Trypanosoma evansi as a Major Cause of Animal Trypanosomiasis: A Comprehensive Review

Sunaryo Hadi Warsito 1, Aswin Rafif Khairullah 2, Mirni Lamid 1, Mohammad Anam Al-Arif 1, Herry Agoes Hermadi 3, Widya Paramita Lokapirnasari 1, Muhammad Khaliim Jati Kusala 2, Syahputra Wibowo 4, Siti Rani Ayuti 5, Bantari Wisynu Kusuma Wardhani 6, Ima Fauziah 2, Sheila Marty Yanestria 7, Ikechukwu Benjamin Moses 8, Agung Prasetyo 9, Suhita Aryaloka 10, Kartika Afrida Fauzia 11, Riza Zainuddin Ahmad 2, Dea Anita Ariani Kurniasih 12

¹Division of Animal Husbandry, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, East Java, Indonesia, ²Research Center for Veterinary Science, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia, ³Division of Veterinary Reproduction, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya 60115, East Java, Indonesia, ⁴Eijkman Research Center for Molecular Biology, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia, ⁵Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Indonesia, Banda Aceh 23111, Aceh, Indonesia, ⁶Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia, ⁷Faculty of Veterinary Medicine, Universitas Wijaya Kusuma Surabaya, Surabaya 60225, East Java, Indonesia, ⁸Department of Applied Microbiology, Faculty of Science, Ebonyi State University, Abakaliki 480211, Nigeria, 9Research Center for Estate Crops, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia, ¹⁰Master Program of Veterinary Agribusiness, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia, ¹¹Research Center for Preclinical and Clinical Medicine, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia, ¹²Research Center for Public Health and Nutrition, National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia. *Corresponding author: mirnylamid@fkh.unair.ac.id

Abstract

Trypanosomiasis caused by Trypanosoma evansi is a major protozoan illness that affects animals worldwide. It is also referred to as "surra" and affects a variety if wild and domestic animals such as sheep, cattle, goats, dogs, buffaloes, pigs, elephants, amongst others. In preparing this review, relevant scientific articles were searched on PubMed, SCOPUS, and Web of Science databases using the keyword "Trypanosoma evansi AND animals". T. evansi are carried by a vast number of hematophagous flies and are found in the extracellular and internal fluids of certain hosts. Trypanosomosis is mostly characterized by anemia, and the degree of anemia can typically be used as a gauge for the disease's severity. Trypanosomiasis compromises the host animal's immune system and its diagnosis is dependent on a number of factors such as thorough clinical examination, suitable sample collection, sample size, suitable diagnostic test performance, and logical interpretation of test results. The clinical manifestations of trypanosomiasis vary widely in both appearance and severity, ranging from neurological disturbances and skin plaques to vaginal enlargement. Hematophagous biting flies, including Tabanus, Haematopota, Glossina, Chrysops, Lyperosia, Stomoxys, and Hippobusca flies, contribute to the spread of trypanosomiasis. Four medications are primarily used to treat trypanosomiasis: quinapyramine, karetin, diminazene aceturate (Berenil), and melarsomine (cymelarsan). An efficient vaccination program is an additional technique for managing infectious diseases in addition to treatment. The most important step in curtailing the spread of trypanosomiasis caused by T. evansi is to stop its transmission by flies via physical and chemical methods.

Keywords: fly, diseases, parasitemia, Trypanosoma, trypanosomiasis

Received: October 7, 2024 Revised: June 5, 2025 Accepted: July 11, 2025

INTRODUCTION

Trypanosomiasis caused by *Trypanosoma* evansi, also referred to as "Surra", is a protozoan

illness that affects animals worldwide, including camels, goats, buffalo, horses, donkeys, mules, sheep, pigs, cats, cattle, and dogs (Kim *et al.*, 2023). *Trypanosoma* is a genus of unicellular

extracellular flagellate protozoan that belong to the Trypanosomatidae family that cause this disease (Chau *et al.*, 2016). This organism comes from the words "trypano" which means borer and "soma" which means body (Langousis and Hill, 2014). The capacity of trypanosomes to periodically change the major glycoproteins on their surface results in the recurrence of parasitemia (Aresta-Branco *et al.*, 2019). The degree of its clinical impact is contingent upon vulnerability of the host.

Trypanosoma infections are known to be transmitted by various hematophagous flies genera, including Stomoxys, Tabanus, Glossina, and Haematopota (Lendzele et al., 2022). This parasite can live in reservoirs such as camels, goats, buffalo, horses, sheep, pigs, cats, cattle, and dogs. Severe infections are primarily seen in camels, horses, cattle, and buffalo (Aregawi et al., 2019). T. evansi has broad range with regards to geographic location (Dario et al., 2021). For instance, camels are the primary hosts throughout Africa and the Middle East (Sazmand et al., 2019). In contrast, the most prevalent infections in Asia are seen in buffalo and elephants, particularly in the Philippines, Thailand, and India (Kim et al., 2023; Kengradomkij et al., 2025). The vampire bat species Desmodus rotundus is a common vector and host in South America (Quiroga et al., 2022). Conversely, T. evansi infections afflict deer, wild boar, and rodents in Australia and Europe (Keatley et al., 2020; Magri et al., 2021). The variety of hosts offers T. evansi a great chance to grow and spread throughout the world.

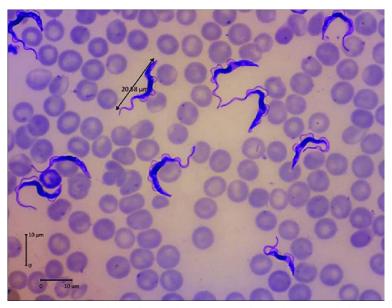
Trypanosomiasis due to *T. evansi* can present with either acute and chronic clinical symptoms. Infected animals (such as cattle, buffaloes, sheep, goats, dogs, and pigs) that exhibit the acute form of the disease, experience fever, starvation, edema, and ultimately die. In contrast, the chronic form of the disease is characterized by increasing weight loss, intermittent high fever, generalized muscular atrophy, pale mucous membranes, and occasionally, abdominal edema (Abdel-Rady, 2008). Trypanosomiasis-affected animals may also smell sweet because of an increase in urine ketones (Getahun *et al.*, 2022). The disease's

chronic form is the most prevalent because it is most often linked to an infection that results from immune suppression caused by a *Trypanosoma* infection (Boushaki *et al.*, 2019). Treatment guidelines and chemotherapeutic control tactics are based on data regarding the region's trypanosomiasis risk and trypanocidal drug resistance prevalence (Kasozi *et al.*, 2022). The successful treatment of trypanocidal drugs and the detection of parasites both depend on the sensitivity and specificity of the diagnostic technique employed.

The illness has a major financial impact, but it is impossible to calculate the exact costs because there are inadequate epidemiological statistics and it is difficult to gather sufficient data in underdeveloped nations (Snijders et al., 2021). This causes enormous economic crises and catastrophic losses in underdeveloped nations, with effects that may double those of developed nations. This illness outbreak puts millions of cows, buffalo, horses, and camels in danger of dying worldwide with significant economic losses, especially with regards to reduced productivity. Trypanosomiasis's effects animals can lower the predicted profit yield from livestock production by as much as 30% of net income (Abro et al., 2021). Trypanosoma evansi is the primary cause of trypanosomiasis among all pathogenic Trypanosoma species since it has the largest host range and geographic distribution worldwide (Kim et al., 2023).

The spread of trypanosomiasis is a global health concern that might be lethal if proper diagnosis and treatment are delayed. The aim of writing this review is to comprehensively explain the etiology, history, life cycle, epidemiology, pathogenesis, immune response, diagnosis, clinical symptoms, transmission, risk factors, economic impact, treatment, vaccination, and control of trypanosomiasis. We searched relevant scientific articles on PubMed, SCOPUS, and Web of Science databases using the keyword "Trypanosoma evansi AND animals" in the preparation of this review. A total of 139 articles which reported relevant information such as etiology, pathogenesis, epidemiology, diagnosis, clinical symptoms, treatment, and control of T.

evansi infections in animals were selected, downloaded, and reviewed. Comprehending the general overview of trypanosomiasis is important for executing efficacious control strategies.


RESULTS AND DISCUSSION

Etiology

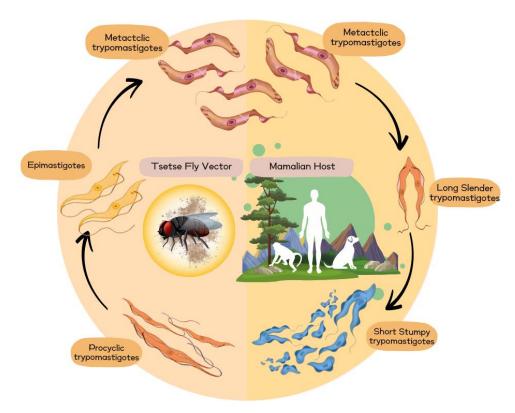
T. evansi is a member of the Trypanozoon subgenus of the Trypanosoma genus (Salivarian) (Misra et al., 2016). The traits of a slender Trypanozoon parasite are seen in fresh blood samples: thin posterior extremity, free flagellum, active movement that results in limited displacement in the microscope field, a highly visible undulating membrane that "traps" light (light may appear to be captured at one end of the parasite and moved to the other end for release),

and small size in comparison to *Trypanosoma* theileri but large in comparison to *T. congolense* (Desquesnes *et al.*, 2013).

T. evansi is consistently described as a tiny, monomorphic trypomastigote parasite when seen in thin smears stained with Giemsa (Misra et al., 2016). There are a few isolated reports of short forms in this species which are thoroughly before concluding examined that polymorphism of T. evansi is an irregular occurrence that happens occasionally (Hoare, 1964). In contrast to T. brucei, this parasite primarily exhibits slender forms (long free flagellum and thin posterior end with small subterminal kinetoplast) and some intermediate forms (shorter free flagellum and posterior end with almost terminal kinetoplast) (Figure 1).

Figure 1. *T. evansi* morphology under a light microscope using Giemsa staining (original 400×) (Nuryady *et al.*, 2019).

T. evansi parasites have an average length of $24 \pm 4 \mu m$ (minimum 15 μm , maximum 33 μm), and there is no discernible correlation between strain, host. or even geographic origin (Desquesnes et al., 2013). Similarly, dyskinetoplastic (or even akinetoplastic) strains are no longer thought to be different from T. evansi, and morphological studies based on the absence of kinetoplasts in population proportions ranging from 0% (T. equinum) to 100% or intermediate (T. venezuelense) have not produced


significant differences. Lastly, historical and contemporary observations indicate that the size and shape of *T. evansi* blood forms are more or less determined by the host's immunological response and the parasite's development environment than by genetic traits (Tejero *et al.*, 2008). Of note, in certain instances, truncated parasite forms were seen. These forms can be difficult to identify in blood smears because, as was the case in recent cases in Spain, truncated parasites can look like *T. vivax*, but *T. vivax* has

larger kinetoplasts than *T. evansi* (Tamarit *et al.*, 2010). *T. evansi* exhibits the thin morphology and morphometry of the Trypanozoon subgenus, with very little variation and no traits that make it a species.

