun, B. B., & Özbay, N. (2007). Comparison between the “slow” and “fast” pyrolysis of tobacco residue. Industrial Crops and Products, 26(3), 307–314.

Qiram, I., Widhiyanuriyawan, D., & Wijayanti, W. (2015). Energi Yang Dihasilkan Pyrolysis Serbuk Kayu Mahoni (Switenia Macrophylla ) Pada Rotary Kiln. Jl . MT . Haryono 167 , Malang 65145 , Indonesia ABSTRACT Pirolysis is thermochemical decomposition process of biomass into useful product . A method that ca. 8.

Rahman, A. (n.d.). Uji Parameter Temperatur Dan Tekanan Vakum. 1–5.

Ratnani, R. D., & Widiyanto. (2018). A Review of Pyrolisis of Eceng Gondok (Water hyacinth) for Liquid Smoke. E3S Web of Conferences, 73, 2–6.

Raymundo, L. M., Espindola, J. S., Borges, F. C., Lazzari, E., Trierweiler, J. O., & Trierweiler, L. F. (2020). Continuous fast pyrolysis of rice husk in a fluidized bed reactor with high feed rates. Chemical Engineering Communications, 0(0), 1–11.

Ridhuan, K., Irawan, D., & Inthifawzi, R. (2019). Proses Pembakaran Pyrolysis dengan Jenis Biomassa dan Karakteristik Asap Cair yang Dihasilkan. Turbo : Jurnal Program Studi Teknik Mesin, 8(1), 69–78.

Robinson T., The Organic Constituents of Higher Plants 6th Ed. North Amherst, MA: Cordus Press, 2010.

Siti Mariam Abdul Lathiff, Noraini Jemaon, Siti Awanis Abdullah, and Shajarahtunnur Jamil, "Flavonoids from Artocarpus anisophyllus and their Bioactivities," Natural Product Communications, vol. 10, no. 3, pp. 393-396, 2015.

Syamsudin, S., Purwati, S., Surachman, A., & Wattimena, R. B. I. (2016). Pyrolysis Isotermal Sludge Cake Dan Pulp Reject Pabrik Pulp Kraft (Isothermal Pyrolysis Of Sludge Cake And Pulp Reject From Kraft Pulp Mill). Jurnal Selulosa, 6(02), 71–82.

Thu, K., Reungpeerakul, T., & Sangwichien, C. (2020). Simulation of Reaction Kinetics and Heat Transfer Effects on Product Yields from Fast Pyrolysis of Oil Palm Empty Fruit Bunch Biomass in Fluidized Bed Reactor. Bioenergy Research.

Treedet, W., & Suntivarakorn, R. (2018). Design and operation of a low cost bio-oil fast pyrolysis from sugarcane bagasse on circulating fluidized bed reactor in a pilot plant. Fuel Processing Technology, 179(October), 17–31.

Wibowo, S. (2016). Karakteristik Bio-Oil Dari Limbah Industri Hasil Hutan Menggunakan Pyrolysis Cepat. Jurnal Penelitian Hasil Hutan, 34(1), 61–67.

Wibowo, S. (2020). Karakte Ristik Bio-Oil Dari Limbah Industri Hasil Hutan Me Nggunakan Pyrolysis Ce Pat ( Characteristics of Bio-oil Made of Forest Products Waste by Fast Pyrolysis. 34(1), 61–76.

Wibowo, S., & Hendra, D. (2015). Karakteristik Bio-Oil Dari Rumput Gelagah (Saccharum spontaneum Linn.) Menggunakan Proses Pyrolysis Cepat. Jurnal Penelitian Hasil Hutan, 33(4), 347–363. ttps://

Wijayanti, W., & Sasongko, M. (2012). Reduksi Volume Dan Pengarangan Kotoran Sapi Dengan Metode Pyrolysis. Rekayasa Mesin, 3(3), 4040–4410.

Wu, W., Mei, Y., Zhang, L., Liu, R., & Cai, J. (2015). Kinetics and reaction chemistry of pyrolysis and combustion of tobacco waste. Fuel, 156, 71–80.

Xia, Q., Yan, B., Wang, H., Xu, J., Zhang, S., Zhou, G., Hu, A., Jiang, J., Xu, S., Wang, J., & Chen, W. (2020). Production of bio-oils enriched with aroma compounds from tobacco waste fast pyrolysis in a fluidized bed reactor. Biomass Conversion and Biorefinery.

Yan, B., Zhang, S., Chen, W., & Cai, Q. (2018). Pyrolysis of tobacco wastes for bio-oil with aroma compounds. Journal of Analytical and Applied Pyrolysis, 248–254.

Yang, Y., Chen, X., Wang, D., Cheng, G., & Lv, D. (2019). TGA analysis of tobacco rob pyrolysis and release characteristics of noncondensable gas in a fixed-bed reactor. International Journal of Green Energy, 16(5), 378–385.

Yang, Z., Zhang, S., Liu, L., Li, X., Chen, H., Yang, H., & Wang, X. (2012). Combustion behaviours of tobacco stem in a thermogravimetric analyser and a pilot-scale fluidized bed reactor. Bioresource Technology, 110, 595–602.

Yıldız, Z., & Ceylan, S. (2019). Pyrolysis of tobacco factory waste biomass. Journal of Thermal Analysis and Calorimetry, 2019(136), 783–794.

Yusrizal, & Idris, M. (2016). Memproduksi Bahan Bakar Gas. Jurnal Inotera, 1(1), 57–63.


  • There are currently no refbacks.

Copyright (c) 2020 Jurnal Kimia Riset

View JKR Stats

Creative Commons License