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Abstract 

 
Trypanosomiasis caused by Trypanosoma evansi is a major protozoan illness that affects animals 

worldwide. It is also referred to as “surra” and affects a variety if wild and domestic animals such as sheep, 

cattle, goats, dogs, buffaloes, pigs, elephants, amongst others. In preparing this review, relevant scientific 

articles were searched on PubMed, SCOPUS, and Web of Science databases using the keyword “Trypanosoma 

evansi AND animals”. T. evansi are carried by a vast number of hematophagous flies and are found in the 

extracellular and internal fluids of certain hosts. Trypanosomosis is mostly characterized by anemia, and the 

degree of anemia can typically be used as a gauge for the disease's severity. Trypanosomiasis compromises the 

host animal's immune system and its diagnosis is dependent on a number of factors such as thorough clinical 

examination, suitable sample collection, sample size, suitable diagnostic test performance, and logical 

interpretation of test results. The clinical manifestations of trypanosomiasis vary widely in both appearance and 

severity, ranging from neurological disturbances and skin plaques to vaginal enlargement. Hematophagous 

biting flies, including Tabanus, Haematopota, Glossina, Chrysops, Lyperosia, Stomoxys, and Hippobusca flies, 

contribute to the spread of trypanosomiasis. Four medications are primarily used to treat trypanosomiasis: 

quinapyramine, karetin, diminazene aceturate (Berenil), and melarsomine (cymelarsan). An efficient 

vaccination program is an additional technique for managing infectious diseases in addition to treatment. The 

most important step in curtailing the spread of trypanosomiasis caused by T. evansi is to stop its transmission 

by flies via physical and chemical methods. 
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INTRODUCTION 

 

Trypanosomiasis caused by Trypanosoma 

evansi, also referred to as “Surra”, is a protozoan 

illness that affects animals worldwide, including 

camels, goats, buffalo, horses, donkeys, mules, 

sheep, pigs, cats, cattle, and dogs (Kim et al., 

2023). Trypanosoma is a genus of unicellular 
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extracellular flagellate protozoan that belong to 

the Trypanosomatidae family that cause this 

disease (Chau et al., 2016). This organism comes 

from the words “trypano” which means borer and 

“soma” which means body (Langousis and Hill, 

2014). The capacity of trypanosomes to 

periodically change the major glycoproteins on 

their surface results in the recurrence of 

parasitemia (Aresta-Branco et al., 2019). The 

degree of its clinical impact is contingent upon 

vulnerability of the host. 

Trypanosoma infections are known to be 

transmitted by various hematophagous flies 

genera, including Stomoxys, Tabanus, Glossina, 

and Haematopota (Lendzele et al., 2022). This 

parasite can live in reservoirs such as camels, 

goats, buffalo, horses, sheep, pigs, cats, cattle, and 

dogs. Severe infections are primarily seen in 

camels, horses, cattle, and buffalo (Aregawi et al., 

2019). T. evansi has broad range with regards to 

geographic location (Dario et al., 2021). For 

instance, camels are the primary hosts throughout 

Africa and the Middle East (Sazmand et al., 

2019). In contrast, the most prevalent infections 

in Asia are seen in buffalo and elephants, 

particularly in the Philippines, Thailand, and 

India (Kim et al., 2023; Kengradomkij et al., 

2025). The vampire bat species Desmodus 

rotundus is a common vector and host in South 

America (Quiroga et al., 2022). Conversely, T. 

evansi infections afflict deer, wild boar, and 

rodents in Australia and Europe (Keatley et al., 

2020; Magri et al., 2021). The variety of hosts 

offers T. evansi a great chance to grow and spread 

throughout the world. 

Trypanosomiasis due to T. evansi can present 

with either acute and chronic clinical symptoms. 

Infected animals (such as cattle, buffaloes, sheep, 

goats, dogs, and pigs) that exhibit the acute form 

of the disease, experience fever, starvation, 

edema, and ultimately die. In contrast, the chronic 

form of the disease is characterized by increasing 

weight loss, intermittent high fever, generalized 

muscular atrophy, pale mucous membranes, and 

occasionally, abdominal edema (Abdel-Rady, 

2008). Trypanosomiasis-affected animals may 

also smell sweet because of an increase in urine 

ketones (Getahun et al., 2022). The disease's 

chronic form is the most prevalent because it is 

most often linked to an infection that results from 

immune suppression caused by a Trypanosoma 

infection (Boushaki et al., 2019). Treatment 

guidelines and chemotherapeutic control tactics 

are based on data regarding the region's 

trypanosomiasis risk and trypanocidal drug 

resistance prevalence (Kasozi et al., 2022). The 

successful treatment of trypanocidal drugs and the 

detection of parasites both depend on the 

sensitivity and specificity of the diagnostic 

technique employed. 

The illness has a major financial impact, but 

it is impossible to calculate the exact costs 

because there are inadequate epidemiological 

statistics and it is difficult to gather sufficient data 

in underdeveloped nations (Snijders et al., 2021). 

This causes enormous economic crises and 

catastrophic losses in underdeveloped nations, 

with effects that may double those of developed 

nations. This illness outbreak puts millions of 

cows, buffalo, horses, and camels in danger of 

dying worldwide with significant economic 

losses, especially with regards to reduced 

productivity. Trypanosomiasis's effects on 

animals can lower the predicted profit yield from 

livestock production by as much as 30% of net 

income (Abro et al., 2021). Trypanosoma evansi 

is the primary cause of trypanosomiasis among all 

pathogenic Trypanosoma species since it has the 

largest host range and geographic distribution 

worldwide (Kim et al., 2023).  