History

The British veterinarian Griffith Evans identified *T. evansi*, the first pathogenic mammalian trypanosoma, in 1880 from diseased camels and other similar animals in the Dera Ismail Khan district of Punjab (Desquesnes *et al.*, 2013). The tsetse fly is assumed to be the source

of *T. evansi*, which is thought to have descended from *T. brucei*. However, the lack of the upper loop of kinetoplastic mitochondrial DNA has prevented *T. evansi* from undergoing cyclical development in the tsetse fly (Kamidi *et al.*, 2017). This hemoparasite-caused illness originated in Africa and has since expanded from the Arabian Peninsula to a large region spanning from Iran to Indonesia (Sawitri *et al.*, 2019). Its current geographic range extends from the northern region of Africa through Southeast Asia and the Middle East (Fetene *et al.*, 2021).

Figure 2. *T. evansi* life cycle: Developmental progression and vector-mammalian host transmission mechanisms.

Trypanosomiasis in animals and humans has a long history in India, with records extending back to the eighth century BC (Steverding, 2008). It is prevalent in nearly all nations where the ideal conditions (such as savanna, forests, and areas near waterbodies like rivers and streams) exist for the fly vector to reproduce. Spanish conquistadors are said to have carried the illness to Latin America, where vampire bats (*Desmodus rotundus*) played a role in the infection's spread (Quiroga *et al.*, 2022). There have also been

reports of *T. evansi* infections in France and Spain (Tamarit *et al.*, 2010). It is only via early detection and management that *T. evansi* can be completely removed from a given area. *T. evansi* cannot be eradicated once it has reached enzootic levels, probably because large domestic and wild reservoirs exist, it can spread silently through healthy carriers, and it can transmit using nonspecific mechanical vectors found all over the world (Behour *et al.*, 2019).

Life Cycle

T. evansi are carried by a vast number of hematophagous flies and are found in the extracellular and internal fluids of certain hosts. The life cycle of T. evansi is intricate, and the vector for transmission is through the tsetse fly (Geiger et al., 2018). It involves further development between the vector and mammalian host in several stages. Indeed, Figure 2 hereafter depicts the commencement of the life cycle when a tsetse fly ingests long slender trypomastigotes in the infected bloodstream of a mammal. These trypomastigotes finally differentiate into the short stumpy trypomastigote stage, specialized for survival within the fly vector (Silvester et al., 2017a; Geiger et al., 2018). Insects that feed on blood are the ones that cause its mechanical transmission. The complex life cycle of T. evansi proliferation, includes cell division, differentiation (Matthews, 2005). It is crucial for the parasite to be able to control its cell cycle in order to produce many divisions in order to infect both hosts and vectors (Wheeler et al., 2019). The thin-stage cells that are circulating in the mammalian host's blood eventually reach large quantities and change into stump-stage cells, which have entered the cell cycle and are unable to proliferate (Silvester et al., 2017a). The stumpy stage is thought to be the only one that can successfully transfer the vector. It carries out two crucial tasks: it controls the host's parasite load and acts as a bridge between the parasite and host loads (Choi et al., 2024).

This parasite can travel across a variety of bodily fluids, the placenta, and the circulatory system, which includes the lymphatic and cerebral fluids (Pereira *et al.*, 2019). The brain and central nervous system (CNS) are the most commonly affected organs by parasite diseases, which spread from fluids to tissues (Mogk *et al.*, 2017). The parasite, known as a trypomastigote, starts to travel to the midgut of the vector insect as soon as the fly starts consuming blood, though, at which point the activities taking place inside the vector become visible for the first time (Schuster *et al.*, 2017). The trypomastigotes proliferate and travel via the esophagus and hypopharynx after exiting the midgut, eventually

arriving at the salivary glands (Franco *et al.*, 2014). This parasite has many strains that are infectious and non-contagious. They have the capacity to develop into extremely harmful metacyclic forms (Martín-Escolano *et al.*, 2022).

The flies can absorb more blood with each meal by storing the contaminated blood in the plant for a short while, or it can be immediately transmitted to the midgut (Telleria et al., 2014). Trypanosomes pass through the midgut and proceed to the proliferative procyclic stage (Alfituri et al., 2020). The parasite has to move through the peritrophic matrix after becoming implanted in the midgut (Aksoy, 2019). This barrier keeps the surrounding midgut tissue and the blood meal apart. According to theory, parasites accomplish this by swimming through the endotrophic space and into the proventriculus, which is the site of the development of the peritrophic matrix. From there, they can enter the ectotrophic area (Schuster et al., 2021).

Epidemiology

Even though trypanosomiasis is commonly known as African trypanosomiasis, some trypanosomiases can infect people outside of Africa (Kasozi et al., 2022; Lobo et al., 2019). Trypanosomiasis is caused by *T. evansi*, which is found not only in Africa but also in Central and South America, the Middle East, and Asia (Chau et al., 2016). Trypanosomiasis has a wide range of hosts, with the primary host species changing depending on the geographical location. The camel is the most significant mammal in Africa, especially in areas of East Africa and beyond the northernmost limits of the fly belt, whereas the horse is the most impacted in Central and South America (Eyob and Matios, 2013). A greater range of hosts are involved in Asia, such as Bactrian camels and dromedaries, cattle, buffalo, horses, and pigs (Desquesnes et al., 2013). Contrast this with findings from South America and Africa, where there is scant data indicating that domestic livestock other than horses and camels are clinically impacted by or infected with T. evansi (Roy et al., 2010).

The animals primarily affected by this illness are horses, donkeys, mules, camels, dogs, and cats

(Eyob and Matios, 2013). More vulnerable than sheep and goats, which are likewise more vulnerable than cattle and pigs, are camels, horses, dogs, and Asian elephants (Misra et al., 2016). When used as experimental hosts, rats and mice are especially vulnerable to T. evansi infections (Da Silva et al., 2011). It's been proposed that reservoirs of infection in animals are not significant for T. evansi, in contrast to flyborne trypanosomiasis, though it's likely that South American coati and capybara are exceptions to this rule (Herrera et al., 2002). T. evansi has spread to regions of Africa north of the Sahara desert, the Soviet Union, China, Indonesia, Pakistan, India, the Philippines, Madagascar, Mauritius, and South and Central America due to its potential to be spread by bloodsucking insects other than Glossina (Gao et al., 2020). Infections continue to spread to Australia, North America, and South West Africa (Kasozi et al., 2022). High infection rates, which can reach 30 to 100%, are typically associated with the introduction of parasites into new locations (Ponte-Sucre, 2016). Insects carry trypanosomes, and their continued life is dependent on vector dynamics. Trypanosomiasis induced by T. evansi affects most camels and is mechanically and independently spread by flies (Selim et al., 2022). In most herds, the disease is endemic, and the parasite T. evansi is present anywhere animals are housed (Sawitri et al., 2019).

Pathogenesis

The earliest clinical sign of T. evansi infection in any host is the development of a chancre on a fly bite which is a swelling of the skin where the trypanosomes first proliferate (Ponte-Sucre, 2016). This first replication not only facilitates the establishment of infection but also marks the beginning of interactions between the host immune system and trypanosomes (Pereira et al., 2019). Trypanosoma enters the bloodstream after chancre development, causing fever (Aksoy et al., 2017). When the temperature drops, parasitemia may peak for four to six days before declining again (Misra et al., 2016). Trypanosomosis pathology is mostly

characterized by anemia, and the degree of anemia can typically be used as a gauge for the disease's severity (Stijlemans *et al.*, 2018). Large amounts of red blood cells (RBCs) are eliminated from the bloodstream by hematoma lymph nodes, the bone marrow, and the spleen's mononuclear phagocytic system (MPS) cells when an individual has parasitemia (Boada-Sucre *et al.*, 2016). The packed cell volume (PCV) drops to below 25% or even up to 10% when a significant amount of red blood cells are removed (Farikou *et al.*, 2023). As a result, the animal develops anemia, dullness, anorexia, lethargicness, eye discharge, and loss of body condition.

Anemia is the primary culprit in advanced stages, while there may be other factors as well. Nevertheless, the primary functional defect resulting from continuous anemic tissue anoxia, which lowers tissue pH and damages blood vessels, is anoxic conditions, regardless of the source of anemia (Pereira et al., 2019). The obvious symptoms include increased cardiac output brought on by elevated heart rate and stroke volume as well as shortened circulation times (Elliott et al., 2013). According to reports, the central nervous system is particularly vulnerable to anoxia, which can lead to the development of cerebral anoxia (Chuenkova and Pereiraperrin, 2010). Upon postmortem, the carcasses of animals afflicted with trypanosomiasis are typically pale, emaciated, and occasionally skinny (Njiru et al., 2004). At the incision, the lymph nodes are swollen and enlarged. Ascites, hydropericardium, hydrothorax are present (Williams et al., 2009). The spleen enlarges in acute cases and atrophy occurs in chronic situations; however, these changes are not thought to be pathognomonic for a particular disease (Deleeuw et al., 2019).

It is established that *T. evansi* belongs to the *T. brucei* group, which is known to favor the connective tissue of the host in order to break down collagen connections and eliminate the fibroblasts that create and preserve collagen (Wei *et al.*, 2021). Large volumes of cytoplasmic and mitochondrial enzymes are considered to be released into the serum as a result of the disruption of the host's connective tissue and

vascular damage brought on by the *T. brucei* group, further inflicting tissue damage (Pereira *et al.*, 2019). High-temperature fevers could be brought on by the harmful metabolites that deceased Trypanosoma generate (Ponte-Sucre, 2016). Moreover, a considerable reduction in albumin levels may also contribute to the edema observed in various body areas based on the chronic stage, causing modifications in blood osmotic pressure (Soeters *et al.*, 2019).

Immune Response

The illness trypanosomiasis compromises the host animal's immune system. The host's immune system is meant to defend it against infections, but occasionally it can overworked, react improperly, or produce an immunological-mediated illness that manifests clinically (Chaplin, 2010). Rarely are circulating trypanosomes observed in patients with chronic illnesses, and research has not demonstrated a connection between the degree of parasitemia and the degree of inflammation (Morrison et al., 2023). This might happen as a result of the immune system attacking self-antigens and parasites. The parasite may accomplish this by inflammatory responses, tissue damage, or molecular mimicry, which releases tissue proteins and promotes the production of self-antigens (Bonney et al., 2011).

Pure extracellular parasite T. evansi may live, proliferate, and undergo differentiation in the extracellular fluid of mammals, including the hostile vascular milieu (Phongphaew et al., 2023). As a result, these parasites are always up against different immune system defenses, from innate to adaptive. It has been demonstrated that trypanosomal DNA, among other chemicals, may be released from dead trypanosomes and cause macrophages to release pro-inflammatory chemicals like Tumor Necrosis Factor Alpha (TNF-α), IL-6, IL-1, IL-10, and Nitric Oxide (NO) (Stijlemans et al., 2022). Through the damaging effects of TNF-α and NO on both host cells and parasites, the host immune system's initial response helps regulate the first peak of parasitemia (Stijlemans et al., 2018).

As archetypal extracellular parasites, these pathogens evade antibody (Ab) recognition by varying their primary exposed membrane surface glycoproteins (also known as variable surface glycoproteins, or VSGs) sporadically (Stijlemans *et al.*, 2016). This subtle mechanism of antigenic variation allows the pathogens to elude humoral immunity. Only directly activated B cells have the IL-6 receptor, which is released by activated macrophages and increases IgM and IgG antibodies (Somoza *et al.*, 2022).

The predominant IgM response and minimal IgG production are the hallmarks of polyclonal B cell activation brought on by T. evansi infection (Baral, 2010). Stijlemans et al. (2016) postulated that because IgM is larger than IgG, it may be more difficult to penetrate tissues where Trypanosoma multiplies. This could result in persistent infection because of the presence of a tissue reservoir while halting the parasite's unchecked development. IgG levels cannot be found until after parasitemia, although IgM can be seen during parasitemia. Thus, it seems that the primary mechanism for eliminating infected VAT is an IgM response, even if during infection, both IgM and IgG responses to variable surface glycoprotein (VSG) take place (Magez et al., 2008). The parasite is opsonized by antibodies directed against particular surface epitopes of the exposed VSG layer, and immune complexes are effectively phagocytosed and eliminated by macrophages, mostly in the liver (Magez et al., 2020). Complement-deficient mice infected with evansi manage consecutive waves parasitemia as effectively as complementcompetent strains, suggesting a role for complement-mediated lysis in parasite clearance that cannot be verified (Sari et al., 2015).

There have been reports of elevated IgM during both acute and chronic *T. evansi* infections, yet this is not protective because the majority of antibodies are autoantibodies (Nguyen *et al.*, 2021). Both the spleen and lymph nodes are extremely reactive during the acute stage of the illness. This could account for the generalized hyperplasia of lymphoid tissue that characterizes *T. evansi* infections, while in the

later stages, the immune system experiences a loss of lymphoid cells (Dargantes *et al.*, 2005).

Diagnosis

Trypanosomiasis diagnosis is dependent on a number of factors, including a thorough clinical examination, suitable sample collection, sample size, suitable diagnostic test performance, and logical interpretation of test results. In situations when trypanosomiasis is highly prevalent, a number of tests with a low diagnostic sensitivity might be enough. Microscopic analysis of the lymph nodes that aspirate blood or cerebrospinal fluid (CSF) from infected animals can be used to make a parasitological diagnosis (Lumbala et al., 2018). In order to prevent trypanosomes in blood samples from immobilizing and lysing, samples should be checked as soon as feasible. Generally, compared to a venipuncture, a blood sample obtained at the tip of the ear yields more parasites (Setiawan et al., 2021). Collected blood samples should be stored in an ice bag away from sunlight because trypanosomes is quickly damaged by sunlight (Chappuis et al., 2005). To create a moist blood smear, a drop of blood (about 2 - 5 μL) is placed on a sanitized glass slide and covered with a cover slip to eliminate any air bubbles. Afterwards, under 400x magnification, the sample will be inspected using an aperture condenser, phase contrast, or interference contrast to ensure proper visualization (22×22 mm) (Morais et al., 2022).

The blood smear technique is the most widely used test for trypanosomiasis, despite having a very low detection capability of 10,000 parasites in 200 tiny fields (Bouteille and Buguet, 2012). T. brucei positives sprint across the microscopic field, but T. congolense parasites slowly (Silvester et al., 2017b). Microscopic inspection increases the detection of these parasites, enabling a conclusive diagnosis. Whenever there are trypanosomes in the blood, the surrounding erythrocytes' movement usually draws notice. Blood samples should be taken every other day to check for peak parasitemia when parasites are easily detectable due to changes in parasitemia (Costa et al., 2022). With the use of a hemolytic agent like sodium dodecyl

sulfate (SDS), red blood cell lysis can be performed prior to analysis, greatly increasing the sensitivity of this approach (Biéler *et al.*, 2012).

Immune system proteins and antibodies produced in response to infections can be found using serological techniques. The diagnostic test RoTat 1.2 looks for antibodies in serum that point to a Type A infection with *T. evansi* (Desquesnes et al., 2022). These tests consist of the Enzyme Linked Immunosorbent Test (ELISA/T. evansi), the Latex Agglutination Test (LATEX/T. evansi), and the Card Agglutination Test (CATT/T. evansi) (Tran et al., 2009). The antigen type variants (VAT) are identified by vector surface glycoproteins (VSGs), which are highly immunogenic and induce host antibody responses for opsonization, agglutination, and trypanolytic activity (Kim et al., 2023). The T. evansi-specific antibodies present in the host's blood can be found using the quick and straightforward agglutination test CATT/T. evansi (Reck et al., 2021).

Genes present in *Trypanosoma* are detected molecularly using Polymerase Chain Reaction (PCR). Numerous genes are utilized in the diagnosis of Trypanosoma, such as ESAG6/7 and TBR1/2 (Witola et al., 2005; Suprihati et al., 2022). The Trypanozoon subspecies, which includes T. brucei, T. equiperdum, and T. evansi, include this multicopy gene. TBR is involved in antigenic variation, and the transferrin receptor complex is encoded by ESAG (Young et al., 2008). TBR1/2 primers often exhibited greater sensitivity than ESAG6/7 primers (Pruvot et al., 2010). Since ribosomal RNA (rRNA) genes are highly conserved and enable the differentiation of closely related trypanosome species, they are also typically utilized. The Trypanosoma rRNA contains the internal transcribed spacer (ITS) region, which is bordered by highly conserved portions that can be used to construct primers (Dollet et al., 2012). Additionally, PCR primers can be created so that every species yields a distinct PCR amplicon length.

Clinical Symptoms

Clinical symptoms of trypanosomiasis due to *T. evansi* can differ greatly in appearance and intensity. Clincal symtoms could also be

infuluenced by the state of the diet and environmental stress. The signs of this condition might vary and include neurological issues, skin plaques, and vaginal enlargement (Claes *et al.*, 2005). The onset of clinical symptoms might take weeks or months, and they frequently wax and wane with relapses that are almost definitely brought on by stress (Mudji *et al.*, 2020). This could occur multiple times before the animal passes away or seems to recover. This disease is thought to have a case fatality rate of more than 50 % to almost 100 % if left untreated or without prompt appropriate treatment (Kennedy, 2004; Abera *et al.*, 2024).

Three stages characterize the disease's progression: genital lesions in stage 1, skin signs in stage 2, and nerve signals in stage 3 (MacLean et al., 2012). In male animals, the glans penis and foreskin area show the earliest indications of edema. Enlargements can occur in the scrotum, ventral abdomen, chest, and perineum (Guiton and Drevet, 2023). There may be vesicles or boils on the genitalia, and when they heal, they could leave permanent scars. The place where the male animal's penis is continuously tugged and delayed might become inflamed with orchitis (Sivajothi and Reddy, 2019). Animals are susceptible to paraphimosis (Kasozi et al., 2022). Mares has a mucopurulent discharge and vaginitis (Yasine et al., 2019). The vulva swells, and this swelling might spread to the mammary glands and the ventral portion of the stomach along the perineum (Suganuma et al., 2016). Signs of pain and vulvitis or vaginitis with polyuria may be observed. Pigmentation may develop in the udder, perineum, and genital area (Gizaw et al., 2017). More virulent strains may cause abortions.

Skin indications, sometimes referred to as the urticaria stage, are typified by the skin eruption of distinct, elevated, spherical, or oval-shaped patches known as "plaques" (Barrett and Croft, 2012). Edema patches, sometimes known as "Silver Dollar Plaques", can develop on the skin, particularly on the neck, shoulders, ribs, and thighs (Gizaw *et al.*, 2017). They can measure up to 5-8 cm in diameter and 1 cm thick. These symptoms are usually pathognomonic and linger for three to seven days. The last stage, known as

the paralysis stage, is typified by nervous system disruptions. These symptoms start off as restlessness and a propensity to switch one leg for the other, then progress to increasing weakness and coordination, and ultimately culminate in death and paralysis, particularly in the rear legs (Adebiyi *et al.*, 2021). More symptoms include emaciation, conjunctivitis, keratitis, intermittent fever, and progressive anemia manifested by pallor of the mucous membranes surrounding the eyes and mouth (Desquesnes *et al.*, 2013).

Transmission

Hematophagous biting flies, including Tabanus, Haematopota, Glossina, Chrysops, Lyperosia, Stomoxys, and Hippobusca flies, contribute to the spread of T. evansi in animals such as cattle, buffalo, antelopes, pigs, as well as rodents (Hairani et al., 2023). Efficiency of transmission is influenced by the level of parasitemia, the severity of the fly attack, and the time between two feedings in a row (Van Den Abbeele et al., 2010). A high density of insect vectors is connected with trypanosomiasis epidemics in certain locations, which peak during the rainy and post-rainy seasons (Franco et al., 2014). There are four possible modes of transmission: oral, iatrogenic, vertical, and horizontal. Carnivorous animals can also become infected after eating infected tissue when the oral mucosa is damaged (Giordani et al., 2016). There is also a chance that *Trypanosoma* can be sexually transmitted (Biteau et al., 2016). Investigations on the possibility of T. evansi transmission by leeches, particularly Asian buffalo leeches, are necessary (Su et al., 2022). In certain instances, trypanosomiasis has also been documented to spread vertically or transplacentally (Lindner and Priotto, 2010). In Latin America, the vampire bat (Desmodus rotundus) serves as a host, reservoir, and biological vector for parasites, allowing T. evansi to spread from bite to bite or vice versa (Austen and Barbosa, 2021). These bats can also infect cattle since they are persistent vectors that can infect their hosts for extended periods of time. A recent study evaluated the potential of a previously identified antitrypanosomal nucleoside called 3'-deoxytubercidin, as a therapeutic candidate in combating T. evansi using mouse models (Ilbeigi et al., 2025). In this study, mice that were previously infected with T. evansi were subsequently treated by administering 3'-deoxytubercidin intraperitoneally once daily for five consecutive days at a dosage of 6.25 mg/kg. This in vivo treatment resulted in a successful cure of all T. evansi-infected mice without any form of toxicity (Ilbeigi et al., 2025). This intriguing successful treatment result which was confirmed by both microscopic examination and quantitative PCR techniques, further highlighting its potential in improving trypanosomiasis disease management in affected regions.