The spread of trypanosomiasis is a global 

health concern that might be lethal if proper 

diagnosis and treatment are delayed. The aim of 

writing this review is to comprehensively explain 

the etiology, history, life cycle, epidemiology, 

pathogenesis, immune response, diagnosis, 

clinical symptoms, transmission, risk factors, 

economic impact, treatment, vaccination, and 

control of trypanosomiasis. We searched relevant 

scientific articles on PubMed, SCOPUS, and Web 

of Science databases using the keyword 

“Trypanosoma evansi AND animals” in the 

preparation of this review. A total of 139 articles 

which reported relevant information such as 

etiology, pathogenesis, epidemiology, diagnosis, 

clinical symptoms, treatment, and control of T. 
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evansi infections in animals were selected, 

downloaded, and reviewed. Comprehending the 

general overview of trypanosomiasis is important 

for executing efficacious control strategies. 

 

RESULTS AND DISCUSSION 

 

Etiology 

T. evansi is a member of the Trypanozoon 

subgenus of the Trypanosoma genus (Salivarian) 

(Misra et al., 2016). The traits of a slender 

Trypanozoon parasite are seen in fresh blood 

samples: thin posterior extremity, free flagellum, 

active movement that results in limited 

displacement in the microscope field, a highly 

visible undulating membrane that "traps" light 

(light may appear to be captured at one end of the 

parasite and moved to the other end for release), 

and small size in comparison to Trypanosoma 

theileri but large in comparison to T. congolense 

(Desquesnes et al., 2013). 

T. evansi is consistently described as a tiny, 

monomorphic trypomastigote parasite when seen 

in thin smears stained with Giemsa (Misra et al., 

2016). There are a few isolated reports of short 

forms in this species which are thoroughly 

examined before concluding that the 

polymorphism of T. evansi is an irregular 

occurrence that happens occasionally (Hoare, 

1964). In contrast to T. brucei, this parasite 

primarily exhibits slender forms (long free 

flagellum and thin posterior end with small 

subterminal kinetoplast) and some intermediate 

forms (shorter free flagellum and posterior end 

with almost terminal kinetoplast) (Figure 1). 

 

 

 
Figure 1. T. evansi morphology under a light microscope using Giemsa staining (original 400×)  

   (Nuryady et al., 2019).

 

T. evansi parasites have an average length of 

24 ± 4 μm (minimum 15 μm, maximum 33 μm), 

and there is no discernible correlation between 

strain, host, or even geographic origin 

(Desquesnes et al., 2013). Similarly, 

dyskinetoplastic (or even akinetoplastic) strains 

are no longer thought to be different from T. 

evansi, and morphological studies based on the 

absence of kinetoplasts in population proportions 

ranging from 0% (T. equinum) to 100% or 

intermediate (T. venezuelense) have not produced  

 

significant differences. Lastly, historical and 

contemporary observations indicate that the size 

and shape of T. evansi blood forms are more or 

less determined by the host's immunological 

response and the parasite's development 

environment than by genetic traits (Tejero et al., 

2008). Of note, in certain instances, truncated 

parasite forms were seen. These forms can be 

difficult to identify in blood smears because, as 

was the case in recent cases in Spain, truncated 

parasites can look like T. vivax, but T. vivax has 
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larger kinetoplasts than T. evansi (Tamarit et al., 

2010). T. evansi exhibits the thin morphology and 

morphometry of the Trypanozoon subgenus, with 

very little variation and no traits that make it a 

species. 

 

History 

The British veterinarian Griffith Evans 

identified T. evansi, the first pathogenic 

mammalian trypanosoma, in 1880 from diseased 

camels and other similar animals in the Dera 

Ismail Khan district of Punjab (Desquesnes et al., 

2013). The tsetse fly is assumed to be the source 

of T. evansi, which is thought to have descended 

from T. brucei. However, the lack of the upper 

loop of kinetoplastic mitochondrial DNA has 

prevented T. evansi from undergoing cyclical 

development in the tsetse fly (Kamidi et al., 

2017). This hemoparasite-caused illness 

originated in Africa and has since expanded from 

the Arabian Peninsula to a large region spanning 

from Iran to Indonesia (Sawitri et al., 2019). Its 

current geographic range extends from the 

northern region of Africa through Southeast Asia 

and the Middle East (Fetene et al., 2021). 

 

 

 
Figure 2. T. evansi life cycle: Developmental progression and vector-mammalian host transmission  

    mechanisms.

 

Trypanosomiasis in animals and humans has 

a long history in India, with records extending 

back to the eighth century BC (Steverding, 2008). 

It is prevalent in nearly all nations where the ideal 

conditions (such as savanna, forests, and areas 

near waterbodies like rivers and streams) exist for 

the fly vector to reproduce. Spanish conquistadors 

are said to have carried the illness to Latin 

America, where vampire bats (Desmodus 

rotundus) played a role in the infection's spread 

(Quiroga et al., 2022).  There   have   also    been  

 

reports of T. evansi infections in France and Spain 

(Tamarit et al., 2010). It is only via early detection 

and management that T. evansi can be completely 

removed from a given area. T. evansi cannot be 

eradicated once it has reached enzootic levels, 

probably because large domestic and wild 

reservoirs exist, it can spread silently through 

healthy carriers, and it can transmit using 

nonspecific mechanical vectors found all over the 

world (Behour et al., 2019). 
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Life Cycle 

T. evansi are carried by a vast number of 

hematophagous flies and are found in the 

extracellular and internal fluids of certain hosts. 

The life cycle of T. evansi is intricate, and the 

vector for transmission is through the tsetse fly 

(Geiger et al., 2018). It involves further 

development between the vector and mammalian 

host in several stages. Indeed, Figure 2 hereafter 

depicts the commencement of the life cycle when 

a tsetse fly ingests long slender trypomastigotes 

in the infected bloodstream of a mammal. These 

trypomastigotes finally differentiate into the short 

stumpy trypomastigote stage, specialized for 

survival within the fly vector (Silvester et al., 

2017a; Geiger et al., 2018). Insects that feed on 

blood are the ones that cause its mechanical 

transmission. The complex life cycle of T. evansi 

includes cell division, proliferation, and 

differentiation (Matthews, 2005). It is crucial for 

the parasite to be able to control its cell cycle in 

order to produce many divisions in order to infect 

both hosts and vectors (Wheeler et al., 2019). The 

thin-stage cells that are circulating in the 

mammalian host's blood eventually reach large 

quantities and change into stump-stage cells, 

which have entered the cell cycle and are unable 

to proliferate (Silvester et al., 2017a). The stumpy 

stage is thought to be the only one that can 

successfully transfer the vector. It carries out two 

crucial tasks: it controls the host's parasite load 

and acts as a bridge between the parasite and host 

loads (Choi et al., 2024). 

This parasite can travel across a variety of 

bodily fluids, the placenta, and the circulatory 

system, which includes the lymphatic and 

cerebral fluids (Pereira et al., 2019). The brain 

and central nervous system (CNS) are the most 

commonly affected organs by parasite diseases, 

which spread from fluids to tissues (Mogk et al., 

2017). The parasite, known as a trypomastigote, 

starts to travel to the midgut of the vector insect 

as soon as the fly starts consuming blood, though, 

at which point the activities taking place inside 

the vector become visible for the first time 

(Schuster et al., 2017). The trypomastigotes 

proliferate and travel via the esophagus and 

hypopharynx after exiting the midgut, eventually 

arriving at the salivary glands (Franco et al., 

2014). This parasite has many strains that are 

infectious and non-contagious. They have the 

capacity to develop into extremely harmful 

metacyclic forms (Martín-Escolano et al., 2022). 

The flies can absorb more blood with each 

meal by storing the contaminated blood in the 

plant for a short while, or it can be immediately 

transmitted to the midgut (Telleria et al., 2014). 

Trypanosomes pass through the midgut and 

proceed to the proliferative procyclic stage 

(Alfituri et al., 2020). The parasite has to move 

through the peritrophic matrix after becoming 

implanted in the midgut (Aksoy, 2019). This 

barrier keeps the surrounding midgut tissue and 

the blood meal apart. According to theory, 

parasites accomplish this by swimming through 

the endotrophic space and into the proventriculus, 

which is the site of the development of the 

peritrophic matrix. From there, they can enter the 

ectotrophic area (Schuster et al., 2021). 

 

Epidemiology 

Even though trypanosomiasis is commonly 

known as African trypanosomiasis, some 

trypanosomiases can infect people outside of 

Africa (Kasozi et al., 2022; Lobo et al., 2019). 

Trypanosomiasis is caused by T. evansi, which is 

found not only in Africa but also in Central and 

South America, the Middle East, and Asia (Chau 

et al., 2016). Trypanosomiasis has a wide range 

of hosts, with the primary host species changing 

depending on the geographical location. The 

camel is the most significant mammal in Africa, 

especially in areas of East Africa and beyond the 

northernmost limits of the fly belt, whereas the 

horse is the most impacted in Central and South 

America (Eyob and Matios, 2013). A greater 

range of hosts are involved in Asia, such as 

Bactrian camels and dromedaries, cattle, buffalo, 

horses, and pigs (Desquesnes et al., 2013). 

Contrast this with findings from South America 

and Africa, where there is scant data indicating 

that domestic livestock other than horses and 

camels are clinically impacted by or infected with 

T. evansi (Roy et al., 2010). 

The animals primarily affected by this illness 

are horses, donkeys, mules, camels, dogs, and cats 
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(Eyob and Matios, 2013). More vulnerable than 

sheep and goats, which are likewise more 

vulnerable than cattle and pigs, are camels, 

horses, dogs, and Asian elephants (Misra et al., 

2016). When used as experimental hosts, rats and 

mice are especially vulnerable to T. evansi 

infections (Da Silva et al., 2011). It's been 

proposed that reservoirs of infection in animals 

are not significant for T. evansi, in contrast to fly-

borne trypanosomiasis, though it's likely that 

South American coati and capybara are 

exceptions to this rule (Herrera et al., 2002). T. 

evansi has spread to regions of Africa north of the 

Sahara desert, the Soviet Union, China, 

Indonesia, Pakistan, India, the Philippines, 

Madagascar, Mauritius, and South and Central 

America due to its potential to be spread by 

bloodsucking insects other than Glossina (Gao et 

al., 2020). Infections continue to spread to 

Australia, North America, and South West Africa 

(Kasozi et al., 2022). High infection rates, which 

can reach 30 to 100%, are typically associated 

with the introduction of parasites into new 

locations (Ponte-Sucre, 2016). Insects carry 

trypanosomes, and their continued life is 

dependent on vector dynamics. Trypanosomiasis 

induced by T. evansi affects most camels and is 

mechanically and independently spread by flies 

(Selim et al., 2022). In most herds, the disease is 

endemic, and the parasite T. evansi is present 

anywhere animals are housed (Sawitri et al., 

2019). 

 

Pathogenesis 

The earliest clinical sign of T. evansi 

infection in any host is the development of a 

chancre on a fly bite which is a swelling of the 

skin where the trypanosomes first proliferate 

(Ponte-Sucre, 2016). This first replication not 

only facilitates the establishment of infection but 

also marks the beginning of interactions between 

the host immune system and trypanosomes 

(Pereira et al., 2019). Trypanosoma enters the 

bloodstream after chancre development, causing 

fever (Aksoy et al., 2017). When the temperature 

drops, parasitemia may peak for four to six days 

before declining again (Misra et al., 2016). 