Risk Factor

Important risk factors for trypanosomiasis young include conditions, age, immunocompromised individuals. housing facilities, farming, hunting, herding cattle, and other activities such as tourism and migration to regions endemic with hematophagous biting flies. Some animals may recover from a T. evansi infection on their own, whereas other animals may experience the disease at different phases. The duration of time between the onset of clinical symptoms and the initial infection trypanosomiasis varies greatly, but often falls between 5 and 60 days, but longer times (such as 3 months) have been reported (Biteau et al., 2016). Typically, the time span between infection and the emergence of parasites in the bloodstream is under 14 days. The initial dosage of infection (equal to the number of bites by infectious insects) and stress are risk factors that affect the incubation time (Giordani et al., 2016). In more vulnerable animals, stress arises during the end of pregnancy and the early stages of nursing (Malafaia and Talvani, 2011; Firdausy et al., 2025). Stress-producing infectious infections, such as helminthosis, can exacerbate the disease's severity (Cortes-Serra et al., 2022). Trypanosoma tolerance can also be reduced due to low nutritional levels or when the animal must move to find water and pasture in the dry season (Pathak, 2009).

Animals of all ages are susceptible to trypanosomiasis, although adult animals are more likely to contract the disease immediately after weaning (Saldanha et al., 2024). The rainy season typically sees an increase in fly vector populations (Tabanids, Hippoboscids, and Stomoxys), as the wet climate is conducive to reproduction and the spread of new illnesses (Hairani et al., 2023). These flies also like to congregate around rivers and wetlands, where herders typically bring their cattle during the dry season (Okello et al., 2023). The challenge, or the quantity of vector fly bites an animal sustains in a specific period of time determines the extent of the Trypanosoma infection risk. In contrast to cyclically transmitted trypanosomes, T. evansi has evolved to a fully mechanical and non-cyclical form of transmission via blood-sucking insects other than tsetse, and it infects a greater variety of animal hosts (Choi et al., 2024).

Economic Impact

The economic losses due to trypanosomiasis are quite high, and treatment is cost effective. According to recent estimates based bioeconomic infectious disease models, a Philippine community with 80 buffalo, 40 cattle, 200 pigs, 150 goats/sheep, and 15 horses that are moderately to severely impacted trypanosomosis may lose up to US\$158,000 annually. However, it has been proven that the same village can earn the same amount of money if treatment is used (Dobson et al., 2009). Trypanosomiasis is very endemic in Mindanao, Philippines, and a 4-year field survey yielded a vast amount of data that were used to create the model. Comparatively, prior estimates of the country's annual losses from trypanosomiasis in the Philippines were barely US\$0.1 million (Manuel, 1998). In contrast to the present data, which is based on losses from poor reproduction, diagnosis, treatment expenses, and replacement costs, previous estimates were based solely on limited mortality data that was provided to the government. However, because a number of factors were overlooked, current estimates of the financial losses caused by trypanosomiasis may still be too low: losses as a result of decreased milk production, weight loss, carcass quality, and selling prices. Animals with *T. evansi* infections sell for extremely cheap prices (30–50% less) in Mindanao (Desquesnes *et al.*, 2013). The significant financial losses resulting from *T. evansi* infections in endemic regions significantly affect impoverished livestock producers and their families, who rely on these animals for both agricultural pursuits and revenue (Benaissa *et al.*, 2020). Low-income marginal farmers face an additional financial strain due to the requirement to import replacement stock from other sources.

Trypanosomiasis-related economic losses can be prevented by putting into practice efficient control strategies and approaches. The most costeffective treatment option in the trypanosomosis endemic Pantanal region of Brazil, where the livestock industry is significant and horses are utilized for grazing livestock, has been found to monitoring and treating horses with diminazene aceturate for a year. This approach results in a total net loss of more than US \$2 million annually (Silva et al.. Nevertheless, this approach makes the implausible assumption that the medication is 100% effective against T. evansi, particularly in regions where drug resistance is present. Similar to the Philippines, the best course of action for combating trypanosomiasis is to treat all affected animals specifically with verv effective medications (such as melarsomine dihydrochloride) all year long (Giordani et al., 2016). It is also financially possible to treat all cattle species in a community in bulk, twice a year; however, this may lead to drug resistance in T. evansi isolates.

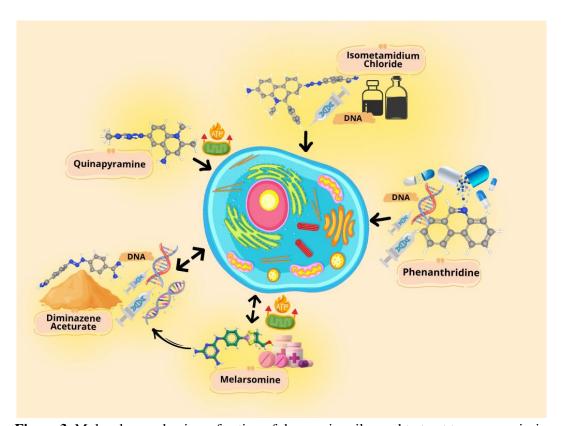


Figure 3. Molecular mechanism of action of drugs primarily used to treat trypanosomiasis.

Treatment

Animal infections with *Trypanosoma* can be lethal if left untreated (Carvalho *et al.*, 2018). The primary means of controlling infection is chemotherapy; however, the effectiveness of the available treatments is limited, they are hazardous, and resistant *Trypanosoma* strains are

starting to arise (Lewis *et al.*, 2015). *T. evansi* requires different therapy because it is resistant to the majority of prescribed medications (Mdachi *et al.*, 2023). Drugs used to treat trypanosomiasis have significant side effects, and the parasites develop resistance to the medications (Venturelli *et al.*, 2022).

Five FDA-approved medications such as quinapyramine, isometamidium chloride, phenanthridine, diminazene aceturate, and melarsomine are primarily used to treat trypanosomiasis. Taken together, their mechanism is described in **Figure** 3. Quinapyramine interferes with the metabolism of T. evansi by inhibiting DNA synthesis and suppressing the activity of mitochondrial ribosomes to produce energy and replication; as a result, the cell dies. Isometamidium chloride acts in the interference of kinetoplast DNA replication transcription beside interfering reproduction, leading to cell death. Phenanthridine binds with the interference of DNA and RNA synthesis with further damage to both the nuclear and mitochondrial genetic material on the kinetoplast DNA, leading to the death of the parasite. Diminazene aceturate acts by interfering with DNA and RNA replication in the kinetoplast, thereby affecting genetic replication and transcription. However, toxic side effects regarding animals may be produced. Melarsomine binds to sulfhydryl groups of important energy-producing enzymes, which will result in their inactivation. Additionally, the depletion of ATP will bring about the death of the parasite, especially the drug-resistant isolates (Kasozi et al., 2022). Drug resistance concerns have led to the introduction of melarsomine, also known as cymelarsen, as a treatment for trypanosomiasis (Baker et al., 2013). Previously, animals infected with T. evansi have been treated with suramin and quinapyramine (Dargantes et 2021). Most medications, including homidium bromide, are too toxic for animals to utilize as a cure, as is the case with diminazene aceturate (Kasozi et al., 2022). Pets with T. evansi infections are frequently treated with diminazene aceturate, yet this might be harmful to the host (Da Silva et al., 2009).

Vaccination

An efficient vaccination program is an additional technique for managing infectious diseases in addition to treatment. Due to antigenic changes of the trypanosome surface layer, all traditional anti-parasitic vaccination attempts for

trypanosomiasis that have been made to date using dominant surface proteins have failed (La Greca and Magez, 2011). Consequently, several immunization approaches are required. different strategy to vaccination has involved the use of various parasite molecules. Variable glycoproteins surface (VSG) containing glycosylphosphatid linositol (GPI) have been identified as one of the primary parasite components generating the inflammatory response linked to infection (Moreno et al., 2019). This data was utilized in one study to assess GPIbased immunization as a substitute approach with possible anti-disease effects (Munir et al., 2023). GPI delivered before to infection has been demonstrated to improve control of parasitemia and extend the survival of infected mice by using liposomes as a slow delivery mechanism (Bossard et al., 2021). This experiment effectively decreased anemia, acidosis, weight loss, and liver damage in T. evansi infection models; this decrease in pathology was linked to decreased TNF production, elevated IL-10 levels, and the expression of alternatively activated macrophages. T cell-dependent B cell activation is caused by CD4/Th cells activating and secreting IL-4, IL-10, and IL-13 in response to elevated IL-10 levels (Tao et al., 2011).

Control

The first and most important step in stopping the spread of trypanosomiasis is to stop the transmission of flies via physical and chemical methods. Physical methods include clearing undergrowth in ditches and water bodies, managing manure, avoiding animal grazing in direct sunlight, managing dung in dense piles (which helps kill Stomoxys and Liperosia larvae), and routinely removing manure and damp bedding (von Wissmann et al., 2011). In the meanwhile, chemical fly management methods such as dipping or spraying insecticides on animals during fly season and putting kerosene on waterbodies to stop Tabanus flies from sliding into them are used (Okello et al., 2021). Largescale insecticide spraying program to kill Tabanus flies and other biting flies (Mihok, 2002).

Furthermore, international animal trade regulation is required to prevent the introduction of diseased animals into areas that are not affected (Desquesnes *et al.*, 2013). International trade between diseased and uninfected nations should be subject to quarantine. This entails a quarantine of four weeks at the farms that import and export (Austen and Barbosa, 2021). An animal must come from an uninfected farm in an unsuspected location, test negative for trypanosomiasis twice at intervals of three to four weeks during each quarantine, and demonstrate these results in order to be qualified for trade (Thuita *et al.*, 2008).

A farm is considered a non-suspect area if there have been no reports of trypanosomiasis in the previous three years within a 30 km radius of the farm (Desquesnes et al., 2013). Only animals with negative trypanosomiasis test results and those originating from non-infected farms situated in non-suspicious areas are permitted access into non-infected farms (Desquesnes et al., 2022). If two tests for trypanosomiasis are negative for every species of animal on a farm within a three-month period, the farm is considered uninfected (Latif et al., 2019). In order to preserve the farm's non-infected status, trypanosomiasis negative tests every ten to twelve months are required for every species of animal (Ilboudo et al., 2023).

CONCLUSION

Trypanosomiasis, caused by Trypanosoma evansi, is a protozoan illness that affects arrays of domestic and wild animals worldwide with significant public health challenges. The spread of trypanosomiasis is a global health concern that might be lethal if proper diagnosis and treatment are delayed. Animal infections with T. evansi can be lethal. Case fatality rate of almost 100 % has been reported for trypanosomiasis, especially if left untreated or without prompt appropriate treatment. Clinical symptoms of trypanosomosis due to Trypanosoma evansi might vary and could include neurological issues, skin plaques, and vaginal enlargement. Importantly, hematophagous biting flies have been recognized to contribute in its spread. More challenging is its

economic impact as it could drastically reduce the productivity of livestock which are mostly used as food sources. Identified risk factors for trypanosomiasis include stress conditions, young age, immunocompromised individuals, housing facilities, farming, hunting, herding cattle, and other activities such as tourism and migration to regions endemic with hematophagous biting flies. The most important step in curtailing the spread of trypanosomiasis is to control the transmission of flies via physical and chemical methods. The integration of advanced molecular techniques such as whole-genome sequencing, multiplex PCR, and immunochromatographic tests in the diagnosis of T. evansi, especially in routine livestock health management systems and the prioritization of research directed at sustainable vector (hematophagous biting flies) control strategies will be critical in curtailing the burden of T. evansi and safeguarding global livestock productivity. Additionally, collaborative efforts between government agencies and veterinarians, cross-border collaborations, and strict quarantine protocols will be impactful in curtailing the risk of trypanosomiasis transmission and curtail its impact on livestock productivity, including farmers' livelihoods.

ACKNOWLEDGEMENTS

The authors would like to express their sincere gratitude to the Faculty of Veterinary Medicine, Universitas Airlangga, for the generous provision of research facilities and resources. The open access to literature and academic support made available by the faculty played a crucial role in facilitating the completion of this study. The authors deeply appreciate the institutional assistance that enabled the smooth conduct of data collection, analysis, and interpretation, as well as the overall advancement of this research work.

AUTHORS' CONTRIBUTIONS

ML served as the principal investigator and conceptor of the study. SHW, ARK, and MAA contributed to study design, methodology

development, and data acquisition. HAH, WPL, and MKJK were responsible for fieldwork, sample collection, and primary data processing. SW, SRA, and BWKW supported data validation, literature review, and interpretation of findings. IF, SMY, and IBM performed statistical analysis, data visualization, and contributed to manuscript drafting. AP, SA, and KAF assisted in critical review, editing, and refinement of the manuscript. RZA and DAAK contributed to formatting, reference management, and final proofreading. All authors reviewed, revised, and approved the final version of the manuscript.

COMPETING INTERESTS

The authors declare that they have no competing interests.

REFERENCES

- Abdel-Rady, A. (2008). Epidemiological studies (parasitological, serological and molecular techniques) of *Trypanosoma evansi* infection in camels (*Camelus dromedarius*) in Egypt. *Veterinary World*, 1(11), 325–328.
- Abera, A., Mamecha, T., Abose, E., Bokicho, B., Ashole, A., Bishaw, T., Mariyo, A., Bogale, B., Terefe, H., Tadesse, H., Belachew, M., Difabachew, H., Eukubay, A., Kinde, S., Ali, A., Regasa, F., Seife, F., Kebede, Z., Wossen, M., Tollera, G., Hailu, M., Manaye, N., Van Reet, N., Priotto, G., van Griensven, J., Pareyn, M., & Tasew, G. (2024). Reemergence of Human African Trypanosomiasis Caused by *Trypanosoma brucei rhodesiense*, Ethiopia. *Emerging Infectious Disease*, 30(1), 125-128.
- Abro, Z., Kassie, M., Muriithi, B., Okal, M., Masiga, D., Wanda, G., Gisèle, O., Samuel, A., Nguertoum, E., Nina, R.A., Mansinsa, P., Adam, Y., Camara, M., Olet, P., Boucader, D., Jamal, S., Garba, A.R.I., Ajakaiye, J.J., Kinani, J.F., Hassan, M.A., Nonga, H., Daffa, J., Gidudu, A., & Chilongo, K. (2021). The potential economic benefits of controlling trypanosomiasis using waterbuck

- repellent blend in sub-Saharan Africa. *PLOS ONE*, 16(7), e0254558.
- Adebiyi, O. E., Omobowale, T. O., & Abatan, M. O. (2021). Neurocognitive domains and neuropathological changes in experimental infection with *Trypanosoma brucei brucei* in Wistar rats. *Heliyon*, 7(11), e08260.
- Aksoy, S. (2019). Tsetse peritrophic matrix influences for trypanosome transmission. *Journal of Insect Physiology*, 118(1), 103919.
- Aksoy, S., Buscher, P., Lehane, M., Solano, P., & Van Den Abbeele, J. (2017). Human African trypanosomiasis control: Achievements and challenges. *PLOS Neglected Tropical Diseases*, 11(4), e0005454.
- Alfituri, O. A., Quintana, J. F., MacLeod, A., Garside, P., Benson, R A., Brewer, J. M., Mabbott, N. A., Morrison, L. J., & Capewell, P. (2020). To the Skin and Beyond: The Immune Response to African Trypanosomes as They Enter and Exit the Vertebrate Host. *Frontiers in Immunology*, 11(1), 1250.
- Aregawi, W. G., Agga, G. E., Abdi, R. D., & Büscher, P. (2019). Systematic review and meta-analysis on the global distribution, host range, and prevalence of *Trypanosoma evansi*. *Parasites & Vectors*, 12(1), 67.
- Aresta-Branco, F., Sanches-Vaz, M., Bento, F., Rodrigues, J. A., & Figueiredo, L. M. (2019). African trypanosomes expressing multiple VSGs are rapidly eliminated by the host immune system. *Proceedings of the National Academy of Sciences USA*, 116(41), 20725–20735.
- Austen, J. M., & Barbosa, A. D. (2021). Diversity and Epidemiology of Bat Trypanosomes: A One Health Perspective. *Pathogens*, 10(9), 1148.
- Baker, N., de Koning, H. P., Mäser, P., & Horn, D. (2013). Drug resistance in African trypanosomiasis: the melarsoprol and pentamidine story. *Trends in Parasitology*, 29(3), 110–118.
- Baral, T. N. (2010). Immunobiology of African trypanosomes: need of alternative interventions. *Journal of Biomedicine and Biotechnology*, 2010(1), 389153.

- Barrett, M. P., & Croft, S. L. (2012). Management of trypanosomiasis and leishmaniasis. *British Medical Bulletin*, 104(1), 175–196.
- Behour, T. S., Aboelhadid, S. M., Mousa, W. M., Amin, A. S., & El-Ashram, S. A. (2019). Molecular diagnosis of acute and chronic infection of *Trypanosoma evansi* in experimental male and female mice. *Onderstepoort Journal of Veterinary Research*, 86(1), e1-e10.
- Benaissa, M. H., Mimoune, N., Bentria, Y., Kernif, T., Boukhelkhal, A., Youngs, C. R., Kaidi, R., Faye, B., & Halis, Y. (2020). Seroprevalence and risk factors for *Trypanosoma evansi*, the causative agent of surra, in the dromedary camel (*Camelus dromedarius*) population in Southeastern Algeria. *Onderstepoort Journal of Veterinary Research*, 87(1), e1-e9.
- Biéler, S., Matovu, E., Mitashi, P., Ssewannyana, E., Bi Shamamba, S. K., Bessell, P. R., & Ndung'u, J. M. (2012). Improved detection of *Trypanosoma brucei* by lysis of red blood cells, concentration and LED fluorescence microscopy. *Acta Tropica*, 121(2), 135–140.
- Biteau, N., Asencio, C., Izotte, J., Rousseau, B., Fèvre, M., Pillay, D., & Baltz, T. (2016). *Trypanosoma brucei* gambiense Infections in Mice Lead to Tropism to the Reproductive Organs, and Horizontal and Vertical Transmission. *PLOS Neglected Tropical Diseases*, 10(1), e0004350.
- Boada-Sucre, A. A., Spadafora, M. S. R., Tavares-Marques, L. M., Finol, H. J., & Reyna-Bello, A. (2016). *Trypanosoma vivax* Adhesion to Red Blood Cells in Experimentally Infected Sheep. *Pathology Research International*, 2016(1), 4503214.
- Bonney, K. M., Taylor, J. M., Daniels, M. D., Epting, C. L., & Engman, D. M. (2011). Heat-killed *Trypanosoma cruzi* induces acute cardiac damage and polyantigenic autoimmunity. *PLOS ONE*, 6(1), e14571.
- Bossard, G., Rodrigues, V., Tour, E., & Geiger, A. (2021). Mice immunization with *Trypanosoma brucei* gambiense translationally controlled tumor protein modulates immunoglobulin and cytokine

- production, as well as parasitaemia and mice survival after challenge with the parasite. *Infection, Genetics and Evolution*, 87(1), 104636.
- Boushaki, D., Adel, A., Dia, M. L., Büscher, P., Madani, H., Brihoum, B. A., Sadaoui, H., Bouayed, N., & Issad, N. K. (2019). Epidemiological investigations on *Trypanosoma evansi* infection in dromedary camels in the South of Algeria. *Heliyon*, 5(7), e02086.
- Bouteille, B., & Buguet, A. (2012). The detection and treatment of human African trypanosomiasis. *Research and Reports in Tropical Medicine*, 3(1), 35–45.
- Carvalho, T., Trindade, S., Pimenta, S., Santos, A. B., Rijo-Ferreira, F., & Figueiredo, L. M. (2018). *Trypanosoma brucei* triggers a marked immune response in male reproductive organs. *PLOS Neglected Tropical Diseases*, 12(8), e0006690.
- Chaplin, D. D. (2010). Overview of the immune response. *Journal of Allergy and Clinical Immunology*, 125(2 Suppl 2), S3–23.
- Chappuis, F., Loutan, L., Simarro, P., Lejon, V., & Büscher, P. (2005). Options for field diagnosis of human african trypanosomiasis. *Clinical Microbiology Reviews*, 18(1), 133–146.
- Chau, N. V. V., Chau, L. B., Desquesnes, M., Herder, S., Lan, N. P. H., Campbell, J. I., Cuong, N. V., Yimming, B., Chalermwong, P., Jittapalapong, S., Franco, J. R., Tue, N. T., Rabaa, M. A., Carrique-Mas, J., Thanh, T. P. T., Thieu, N. T. V., Berto, A., Hoa, N. T., Hoang, N. V. M., Tu, N. C., Chuyen, N. K., Wills, B., Hien, T. T., Thwaites, G. E., Yacoub, S., & Baker, S. (2016). A Clinical and Epidemiological Investigation of the First Reported Human Infection With the Zoonotic Parasite *Trypanosoma evansi* in Southeast Asia. *Clinical Infectious Diseases*, 62(8), 1002–1008.
- Choi, B., Vu, H. T., Vu, H. T., Radwanska, M., & Magez, S. (2024). Advances in the Immunology of the Host–Parasite Interactions in African Trypanosomosis,

- including Single-Cell Transcriptomics. *Pathogens*, 13(3), 188.
- Chuenkova, M. V., & Pereiraperrin, M. (2010).

 Trypanosoma cruzi-Derived Neurotrophic Factor: Role in Neural Repair and Neuroprotection.