Trypanosomosis pathology is mostly 

characterized by anemia, and the degree of 

anemia can typically be used as a gauge for the 

disease's severity (Stijlemans et al., 2018). Large 

amounts of red blood cells (RBCs) are eliminated 

from the bloodstream by hematoma lymph nodes, 

the bone marrow, and the spleen's mononuclear 

phagocytic system (MPS) cells when an 

individual has parasitemia (Boada-Sucre et al., 

2016). The packed cell volume (PCV) drops to 

below 25% or even up to 10% when a significant 

amount of red blood cells are removed (Farikou et 

al., 2023). As a result, the animal develops 

anemia, dullness, anorexia, lethargicness, eye 

discharge, and loss of body condition. 

Anemia is the primary culprit in advanced 

stages, while there may be other factors as well. 

Nevertheless, the primary functional defect 

resulting from continuous anemic tissue anoxia, 

which lowers tissue pH and damages blood 

vessels, is anoxic conditions, regardless of the 

source of anemia (Pereira et al., 2019). The 

obvious symptoms include increased cardiac 

output brought on by elevated heart rate and 

stroke volume as well as shortened circulation 

times (Elliott et al., 2013). According to reports, 

the central nervous system is particularly 

vulnerable to anoxia, which can lead to the 

development of cerebral anoxia (Chuenkova and 

Pereiraperrin, 2010). Upon postmortem, the 

carcasses of animals afflicted with 

trypanosomiasis are typically pale, emaciated, 

and occasionally skinny (Njiru et al., 2004). At 

the incision, the lymph nodes are swollen and 

enlarged. Ascites, hydropericardium, and 

hydrothorax are present (Williams et al., 2009). 

The spleen enlarges in acute cases and atrophy 

occurs in chronic situations; however, these 

changes are not thought to be pathognomonic for 

a particular disease (Deleeuw et al., 2019). 

It is established that T. evansi belongs to the 

T. brucei group, which is known to favor the 

connective tissue of the host in order to break 

down collagen connections and eliminate the 

fibroblasts that create and preserve collagen (Wei 

et al., 2021). Large volumes of cytoplasmic and 

mitochondrial enzymes are considered to be 

released into the serum as a result of the 

disruption of the host's connective tissue and 



Jurnal Medik Veteriner Sunaryo Hadi Warsito, et al 

 

 J Med Vet 2025, 8(2):455–477. pISSN 2615-7497; eISSN 2581-012X | 461 
 

vascular damage brought on by the T. brucei 

group, further inflicting tissue damage (Pereira et 

al., 2019). High-temperature fevers could be 

brought on by the harmful metabolites that 

deceased Trypanosoma generate (Ponte-Sucre, 

2016). Moreover, a considerable reduction in 

albumin levels may also contribute to the edema 

observed in various body areas based on the 

chronic stage, causing modifications in blood 

osmotic pressure (Soeters et al., 2019). 

 

Immune Response 

The illness trypanosomiasis compromises 

the host animal's immune system. The host's 

immune system is meant to defend it against 

infections, but occasionally it can get 

overworked, react improperly, or produce an 

immunological-mediated illness that manifests 

clinically (Chaplin, 2010). Rarely are circulating 

trypanosomes observed in patients with chronic 

illnesses, and research has not demonstrated a 

connection between the degree of parasitemia and 

the degree of inflammation (Morrison et al., 

2023). This might happen as a result of the 

immune system attacking self-antigens and 

parasites. The parasite may accomplish this by 

inflammatory responses, tissue damage, or 

molecular mimicry, which releases tissue proteins 

and promotes the production of self-antigens 

(Bonney et al., 2011).  

Pure extracellular parasite T. evansi may 

live, proliferate, and undergo differentiation in the 

extracellular fluid of mammals, including the 

hostile vascular milieu (Phongphaew et al., 

2023). As a result, these parasites are always up 

against different immune system defenses, from 

innate to adaptive. It has been demonstrated that 

trypanosomal DNA, among other chemicals, may 

be released from dead trypanosomes and cause 

macrophages to release pro-inflammatory 

chemicals like Tumor Necrosis Factor Alpha 

(TNF-α), IL-6, IL-1, IL-10, and Nitric Oxide 

(NO) (Stijlemans et al., 2022). Through the 

damaging effects of TNF-α and NO on both host 

cells and parasites, the host immune system's 

initial response helps regulate the first peak of 

parasitemia (Stijlemans et al., 2018). 

As archetypal extracellular parasites, these 

pathogens evade antibody (Ab) recognition by 

varying their primary exposed membrane surface 

glycoproteins (also known as variable surface 

glycoproteins, or VSGs) sporadically (Stijlemans 

et al., 2016). This subtle mechanism of antigenic 

variation allows the pathogens to elude humoral 

immunity. Only directly activated B cells have the 

IL-6 receptor, which is released by activated 

macrophages and increases IgM and IgG 

antibodies (Somoza et al., 2022). 

The predominant IgM response and minimal 

IgG production are the hallmarks of polyclonal B 

cell activation brought on by T. evansi infection 

(Baral, 2010). Stijlemans et al. (2016) postulated 

that because IgM is larger than IgG, it may be 

more difficult to penetrate tissues where 

Trypanosoma multiplies. This could result in 

persistent infection because of the presence of a 

tissue reservoir while halting the parasite's 

unchecked development. IgG levels cannot be 

found until after parasitemia, although IgM can be 

seen during parasitemia. Thus, it seems that the 

primary mechanism for eliminating infected VAT 

is an IgM response, even if during infection, both 

IgM and IgG responses to variable surface 

glycoprotein (VSG) take place (Magez et al., 

2008). The parasite is opsonized by antibodies 

directed against particular surface epitopes of the 

exposed VSG layer, and immune complexes are 

effectively phagocytosed and eliminated by 

macrophages, mostly in the liver (Magez et al., 

2020). Complement-deficient mice infected with 

T. evansi manage consecutive waves of 

parasitemia as effectively as complement-

competent strains, suggesting a role for 

complement-mediated lysis in parasite clearance 

that cannot be verified (Sari et al., 2015). 