 Journal of Neuroparasitology, 1(1), 55–60.
- Claes, F., Büscher, P., Touratier, L., & Goddeeris, B. M. (2005). *Trypanosoma equiperdum*: master of disguise or historical mistake? *Trends in Parasitology*, 21(7), 316–321.
- Cortes-Serra, N., Gualdron-Lopez, M., Pinazo, M. J., Torrecilhas, A. C., & Fernandez-Becerra, C. (2022). Extracellular Vesicles in *Trypanosoma cruzi* Infection: Immunomodulatory Effects and Future Perspectives as Potential Control Tools against Chagas Disease. *Journal of Immunology Research*, 2022(1), 5230603.
- Costa, T. F. R., Goundry, A., Morrot, A., Grab, D. J., Mottram, J. C., & Lima, A. P. C. A. (2022). *Trypanosoma brucei* rhodesiense Inhibitor of Cysteine Peptidase (ICP) Is Required for Virulence in Mice and to Attenuate the Inflammatory Response. *International Journal of Molecular Sciences*, 24(1), 656.
- Da Silva, A. S., Fanfa, V. R., Otto, M. A., Gressler, L. T., Tavares, K. C., Lazzarotto, C. R., Tonin, A. A., Miletti, L. C., Duarte, M. M., & Monteiro, S. G. (2011). Susceptibility of mice to *Trypanosoma evansi* treated with human plasma containing different concentrations of apolipoprotein L-1. *Korean Journal of Parasitology*, 49(4), 427–430.
- Da Silva, A. S., Zanette, R. A., Wolkmer, P., Costa, M. M., Garcia, H. A., Lopes, S. T., Santurio, J. M., Teixeira, M. M., & Monteiro, S. G. (2009). Diminazene aceturate in the control of *Trypanosoma evansi* infection in cats. *Veterinary Parasitology*, 165(1–2), 47–50.
- Dargantes, A. P., Campbell, R. S., Copeman, D. B., & Reid, S. A. (2005). Experimental *Trypanosoma evansi* infection in the goat. II. Pathology. Journal of Comparative Pathology, 133(4), 267–276.

- Dargantes, A. P., Wardhana, A. H., Abella, J. A. C., Sequito, M. R., Reid, S. A., Copeman, D. B., & Dargantes, K. A. T. (2021). Pathogenicity of Philippine and Indonesian *Trypanosoma evansi* Isolates in Mice and Their Responses to Trypanocides. *Jurnal Ilmu Ternak Veteriner*, 26(1), 22–30.
- Dario, M. A., Pavan, M. G., Rodrigues, M. S.,
 Lisboa, C. V., Kluyber, D., Desbiez, A. L. J.,
 Herrera, H. M., Roque, A. L. R., Lima, L.,
 Teixeira, M. M. G., & Jansen, A. M. (2021).
 Trypanosoma rangeli Genetic, Mammalian
 Hosts, and Geographical Diversity from Five
 Brazilian Biomes. Pathogens, 10(6), 736.
- Deleeuw, V., Pham, H. T. T., De Poorter, I., Janssens, I., De Trez, C., Radwanska, M., & Magez, S. (2019). *Trypanosoma brucei brucei* causes a rapid and persistent influx of neutrophils in the spleen of infected mice. *Parasite Immunology*, 41(10), e12664.
- Desquesnes, M., Holzmuller, P., Lai, D. H., Dargantes, A., Lun, Z. R., & Jittaplapong, S. (2013). *Trypanosoma evansi* and surra: a review and perspectives on origin, history, distribution, taxonomy, morphology, hosts, and pathogenic effects. *BioMed Research International*, 2013(1), 194176.
- Desquesnes, M., Sazmand, A., Gonzatti, M., Boulangé, A., Bossard, G., Thévenon, S., Gimonneau, G., Truc, P., Herder, S., Ravel, S., Sereno, D., Waleckx, E., Jamonneau, V., Jacquiet, P., Jittapalapong, S., Berthier, D., Solano, P., & Hébert, L. (2022). Diagnosis of animal trypanosomoses: proper use of current tools and future prospects. *Parasit & Vectors*, 15(1), 235.
- Dobson, R. J., Dargantes, A. P., Mercado, R. T., & Reid, S. A. (2009). Models for *Trypanosoma evansi* (surra), its control and economic impact on small-hold livestock owners in the Philippines. *International Journal for Parasitology*, 39(10), 1115–1123.
- Dollet, M., Sturm, N. R., & Campbell, D. A. (2012). The internal transcribed spacer of ribosomal RNA genes in plant trypanosomes (*Phytomonas* spp.) resolves 10 groups.

- *Infection, Genetics and Evolution*, 12(2), 299–308.
- Elliott, E. B., McCarroll, D., Hasumi, H., Welsh, C. E., Panissidi, A. A., Jones, N. G., Rossor, C. L., Tait, A., Smith, G. L., Mottram, J. C., Morrison, L. J., & Loughrey, C. M. (2013). *Trypanosoma brucei* cathepsin-L increases arrhythmogenic sarcoplasmic reticulummediated calcium release in rat cardiomyocytes. *Cardiovascular Research*, 100(2), 325–335.
- Eyob, E., & Matios, L. (2013). Review on camel trypanosomosis (surra) due to *Trypanosoma evansi*: Epidemiology and host response. *Journal of Veterinary Medicine and Animal Health*, 5(12), 334–343.
- Farikou, O., Simo, G., Njiokou, F., Ngassé, G. I.
 K., Fru, M. A., & Geiger, A. (2023).
 Trypanosome Infections and Anemia in Cattle Returning from Transhumance in Tsetse-Infested Areas of Cameroon.
 Microorganisms, 11(3), 712.
- Fetene, E., Leta, S., Regassa, F., & Büscher, P. (2021). Global distribution, host range and prevalence of *Trypanosoma vivax*: a systematic review and meta-analysis. *Parasit & Vectors*, 14(1), 80.
- Firdausy, L. W., Fikri, F., Wicaksono, A. P., Çalışkan, H., & Purnama, M. T. E. (2025). Prevalence of trypanosomiasis in domesticated animals in Indonesia: A systematic review and meta-analysis. *Veterinary World*, 18(5), 1333–1344.
- Franco, J. R., Simarro, P. P., Diarra, A., & Jannin, J. G. (2014). Epidemiology of human African trypanosomiasis. *Clinical Epidemiology*, 6(1), 257–275.
- Gao, J. M., Qian, Z. Y., Hide, G., Lai, D. H., Lun, Z. R., & Wu, Z. D. (2020). Human African trypanosomiasis: the current situation in endemic regions and the risks for non-endemic regions from imported cases. *Parasitology*, 147(9), 922–931.
- Geiger, A., Malele, I., Abd-Alla, A. M., & Njiokou, F. (2018). Blood feeding tsetse flies as hosts and vectors of mammals-preadapted African Trypanosoma: current and

- expected research directions. *BMC Microbiology*, 18(Suppl 1), 162.
- Getahun, M. N., Ngiela, J., Makwatta, J. O., Ahuya, P., Simon, T. K., Kamau, S. K., Torto, B., & Masiga, D. (2022). Metabolites From Trypanosome-Infected Cattle as Sensitive Biomarkers for Animal Trypanosomosis. *Frontiers in Microbiology*, 13(1), 922760.
- Giordani, F., Morrison, L. J., Rowan, T. G., De Koning, H. P., & Barrett, M. P. (2016). The animal trypanosomiases and their chemotherapy: a review. *Parasitology*, 143(14), 1862–1889.
- Gizaw, Y., Megersa, M., & Fayera, T. (2017). Dourine: a neglected disease of equids. *Tropical Animal Health and Production*, 49(5), 887–897.
- Guiton, R., & Drevet, J. R. (2023). Viruses, bacteria and parasites: infection of the male genital tract and fertility. Basic and Clinical Andrology, 33(1), 19.
- Hairani, B., Hadi, U. K., & Supriyono. (2023). Species diversity and daily infestation patterns of Haematophagus flies in cattle farms at Tanah Bumbu District, South Kalimantan Province, Indonesia. *Biodiversitas*, 24(5), 2995–3003.
- Herrera, H. M., Alessi, A. C., Marques, L. C., Santana, A. E., Aquino, L. P., Menezes, R. F., Moraes, M. A., & Machado, R. Z. (2002). Experimental *Trypanosoma evansi* infection in South American coati (*Nasua nasua*): hematological, biochemical and histopathological changes. *Acta Tropica*, 81(3), 203–210.
- Hoare, C. A. (1964). Morphological and taxonomic studies on mammalian trypanosomes. X. Revision of the systematics. *The Journal of Protozoology*, 11(1), 200–207.
- Ilbeigi, K., Mabille, D., Roy, R., Bundschuh, M., Van de Velde, E., Hulpia, F., Van Calenbergh, S., & Caljon, G. (2025). 3'-deoxytubercidin: A potent therapeutic candidate for the treatment of Surra and Dourine. *Int J Parasitol Drugs Drug Resist*, 27, 100580.

- Ilboudo, K., Boulangè, A., Hounyèmè, R. E., Gimonneau, G., Kaborè, J., Belem, A. G. M., Desquesnes, M., Lejon, V., Koffi, M., Jamonneau, V., & Thèvenon, S. (2023). Performance of diagnostic tests for Trypanosoma brucei brucei in **PLOS** experimentally infected pigs. Neglected **Tropical** Diseases, 17(11), e0011730.
- Kamidi, C. M., Saarman, N. P., Dion, K., Mireji,
 P. O., Ouma, C., Murilla, G., Aksoy, S.,
 Schnaufer, A., & Caccone, A. (2017).
 Multiple evolutionary origins of
 Trypanosoma evansi in Kenya. PLOS
 Neglected Tropical Diseases, 11(9),
 e0005895.
- Kasozi, K. I., MacLeod, E. T., Ntulume, I., & Welburn, S. C. (2022). An Update on African Trypanocide Pharmaceutics and Resistance. Frontiers in Veterinary Science, 9(1), 828111.
- Keatley, S., Botero, A., Fosu-Nyarko, J., Pallant, L., Northover, A., & Thompson, R. C. A. (2020). Species-level identification of trypanosomes infecting Australian wildlife by High-Resolution Melting Real Time Quantitative Polymerase Chain Reaction (HRM-qPCR). International Journal for Parasitology: Parasites and Wildlife, 13(1), 261–268.
- Kengradomkij, C., Jhaiaun, P., Chimnoi, W., Piliean, N., Inpankaew, T., & Kamyingkird, A. K. (2025). Prevalence of *Trypanosoma evansi* infection in Thai and imported beef cattle on the Thai-Myanmar border using parasitological and molecular methods. *Veterinary World*, 18(2), 500-507.
- Kennedy, P. G. (2004). Human African trypanosomiasis of the CNS: current issues and challenges. *Journal of Clinical Investigation*, 113(4), 496–504.
- Kim, J., Álvarez-Rodríguez, A., Li, Z., Radwanska, M., & Magez, S. (2023). Recent Progress in the Detection of Surra, a Neglected Disease Caused by *Trypanosoma evansi* with a One Health Impact in Large Parts of the Tropic and Sub-Tropic World. *Microorganisms*, 12(1), 44.

- La Greca, F., & Magez, S. (2011). Vaccination against trypanosomiasis: can it be done or is the trypanosome truly the ultimate immune destroyer and escape artist? *Human Vaccines*, 7(11), 1225–1233.
- Langousis, G., & Hill, K. L. (2014). Motility and more: the flagellum of *Trypanosoma brucei*. *Nature Reviews Microbiology*, 12(7), 505–518.
- Latif, A. A., Ntantiso, L., & de Beer, C. (2019). African animal trypanosomosis (nagana) in northern KwaZulu-Natal, South Africa: Strategic treatment of cattle on a farm in endemic area. *Onderstepoort Journal of Veterinary Research*, 86(1), a1639.
- Lendzele, S. S., Abah, S., Nguetoum, C., Burinyuy, K. A., Koumba, A. A., & Mavoungou, J. F. (2022). Tabanid-transmitted animal trypanosomiasis in Cameroon: Evidence from a study in the tsetse free pastoral zone of Galim. *Parasite Epidemiology and Control*, 18(1), e00253.
- Lewis, M. D., Francisco, A. F., Taylor, M. C., & Kelly, J. M. (2015). A new experimental model for assessing drug efficacy against *Trypanosoma cruzi* infection based on highly sensitive in vivo imaging. *Journal of Biomolecular Screening*, 20(1), 36–43.
- Lindner, A. K. & Priotto, G. (2010). The unknown risk of vertical transmission in sleeping sickness--a literature review. *PLOS Neglected Tropical Diseases*, 4(12), e783.
- Lobo, M., Balouz, V., Melli, L., Carlevaro, G., Cortina, M. E., Cámara, M. L. M., Cánepa, G. E., Carmona, S. J., Altcheh, J., Campetella, O., Ciocchini, A. E., Agüero, F., Mucci, J., & Buscaglia, C. A. (2019). Molecular and antigenic characterization of *Trypanosoma cruzi* TolT proteins. *PLOS Neglected Tropical Diseases*, 13(3), e0007245.
- Lumbala, C., Biéler, S., Kayembe, S., Makabuza, J., Ongarello, S., & Ndung'u, J. M. (2018). Prospective evaluation of a rapid diagnostic test for *Trypanosoma brucei* gambiense infection developed using recombinant antigens. *PLOS Neglected Tropical Diseases*, 12(3), e0006386.

- MacLean, L., Reiber, H., Kennedy, P. G., & Sternberg, J. M. (2012). Stage progression and neurological symptoms in *Trypanosoma brucei* rhodesiense sleeping sickness: role of the CNS inflammatory response. *PLOS Neglected Tropical Diseases*, 6(10), e1857.
- Magez, S., Schwegmann, A., Atkinson, R., Claes, F., Drennan, M., De Baetselier, P., & Brombacher, F. (2008). The role of B-cells and IgM antibodies in parasitemia, anemia, and VSG switching in *Trypanosoma brucei*infected mice. *PLOS Pathogens*, 4(8), e1000122.
- Magez, S., Torres, J. E. P., Obishakin, E., & Radwanska, M. (2020). Infections With Extracellular **Trypanosomes** Require Efficient Control by Innate **Immune** Mechanisms and Can Result in Destruction of the Mammalian Humoral Immune System. Frontiers in Immunology, 11(1), 382.
- Magri, A., Galuppi, R., & Fioravanti, M. (2021). Autochthonous *Trypanosoma* spp. in European Mammals: A Brief Journey amongst the Neglected Trypanosomes. *Pathogens*, 10(3), 334.
- Malafaia, G., & Talvani, A. (2011). Nutritional Status Driving Infection by *Trypanosoma cruzi*: Lessons from Experimental Animals. *Journal of Tropical Medicine*, 2011(1), 981879.
- Manuel, M. F. (1998). Sporadic outbreaks of Surra in the Philippines. *Journal of Protozoology Research*, 8(3), 131–138.
- Martín-Escolano, J., Marín, C., Rosales, M. J., Tsaousis, A. D., Medina-Carmona, E., & Martín-Escolano, R. (2022). An Updated View of the *Trypanosoma cruzi* Life Cycle: Intervention Points for an Effective Treatment. *ACS Infectious Diseases*, 8(6), 1107–1115.
- Matthews, K.R. (2005). The developmental cell biology of *Trypanosoma brucei*. *Journal of Cell Science*, 118(Pt 2), 283–290.
- Mdachi, R. E., Ogolla, K. O., Auma, J. E., Wamwiri, F. N., Kurgat, R. K., Wanjala, K. B., Mugunieri, L. G., Alusi, P. M., Chemuliti, J. K., Mukiria, P. W., & Okoth, S.

- O. (2023). Variation of sensitivity of *Trypanosoma evansi* isolates from Isiolo and Marsabit counties of Kenya to locally available trypanocidal drugs. *PLOS ONE*, 18(2), e0281180.
- Mihok, S. (2002). The development of a multipurpose trap (the Nzi) for tsetse and other biting flies. *Bulletin of Entomological Research*, 92(5), 385–403.
- Misra, K. K., Roy, S., & Choudhury, A. (2016). Biology of Trypanosoma (Trypanozoon) evansi in experimental heterologous mammalian hosts. *Journal of Parasitic Diseases*, 40(3), 1047–1061.
- Mogk, S., Boßelmann, C. M., Mudogo, C. N., Stein, J., Wolburg, H., & Duszenko, M. (2017). African trypanosomes and brain infection - the unsolved question. *Biological* reviews of the Cambridge Philosophical Society, 92(3), 1675–1687.
- Morais, M. C. C., Silva, D., Milagre, M. M., de Oliveira, M. T., Pereira, T., Silva, J. S., Costa, L. D. F., Minoprio, P., Junior, R. M. C., Gazzinelli, R., de Lana, M., & Nakaya, H.I. (2022). Automatic detection of the parasite *Trypanosoma cruzi* in blood smears using a machine learning approach applied to mobile phone images. *PeerJ*, 10(1), e13470.
- Moreno, C. J. G., Torres, T., & Silva, M. S. (2019). Variable Surface Glycoprotein from *Trypanosoma brucei* Undergoes Cleavage by Matrix Metalloproteinases: An in silico Approach. *Pathogens*, 8(4), 178.
- Morrison, L. J., Steketee, P. C., Tettey, M. D., & Matthews, K. R. (2023). Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. *Virulence*, 14(1), 2150445.
- Mudji, J., Blum, A., Grize, L., Wampfler, R., Ruf,
 M. T., Cnops, L., Nickel, B., Burri, C., &
 Blum, J. (2020). Gambiense Human African
 Trypanosomiasis Sequelae after Treatment:
 A Follow-Up Study 12 Years after
 Treatment. Tropical Medicine and Infectious
 Disease, 5(1), 10.
- Munir, F., Sindhu, Z. U. D., Tayyeb, M., Abbas, R. Z., Shakoor, A., Khan, A. M. A., Asrar, R., Shrafat, H., Qamar, M. H., Ahmad, S.,

- Kauser M., & Aleem, M. T. (2023). Rationale to Develop mRNA-based Vaccines for *Trypanosoma brucei* (a review). *Continental Veterinary Journal*, 3(1), 26–35.
- Nguyen, H. T. T., Guevarra, R. B., Magez, S., & Radwanska, M. (2021). Single-cell transcriptome profiling and the use of AID deficient mice reveal that B cell activation combined with antibody class switch recombination and somatic hypermutation do not benefit the control of experimental trypanosomosis. *PLOS Pathogens*, 17(11), e1010026.
- Njiru, Z. K., Ndung'u, K., Matete, G., Ndungu, J. M., & Gibson, W. C. (2004). Detection of *Trypanosoma brucei* rhodesiense in animals from sleeping sickness foci in East Africa using the serum resistance associated (SRA) gene. *Acta Tropica*, 90(3), 249–254.
- Nuryady, M. M., Widayanti, R., Nurcahyo, R. W., Fadjrinatha, B., & Fahrurrozi, Z. S. A. (2019). Characterization and phylogenetic analysis of multidrug-resistant protein encoding genes in *Trypanosoma evansi* isolated from buffaloes in Ngawi district, Indonesia. *Veterinary World*, 12(10), 1573–1577.
- Okello, I., Nzalawahe, J., Mafie, E., & Eastwood, G. (2023). Seasonal variation in tsetse fly apparent density and *Trypanosoma* spp. infection rate and occurrence of drugresistant trypanosomes in Lambwe, Kenya. *Parasitology Research*, 123(1), 46.
- Okello, W. O., MacLeod, E. T., Muhanguzi, D., Waiswa, C., & Welburn, S. C. (2021). Controlling Tsetse Flies and Ticks Using Insecticide Treatment of Cattle in Tororo District Uganda: Cost Benefit Analysis. Frontiers in Veterinary Science, 8(1), 616865.
- Pathak, A. K. (2009). Effect of *Trypanosoma* spp. on Nutritional status and performance of livestock. *Veterinary World*, 2(11), 435–438.
- Pereira, S. S., Trindade, S., De Niz, M., & Figueiredo, L. M. (2019). Tissue tropism in parasitic diseases. *Open Biology*, 9(5), 190036.

- Phongphaew, W., Wongsali, C., Boonyakong, T., Samritwatchasai, T., Chimnoi, W., & Kamyingkird, K. (2023). Histopathology and virulence of an in vitro-adapted *Trypanosoma evansi* TEDC 953 strain (Thailand isolate) in mice. *Veterinary World*, 16(5), 1008–1017.
- Ponte-Sucre, A. (2016). An Overview of *Trypanosoma brucei* Infections: An Intense Host-Parasite Interaction. *Frontiers in Microbiology*, 7(1), 2126.
- Pruvot, M., Kamyingkird, K., Desquesnes, M., Sarataphan, N., & Jittapalapong, S. (2010). A comparison of six primer sets for detection of *Trypanosoma evansi* by polymerase chain reaction in rodents and Thai livestock. *Veterinary Parasitology*, 171(3–4), 185–193.
- Quiroga, N., Campos-Soto, R., Yañez-Meza, A., Pedro, A. R. S., Allendes, J. L., Bacigalupo, A., Botto-Mahan, C., & Correa, J. P. (2022). *Trypanosoma cruzi* DNA in *Desmodus rotundus* (common vampire bat) and Histiotus montanus (small big-eared brown bat) from Chile. *Acta Tropica*, 225(1), 106206.
- Radwanska, M., Vereecke, N., Deleeuw, V., Pinto, J., & Magez, S. (2018). Salivarian Trypanosomosis: A Review of Parasites Involved, Their Global Distribution and Their Interaction With the Innate and Adaptive Mammalian Host Immune System. *Frontiers in Immunology*, 9(1), 2253.
- Reck, C., Menin, Á., Batista, F., Santos, P. O. M., & Miletti, L. C. (2021). Evaluation of buffered *Trypanosoma evansi* antigen and rapid serum agglutination test (BA/Te) for the detection of anti-*T. evansi* antibodies in horses in Brazil. Curr. Res. Parasitol. *Vector-Borne Diseases*, 1(1), 100024.
- Roy, N., Nageshan, R. K., Pallavi, R., Chakravarthy, H., Chandran, S., Kumar, R., Gupta, A. K., Singh, R. K., Yadav, S. C., & Tatu, U. (2010). Proteomics of *Trypanosoma evansi* infection in rodents. *PLOS ONE*, 5(3), e9796.
- Saldanha, I., Betson, M., Vrettou, C., Paxton, E., Nixon, J., Tennant, P., Ritchie, A.,