There have been reports of elevated IgM 

during both acute and chronic T. evansi 

infections, yet this is not protective because the 

majority of antibodies are autoantibodies 

(Nguyen et al., 2021). Both the spleen and lymph 

nodes are extremely reactive during the acute 

stage of the illness. This could account for the 

generalized hyperplasia of lymphoid tissue that 

characterizes T. evansi infections, while in the 
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later stages, the immune system experiences a 

loss of lymphoid cells (Dargantes et al., 2005). 

 

Diagnosis 

Trypanosomiasis diagnosis is dependent on a 

number of factors, including a thorough clinical 

examination, suitable sample collection, sample 

size, suitable diagnostic test performance, and 

logical interpretation of test results. In situations 

when trypanosomiasis is highly prevalent, a 

number of tests with a low diagnostic sensitivity 

might be enough. Microscopic analysis of the 

lymph nodes that aspirate blood or the 

cerebrospinal fluid (CSF) from infected animals 

can be used to make a parasitological diagnosis 

(Lumbala et al., 2018). In order to prevent 

trypanosomes in blood samples from 

immobilizing and lysing, samples should be 

checked as soon as feasible. Generally, compared 

to a venipuncture, a blood sample obtained at the 

tip of the ear yields more parasites (Setiawan et 

al., 2021). Collected blood samples should be 

stored in an ice bag away from sunlight because 

trypanosomes is quickly damaged by sunlight 

(Chappuis et al., 2005). To create a moist blood 

smear, a drop of blood (about 2 - 5 μL) is placed 

on a sanitized glass slide and covered with a cover 

slip to eliminate any air bubbles. Afterwards, 

under 400x magnification, the sample will be 

inspected using an aperture condenser, phase 

contrast, or interference contrast to ensure proper 

visualization (22 × 22 mm) (Morais et al., 2022).  

The blood smear technique is the most 

widely used test for trypanosomiasis, despite 

having a very low detection capability of 10,000 

parasites in 200 tiny fields (Bouteille and Buguet, 

2012). T. brucei positives sprint across the 

microscopic field, but T. congolense parasites 

move slowly (Silvester et al., 2017b). 

Microscopic inspection increases the detection of 

these parasites, enabling a conclusive diagnosis. 

Whenever there are trypanosomes in the blood, 

the surrounding erythrocytes' movement usually 

draws notice. Blood samples should be taken 

every other day to check for peak parasitemia 

when parasites are easily detectable due to 

changes in parasitemia (Costa et al., 2022). With 

the use of a hemolytic agent like sodium dodecyl 

sulfate (SDS), red blood cell lysis can be 

performed prior to analysis, greatly increasing the 

sensitivity of this approach (Biéler et al., 2012). 

Immune system proteins and antibodies 

produced in response to infections can be found 

using serological techniques. The diagnostic test 

RoTat 1.2 looks for antibodies in serum that point 

to a Type A infection with T. evansi (Desquesnes 

et al., 2022). These tests consist of the Enzyme 

Linked Immunosorbent Test (ELISA/T. evansi), 

the Latex Agglutination Test (LATEX/T. evansi), 

and the Card Agglutination Test (CATT/T. 

evansi) (Tran et al., 2009). The antigen type 

variants (VAT) are identified by vector surface 

glycoproteins (VSGs), which are highly 

immunogenic and induce host antibody responses 

for opsonization, agglutination, and trypanolytic 

activity (Kim et al., 2023). The T. evansi-specific 

antibodies present in the host's blood can be found 

using the quick and straightforward agglutination 

test CATT/T. evansi (Reck et al., 2021). 

Genes present in Trypanosoma are detected 

molecularly using Polymerase Chain Reaction 

(PCR). Numerous genes are utilized in the 

diagnosis of Trypanosoma, such as ESAG6/7 and 

TBR1/2 (Witola et al., 2005; Suprihati et al., 

2022). The Trypanozoon subspecies, which 

includes T. brucei, T. equiperdum, and T. evansi, 

include this multicopy gene. TBR is involved in 

antigenic variation, and the transferrin receptor 

complex is encoded by ESAG (Young et al., 

2008). TBR1/2 primers often exhibited greater 

sensitivity than ESAG6/7 primers (Pruvot et al., 

2010). Since ribosomal RNA (rRNA) genes are 

highly conserved and enable the differentiation of 

closely related trypanosome species, they are also 

typically utilized. The Trypanosoma rRNA 

contains the internal transcribed spacer (ITS) 

region, which is bordered by highly conserved 

portions that can be used to construct primers 

(Dollet et al., 2012). Additionally, PCR primers 

can be created so that every species yields a 

distinct PCR amplicon length. 

 

Clinical Symptoms 

Clinical symptoms of trypanosomiasis due to 

T. evansi can differ greatly in appearance and 

intensity. Clincal symtoms could also be 
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infuluenced by the state of the diet and 

environmental stress. The signs of this condition 

might vary and include neurological issues, skin 

plaques, and vaginal enlargement (Claes et al., 

2005). The onset of clinical symptoms might take 

weeks or months, and they frequently wax and 

wane with relapses that are almost definitely 

brought on by stress (Mudji et al., 2020). This 

could occur multiple times before the animal 

passes away or seems to recover. This disease is 

thought to have a case fatality rate of more than 

50 % to almost 100 % if left untreated or without 

prompt appropriate treatment (Kennedy, 2004; 

Abera et al., 2024). 

Three stages characterize the disease's 

progression: genital lesions in stage 1, skin signs 

in stage 2, and nerve signals in stage 3 (MacLean 

et al., 2012). In male animals, the glans penis and 

foreskin area show the earliest indications of 

edema. Enlargements can occur in the scrotum, 

ventral abdomen, chest, and perineum (Guiton 

and Drevet, 2023). There may be vesicles or boils 

on the genitalia, and when they heal, they could 

leave permanent scars. The place where the male 

animal's penis is continuously tugged and delayed 

might become inflamed with orchitis (Sivajothi 

and Reddy, 2019). Animals are susceptible to 

paraphimosis (Kasozi et al., 2022). Mares has a 

mucopurulent discharge and vaginitis (Yasine et 

al., 2019). The vulva swells, and this swelling 

might spread to the mammary glands and the 

ventral portion of the stomach along the perineum 

(Suganuma et al., 2016). Signs of pain and 

vulvitis or vaginitis with polyuria may be 

observed. Pigmentation may develop in the udder, 

perineum, and genital area (Gizaw et al., 2017). 

More virulent strains may cause abortions. 

Skin indications, sometimes referred to as 

the urticaria stage, are typified by the skin 

eruption of distinct, elevated, spherical, or oval-

shaped patches known as "plaques" (Barrett and 

Croft, 2012). Edema patches, sometimes known 

as "Silver Dollar Plaques", can develop on the 

skin, particularly on the neck, shoulders, ribs, and 

thighs (Gizaw et al., 2017). They can measure up 

to 5-8 cm in diameter and 1 cm thick. These 

symptoms are usually pathognomonic and linger 

for three to seven days. The last stage, known as 

the paralysis stage, is typified by nervous system 

disruptions. These symptoms start off as 

restlessness and a propensity to switch one leg for 

the other, then progress to increasing weakness 

and coordination, and ultimately culminate in 

death and paralysis, particularly in the rear legs 

(Adebiyi et al., 2021). More symptoms include 

emaciation, conjunctivitis, keratitis, intermittent 

fever, and progressive anemia manifested by 

pallor of the mucous membranes surrounding the 

eyes and mouth (Desquesnes et al., 2013). 

 

Transmission 

Hematophagous biting flies, including 

Tabanus, Haematopota, Glossina, Chrysops, 

Lyperosia, Stomoxys, and Hippobusca flies, 

contribute to the spread of T. evansi in animals 

such as cattle, buffalo, antelopes, pigs, as well as 

rodents (Hairani et al., 2023). Efficiency of 

transmission is influenced by the level of 

parasitemia, the severity of the fly attack, and the 

time between two feedings in a row (Van Den 

Abbeele et al., 2010). A high density of insect 

vectors is connected with trypanosomiasis 

epidemics in certain locations, which peak during 

the rainy and post-rainy seasons (Franco et al., 

2014). There are four possible modes of 

transmission: oral, iatrogenic, vertical, and 

horizontal. Carnivorous animals can also become 

infected after eating infected tissue when the oral 

mucosa is damaged (Giordani et al., 2016). There 

is also a chance that Trypanosoma can be sexually 

transmitted (Biteau et al., 2016). Investigations 

on the possibility of T. evansi transmission by 

leeches, particularly Asian buffalo leeches, are 

necessary (Su et al., 2022). In certain instances, 

trypanosomiasis has also been documented to 

spread vertically or transplacentally (Lindner and 

Priotto, 2010). In Latin America, the vampire bat 

(Desmodus rotundus) serves as a host, reservoir, 

and biological vector for parasites, allowing T. 

evansi to spread from bite to bite or vice versa 

(Austen and Barbosa, 2021). These bats can also 

infect cattle since they are persistent vectors that 

can infect their hosts for extended periods of time. 

A recent study evaluated the potential of a 

previously identified antitrypanosomal 

nucleoside called 3’-deoxytubercidin, as a 
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therapeutic candidate in combating T. evansi 

using mouse models (Ilbeigi et al., 2025). In this 

study, mice that were previously infected with T. 

evansi were subsequently treated by 

administering 3’-deoxytubercidin 

intraperitoneally once daily for five consecutive 

days at a dosage of 6.25 mg/kg. This in vivo 

treatment resulted in a successful cure of all T. 

evansi-infected mice without any form of toxicity 

(Ilbeigi et al., 2025). This intriguing successful 

treatment result which was confirmed by both 

microscopic examination and quantitative PCR 

techniques, further highlighting its potential in 

improving trypanosomiasis disease management 

in affected regions. 

 

Risk Factor 

Important risk factors for trypanosomiasis 

include stress conditions, young age, 

immunocompromised individuals, housing 

facilities, farming, hunting, herding cattle, and 

other activities such as tourism and migration to 

regions endemic with hematophagous biting flies. 

Some animals may recover from a T. evansi 

infection on their own, whereas other animals 

may experience the disease at different phases. 

The duration of time between the onset of clinical 

symptoms and the initial infection in 

trypanosomiasis varies greatly, but often falls 

between 5 and 60 days, but longer times (such as 

3 months) have been reported (Biteau et al., 

2016). Typically, the time span between infection 

and the emergence of parasites in the bloodstream 

is under 14 days. The initial dosage of infection 

(equal to the number of bites by infectious 

insects) and stress are risk factors that affect the 

incubation time (Giordani et al., 2016). In more 

vulnerable animals, stress arises during the end of 

pregnancy and the early stages of nursing 

(Malafaia and Talvani, 2011; Firdausy et al., 

2025). Stress-producing infectious infections, 

such as helminthosis, can exacerbate the disease's 

severity (Cortes-Serra et al., 2022). Trypanosoma 

tolerance can also be reduced due to low 

nutritional levels or when the animal must move 

to find water and pasture in the dry season 

(Pathak, 2009).  