- Matthews, K. R., Morrison, L. J., Torr, S. J., & Cunningham, L. J. (2024). Consistent detection of *Trypanosoma brucei* but not *T. congolense* DNA in faeces of experimentally infected cattle. *Scientific Reports*, 14(1), 4158.
- Sari, F. R., Fahrimal, Y., Balqis, U., Subekti, D.
 T., Wardana, A., & Hambal, M. (2015).
 Parasitemia Level of Male White Mice (*Mus musculus* L.) DDY Strain Infected with *Trypanosoma evansi* of Pidie and Pemalang Isolate. *Jurnal Medik Veteriner*, 8(2), 85–87.
- Sawitri, D. H., Wardhana, A. H., Sadikin, M., & Wibowo, H. (2019). Detection of Surra (trypanosomiasis) positivity in humans in an outbreak area of Indonesia. *Medical Journal of Indonesia*, 28(2), 196–202.
- Sazmand, A., Joachim, A., & Otranto, D. (2019). Zoonotic parasites of dromedary camels: so important, so ignored. *Parasites & Vectors*, 12(1), 610.
- Schuster, S., Krüger, T., Subota, I., Thusek, S., Rotureau, B., Beilhack, A., & Engstler, M. (2017). Developmental adaptations of trypanosome motility to the tsetse fly host environments unravel a multifaceted in vivo microswimmer system. *Elife*, 6(1), e27656.
- Schuster, S., Lisack, J., Subota, I., Zimmermann, H., Reuter, C., Mueller, T., Morriswood, B. & Engstler, M. (2021). Unexpected plasticity in the life cycle of *Trypanosoma brucei*. *Elife*, 10(1), e66028.
- Selim, A., Alafari, H. A., Attia, K., AlKahtani, M. D. F., Albohairy, F. M., & Elsohaby, I. (2022). Prevalence and animal level risk factors associated with *Trypanosoma evansi* infection in dromedary camels. *Scientific Reports*, 12(1), 8933.
- Setiawan, A., Nurcahyo, W., Priyowidodo, D., Budiati, R. T., & Susanti, D. S. R. (2021). Genetic and parasitological identification of *Trypanosoma evansi* infecting cattle in South Sulawesi, Indonesia. *Veterinary World*, 14(1), 113–119.
- Silva, R. A., Arosemena, N. A., Herrera, H. M., Sahib, C. A., & Ferreira, M. S. (1995). Outbreak of trypanosomosis due to *Trypanosoma evansi* in horses of Pantanal

- Mato-grossense, Brazil. *Veterinary Parasitology*, 60(1–2), 167–171.
- Silvester, E., McWilliam, K. R., & Matthews, K. R. (2017a). The Cytological Events and Molecular Control of Life Cycle Development of *Trypanosoma brucei* in the Mammalian Bloodstream. *Pathogens*, 6(3), 29.
- Silvester, E., Young, J., Ivens, A., & Matthews, K. R. (2017b). Interspecies quorum sensing in co-infections can manipulate trypanosome transmission potential. *Nature Microbiology*, 2(1), 1471–1479.
- Sivajothi, S., & Reddy, B. S. (2019). Rare report of orchitis in a bull due to *Trypanosoma* evansi infection. *Journal of Parasitic Diseases*, 43(1), 28–30.
- Snijders, R., Fukinsia, A., Claeys, Y., Hasker, E., Mpanya, A., Miaka, E., Meheus, F., & Boelaert, M. (2021). Costs and Outcomes of Integrated Human African Trypanosomiasis Surveillance System Using Rapid Diagnostic Tests, Democratic Republic of the Congo. *Emerging Infectious Diseases*, 27(8), 2144– 2153.
- Soeters, P. B., Wolfe, R. R., & Shenkin, A. (2019). Hypoalbuminemia: Pathogenesis and Clinical Significance. *Journal of Parenteral and Enteral Nutrition*, 43(2), 181–193.
- Somoza, M., Bertelli, A., Pratto, C. A., Verdun, R. E., Campetella, O., & Mucci, J. (2022). *Trypanosoma cruzi* Induces B Cells That Regulate the CD4+ T Cell Response. *Frontiers in Cellular and Infection Microbiology*, 11(1), 789373.
- Steverding, D. (2008). The history of African trypanosomiasis. *Parasit & Vectors*, 1(1), 3.
- Stijlemans, B., Caljon, G., Van Den Abbeele, J., Van Ginderachter, J. A., Magez, S., & De Trez, C. (2016). Immune Evasion Strategies of *Trypanosoma brucei* within the Mammalian Host: Progression to Pathogenicity. *Frontiers in Immunology*, 7(1), 233.
- Stijlemans, B., De Baetselier, P., Magez, S., Van Ginderachter, J. A., & De Trez, C. (2018). African Trypanosomiasis-Associated

- Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. *Frontiers in Immunology*, 9(1), 218.
- Stijlemans, B., Schoovaerts, M., De Baetselier, P., Magez, S., & De Trez, C. (2022). The Role of MIF and IL-10 as Molecular Yin-Yang in the Modulation of the Host Immune Microenvironment During Infections: African Trypanosome Infections as a Paradigm. *Frontiers in Immunology*, 13(1), 865395.
- Su, B. X., Wang, J. F., Yang, T. B., Hide, G., Lai, D. H., & Lun, Z. R. (2022). A new species of mammalian trypanosome, *Trypanosoma* (*Megatrypanum*) bubalisi sp. nov., found in the freshwater leech *Hirudinaria* manillensis. *International Journal for Parasitology*, 52(4), 253–264.
- Suganuma, K., Narantsatsral, S., Battur, B.,
 Yamasaki, S., Otgonsuren, D., Musinguzi, S.
 P., Davaasuren, B., Battsetseg, B., & Inoue,
 N. (2016). Isolation, cultivation and molecular characterization of a new
 Trypanosoma equiperdum strain in Mongolia. Parasites & Vectors, 9(1), 481.
- Suprihati, E., Suwanti, L. T., Yudhana, A., & Kusumaningrum, A. I. (2022). Comparison of ITS-1 and TBR-1/2 primer sensitivity for the detection of *Trypanosoma evansi* local isolates in experimental rats using a polymerase chain reaction. *Veterinary World*, 15(7), 1772–1778.
- Tamarit, A., Gutierrez, C., Arroyo, R., Jimenez, V., Zagalá, G., Bosch, I., Sirvent, J., Alberola, J., Alonso, I., & Caballero, C. (2010). *Trypanosoma evansi* infection in mainland Spain. *Veterinary Parasitology*, 167(1), 74–76.
- Tao, J., Kamanaka, M., Hao, J., Hao, Z., Jiang, X.,
 Craft, J. E., Flavell, R. A., Wu, Z., Hong, Z.,
 Zhao, L., & Yin, Z. (2011). IL-10 signaling
 in CD4+ T cells is critical for the
 pathogenesis of collagen-induced arthritis.
 Arthritis Research & Therapy, 13(6), R212.
- Tejero, F., Roschman-González, A., Perrone-Carmona, T. M., & Aso, P. M. (2008). *Trypanosoma evansi*: A quantitative

- approach to the understanding of the morphometry-hematology relationship throughout experimental murine infections. *The Journal of Protozoology Research*, 18(1), 34–47.
- Telleria, E. L., Benoit, J. B., Zhao, X., Savage, A. F., Regmi, S., Silva, T. L. A., O'Neill, M., & Aksoy, S. (2014). Insights into the trypanosome-host interactions revealed through transcriptomic analysis of parasitized tsetse fly salivary glands. *PLOS Neglected Tropical Diseases*, 8(4), e2649.
- Thuita, J. K., Kagira, J. M., Mwangangi, D., Matovu, E., Turner, C. M., & Masiga, D. (2008). *Trypanosoma brucei* rhodesiense transmitted by a single tsetse fly bite in vervet monkeys as a model of human African trypanosomiasis. *PLOS Neglected Tropical Diseases*, 2(5), e238.
- Tran, T., Claes, F., Verloo, D., De Greve, H., & Büscher, P. (2009). Towards a new reference test for surra in camels. *Clinical and Vaccine Immunology*, 16(7), 999–1002.
- Van Den Abbeele, J., Caljon, G., De Ridder, K., De Baetselier, P., & Coosemans, M. (2010). *Trypanosoma brucei* modifies the tsetse salivary composition, altering the fly feeding behavior that favors parasite transmission. *PLoS Pathogens*, 6(6), e1000926.
- Venturelli, A., Tagliazucchi, L., Lima, C., Venuti, F., Malpezzi, G., Magoulas, G. E., Santarem, N., Calogeropoulou, T., Cordeiro-da-Silva, A., & Costi, M. P. (2022). Current Treatments to Control African Trypanosomiasis and One Health Perspective. *Microorganisms*, 10(7), 1298.
- von Wissmann, B., Machila, N., Picozzi, K., Fèvre, E. M., deC Bronsvoort, B. M., Handel, I. G., & Welburn, S. C. (2011). Factors associated with acquisition of human infective and animal infective trypanosome infections in domestic livestock in Western Kenya. *PLOS Neglected Tropical Diseases*, 5(1), e941.
- Wei, R., Li, X., Wang, X., Zhang, N., Wang, Y., Zhang, X., Gong, P., & Li, J. (2021). *Trypanosoma evansi* evades host innate immunity by releasing extracellular vesicles

- to activate TLR2-AKT signaling pathway. *Virulence*, 12(1), 2017–2036.
- Wheeler, R. J., Gull, K., & Sunter, J. D. (2019). Coordination of the Cell Cycle in Trypanosomes. *Annual Review of Microbiology*, 73(1), 133–154.
- Williams, J. T., Mubiru, J. N., Schlabritz-Loutsevitch, N. E., Rubicz, R. C., VandeBerg, J. L., Dick, E. J. Jr., & Hubbard, G. B. (2009). Polymerase chain reaction detection of *Trypanosoma cruzi* in *Macaca fascicularis* using archived tissues. *American Journal of Tropical Medicine and Hygiene*, 81(2), 228–234.
- Witola, W. H., Sarataphan, N., Inoue, N., Ohashi, K., & Onuma, M. (2005). Genetic variability in ESAG6 genes among *Trypanosoma* evansi isolates and in comparison to other

- Trypanozoon members. *Acta Tropica*, 93(1), 63–73.
- Yasine, A., Ashenafi, H., Geldhof, P., Van Brantegem, L., Vercauteren, G., Bekana, M., Tola, A., Van Soom, A., Duchateau, L., Goddeeris, B., & Govaere, J. (2019). Histopathological lesions in reproductive organs, distal spinal cord and peripheral nerves of horses naturally infected with *Trypanosoma equiperdum. BMC Veterinary Research*, 15(1), 175.
- Young, R., Taylor, J. E., Kurioka, A., Becker, M., Louis, E. J., & Rudenko, G. (2008). Isolation and analysis of the genetic diversity of repertoires of VSG expression site containing telomeres from *Trypanosoma brucei gambiense*, *T. b. brucei*, and *T. equiperdum. BMC Genomics*, 9(1), 385.