Animals of all ages are susceptible to 

trypanosomiasis, although adult animals are more 

likely to contract the disease immediately after 

weaning (Saldanha et al., 2024). The rainy season 

typically sees an increase in fly vector populations 

(Tabanids, Hippoboscids, and Stomoxys), as the 

wet climate is conducive to reproduction and the 

spread of new illnesses (Hairani et al., 2023). 

These flies also like to congregate around rivers 

and wetlands, where herders typically bring their 

cattle during the dry season (Okello et al., 2023). 

The challenge, or the quantity of vector fly bites 

an animal sustains in a specific period of time 

determines the extent of the Trypanosoma 

infection risk. In contrast to cyclically transmitted 

trypanosomes, T. evansi has evolved to a fully 

mechanical and non-cyclical form of transmission 

via blood-sucking insects other than tsetse, and it 

infects a greater variety of animal hosts (Choi et 

al., 2024). 

 

Economic Impact 

The economic losses due to trypanosomiasis 

are quite high, and treatment is cost effective. 

According to recent estimates based on 

bioeconomic infectious disease models, a 

Philippine community with 80 buffalo, 40 cattle, 

200 pigs, 150 goats/sheep, and 15 horses that are 

moderately to severely impacted by 

trypanosomosis may lose up to US$158,000 

annually. However, it has been proven that the 

same village can earn the same amount of money 

if treatment is used (Dobson et al., 2009). 

Trypanosomiasis is very endemic in Mindanao, 

Philippines, and a 4-year field survey yielded a 

vast amount of data that were used to create the 

model. Comparatively, prior estimates of the 

country's annual losses from trypanosomiasis in 

the Philippines were barely US$0.1 million 

(Manuel, 1998). In contrast to the present data, 

which is based on losses from poor reproduction, 

diagnosis, treatment expenses, and replacement 

costs, previous estimates were based solely on 

limited mortality data that was provided to the 

government. However, because a number of 

factors were overlooked, current estimates of the 

financial losses caused by trypanosomiasis may 

still be too low: losses as a result of decreased 
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milk production, weight loss, carcass quality, and 

selling prices. Animals with T. evansi infections 

sell for extremely cheap prices (30–50% less) in 

Mindanao (Desquesnes et al., 2013). The 

significant financial losses resulting from T. 

evansi infections in endemic regions significantly 

affect impoverished livestock producers and their 

families, who rely on these animals for both 

agricultural pursuits and revenue (Benaissa et al., 

2020). Low-income marginal farmers face an 

additional financial strain due to the requirement 

to import replacement stock from other sources. 

Trypanosomiasis-related economic losses 

can be prevented by putting into practice efficient 

control strategies and approaches. The most cost-

effective treatment option in the trypanosomosis 

endemic Pantanal region of Brazil, where the 

livestock industry is  significant  and  horses   are 

utilized for grazing livestock, has been found to 

be monitoring and treating horses with 

diminazene aceturate for a year. This approach 

results in a total net loss of more than US $2 

million annually (Silva et al., 1995). 

Nevertheless, this approach makes the 

implausible assumption that the medication is 

100% effective against T. evansi, particularly in 

regions where drug resistance is present. Similar 

to the Philippines, the best course of action for 

combating trypanosomiasis is to treat all affected 

animals specifically with very effective 

medications (such as melarsomine 

dihydrochloride) all year long (Giordani et al., 

2016). It is also financially possible to treat all 

cattle species in a community in bulk, twice a 

year; however, this may lead to drug resistance in 

T. evansi isolates. 

 

 
Figure 3. Molecular mechanism of action of drugs primarily used to treat trypanosomiasis.

 

Treatment 

Animal infections with Trypanosoma can be 

lethal if left untreated (Carvalho et al., 2018). The 

primary means of controlling infection is 

chemotherapy; however, the effectiveness of the 

available treatments is limited, they are 

hazardous, and resistant Trypanosoma strains are  

 

starting to arise (Lewis et al., 2015). T. evansi 

requires different therapy because it is resistant to 

the majority of prescribed medications (Mdachi et 

al., 2023). Drugs used to treat trypanosomiasis 

have significant side effects, and the parasites 

develop resistance to the medications (Venturelli 

et al., 2022).  
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Five FDA-approved medications such as 

quinapyramine, isometamidium chloride, 

phenanthridine, diminazene aceturate, and 

melarsomine are primarily used to treat 

trypanosomiasis. Taken together, their 

mechanism is described in Figure 3. 

Quinapyramine interferes with the metabolism of 

T. evansi by inhibiting DNA synthesis and 

suppressing the activity of mitochondrial 

ribosomes to produce energy and replication; as a 

result, the cell dies. Isometamidium chloride acts 

in the interference of kinetoplast DNA replication 

and transcription beside interfering with 

reproduction, leading to cell death. 

Phenanthridine binds with the interference of 

DNA and RNA synthesis with further damage to 

both the nuclear and mitochondrial genetic 

material on the kinetoplast DNA, leading to the 

death of the parasite. Diminazene aceturate acts 

by interfering with DNA and RNA replication in 

the kinetoplast, thereby affecting genetic 

replication and transcription. However, toxic side 

effects regarding animals may be produced. 

Melarsomine binds to sulfhydryl groups of 

important energy-producing enzymes, which will 

result in their inactivation. Additionally, the 

depletion of ATP will bring about the death of the 

parasite, especially the drug-resistant isolates 

(Kasozi et al., 2022). Drug resistance concerns 

have led to the introduction of melarsomine, also 

known as cymelarsen, as a treatment for 

trypanosomiasis (Baker et al., 2013). Previously, 

animals infected with T. evansi have been treated 

with suramin and quinapyramine (Dargantes et 

al., 2021). Most medications, including 

homidium bromide, are too toxic for animals to 

utilize as a cure, as is the case with diminazene 

aceturate (Kasozi et al., 2022). Pets with T. evansi 

infections are frequently treated with diminazene 

aceturate, yet this might be harmful to the host 

(Da Silva et al., 2009). 

 

Vaccination 

An efficient vaccination program is an 

additional technique for managing infectious 

diseases in addition to treatment. Due to antigenic 

changes of the trypanosome surface layer, all 

traditional anti-parasitic vaccination attempts for 

trypanosomiasis that have been made to date 

using dominant surface proteins have failed (La 

Greca and Magez, 2011). Consequently, several 

immunization approaches are required. A 

different strategy to vaccination has involved the 

use of various parasite molecules. Variable 

surface glycoproteins (VSG) containing 

glycosylphosphatid linositol (GPI) have been 

identified as one of the primary parasite 

components generating the inflammatory 

response linked to infection (Moreno et al., 2019). 

This data was utilized in one study to assess GPI-

based immunization as a substitute approach with 

possible anti-disease effects (Munir et al., 2023). 

GPI delivered before to infection has been 

demonstrated to improve control of parasitemia 

and extend the survival of infected mice by using 

liposomes as a slow delivery mechanism (Bossard 

et al., 2021). This experiment effectively 

decreased anemia, acidosis, weight loss, and liver 

damage in T. evansi infection models; this 

decrease in pathology was linked to decreased 

TNF production, elevated IL-10 levels, and the 

expression of alternatively activated 

macrophages. T cell-dependent B cell activation 

is caused by CD4/Th cells activating and 

secreting IL-4, IL-10, and IL-13 in response to 

elevated IL-10 levels (Tao et al., 2011). 

 

Control 

The first and most important step in stopping 

the spread of trypanosomiasis is to stop the 

transmission of flies via physical and chemical 

methods. Physical methods include clearing 

undergrowth in ditches and water bodies, 

managing manure, avoiding animal grazing in 

direct sunlight, managing dung in dense piles 

(which helps kill Stomoxys and Liperosia larvae), 

and routinely removing manure and damp 

bedding (von Wissmann et al., 2011). In the 

meanwhile, chemical fly management methods 

such as dipping or spraying insecticides on 

animals during fly season and putting kerosene on 

waterbodies to stop Tabanus flies from sliding 

into them are used (Okello et al., 2021). Large-

scale insecticide spraying program to kill 

Tabanus flies and other biting flies (Mihok, 

2002). 
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Furthermore, international animal trade 

regulation is required to prevent the introduction 

of diseased animals into areas that are not affected 

(Desquesnes et al., 2013). International trade 

between diseased and uninfected nations should 

be subject to quarantine. This entails a quarantine 

of four weeks at the farms that import and export 

(Austen and Barbosa, 2021). An animal must 

come from an uninfected farm in an unsuspected 

location, test negative for trypanosomiasis twice 

at intervals of three to four weeks during each 

quarantine, and demonstrate these results in order 

to be qualified for trade (Thuita et al., 2008).  

A farm is considered a non-suspect area if 

there have been no reports of trypanosomiasis in 

the previous three years within a 30 km radius of 

the farm (Desquesnes et al., 2013). Only animals 

with negative trypanosomiasis test results and 

those originating from non-infected farms 

situated in non-suspicious areas are permitted 

access into non-infected farms (Desquesnes et al., 

2022). If two tests for trypanosomiasis are 

negative for every species of animal on a farm 

within a three-month period, the farm is 

considered uninfected (Latif et al., 2019). In order 

to preserve the farm's non-infected status, 

trypanosomiasis negative tests every ten to twelve 

months are required for every species of animal 

(Ilboudo et al., 2023). 

 

CONCLUSION 

 

Trypanosomiasis, caused by Trypanosoma 

evansi, is a protozoan illness that affects arrays of 

domestic and wild animals worldwide with 

significant public health challenges. The spread 

of trypanosomiasis is a global health concern that 

might be lethal if proper diagnosis and treatment 

are delayed. Animal infections with T. evansi can 

be lethal. Case fatality rate of almost 100 % has 

been reported for trypanosomiasis, especially if 

left untreated or without prompt appropriate 

treatment. Clinical symptoms of trypanosomosis 

due to Trypanosoma evansi might vary and could 

include neurological issues, skin plaques, and 

vaginal enlargement. Importantly, 

hematophagous biting flies have been recognized 

to contribute in its spread. More challenging is its 

economic impact as it could drastically reduce the 

productivity of livestock which are mostly used as 

food sources. Identified risk factors for 

trypanosomiasis include stress conditions, young 

age, immunocompromised individuals, housing 

facilities, farming, hunting, herding cattle, and 

other activities such as tourism and migration to 

regions endemic with hematophagous biting flies. 

The most important step in curtailing the spread 

of trypanosomiasis is to control the transmission 

of flies via physical and chemical methods. The 

integration of advanced molecular techniques 

such as whole-genome sequencing, multiplex 

PCR, and immunochromatographic tests in the 

diagnosis of T. evansi, especially in routine 

livestock health management systems and the 

prioritization of research directed at sustainable 

vector (hematophagous biting flies) control 

strategies will be critical in curtailing the burden 

of T. evansi and safeguarding global livestock 

productivity. Additionally, collaborative efforts 

between government agencies and veterinarians, 

cross-border collaborations, and strict quarantine 

protocols will be impactful in curtailing the risk 

of trypanosomiasis transmission and curtail its 

impact on livestock productivity, including 

farmers’ livelihoods. 
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