Genomic Characterization of Antimicrobial Resistance Genes in Pasteurella multocida Isolates from East Nusa Tenggara and Lampung, Indonesia

Sri Suryatmiati Prihandani 1, I Wayan Teguh Wibawan 1, Susan Maphilindawati Noor 2, Fitrine Ekawasti 2, Aswin Rafif Khairullah 1, Hastuti Handayani S. Purba 3, Alif Rahman Rohim Puarada 4, Safika Safika 1, Hastuti Handayani S. Purba 3, Alif Rahman Rohim Puarada 4, Safika Safika 5, Hastuti Handayani S. Purba 4, Alif Rahman Rohim Puarada 4, Safika Safika 5, Hastuti Handayani S. Purba 5, Alif Rahman Rohim Puarada 6, Safika Safika 5, Hastuti Handayani S. Purba 5, Alif Rahman Rohim Puarada 6, Safika 5, Safika Safika 6, Hastuti Handayani S. Purba 5, Alif Rahman Rohim Puarada 6, Safika 5, Safika Safika 6, Safika 8, Safika 6, Safika 8, Safika 8,

*Corresponding author: safika@apps.ipb.ac.id

Abstract

Haemorrhagic Septicaemia (HS) is a devastating disease affecting cattle and water buffaloes in Indonesia, causing annual economic losses in livestock industries, particularly in Asia, Africa, and the Middle East. Pasteurella multocida, the causative agent of the disease, has shown increasing antimicrobial resistance, complicating treatment efforts. Therefore, this study aims to provide the first genomic analysis of P. multocida isolates from different Indonesian provinces, focusing on genes conferring resistance to beta-lactam antibiotics based on Whole Genome Sequencing (WGS) results. Genomic data can be used to confirm the results of phenotypic antibiotic resistance testing. P. multocida isolates analyzed in this study were sourced from the Indonesian Research Center for Veterinary Science (IRCVS) collection, which included 2 samples originating from different geographic locations within Indonesia. The samples were subjected to biochemical, molecular, and antimicrobial susceptibility testing. WGS was performed using Oxford Nanopore Technologies (ONT) with subsequent bioinformatics analysis for genome assembly and resistance profiling. Phenotypic analysis showed significant variations between the isolates. The NTT isolate showed resistance to Penicillin, while the Lampung 2952 remained susceptible in the disk antibiotic test. Genome sequencing revealed extensive resistance determinants, including β-lactamase genes (blaZ, blaR1) in the NTT isolate, correlating with its phenotypic resistance. The high-quality genome assemblies (N50: 17,225 bp for NTT; 12,662 bp for Lampung 2952) enabled comprehensive resistome characterization, identifying more than 22 resistance genes in each isolate, including novel variants not previously reported in Indonesian strains. Therefore, this study provides the first genomic and resistance analysis based on Whole Genomic Sequencing data of Indonesian P. multocida isolates. The results show the urgent need for enhanced surveillance and prudent antimicrobial use in livestock management.

Keywords: Pasteurella multocida, haemorrhagic septicaemia, whole genome sequencing, antimicrobial resistance, Indonesia

Received: May 5, 2025 **Revised:** June 3, 2025 **Accepted:** July 11, 2025

INTRODUCTION

Haemorrhagic Septicaemia (HS) caused by Pasteurella multocida serotypes B:2 (Asian) and E:2 (African) primarily affects cattle (Bos indicus) and water buffalo (Bubalus bubalis). HS is characterized by rapid onset and severe septicaemia, often within 2–3 days of clinical manifestation, depending on the disease stage (Horadagoda et al., 2001). Several studies have shown that its morbidity and mortality rates were

42.7% and 63.6%, respectively, with a financial loss of USD 952.50 per affected household. This also caused a loss of USD 373.00 per animal, representing a 66.1% reduction in animal's value (Kawasaki *et al.*, 2015). In Indonesia, a total of 1,156 HS cases were documented in Aceh between 2006 and 2010 (Nurliana *et al.*, 2019). Meanwhile, the disease occurs almost every year in Kupang Regency, East Nusa Tenggara, causing a decline in the livestock population (Berek *et al.*, 2015).

According to previous studies, antimicrobial therapy remains useful for treating diseases caused by *P. multocida*, including HS. Antibiotics Penicillin, Tetracycline, or Chloramphenicol, are administered parenterally to treat this disease (Lestari *et al.*, 2025). However, these treatments are only helpful in the early stages of HS.

The overuse and misuse of antibiotics have accelerated the development of antimicrobial resistance (AMR), complicating treatment and control measures. In a previous study have shown that *P. multocida* can acquire resistance genes through horizontal gene transfer (HGT), aggravating the AMR problem (Michael *et al.*, 2012). In regions with high antimicrobial usage, inappropriate use has contributed to the emergence of multidrug-resistant strains (Sabsabi *et al.*, 2021).

Whole Genome Sequencing (WGS) provides a powerful tool to explore the resistome of bacterial pathogens, offering detailed insights into their genetic makeup and resistance mechanisms (Cimmino and Rolain, 2016). Despite its utility, there remains a paucity of WGS-based studies focusing on P. multocida in Indonesia, where HS disease is a persistent issue. Therefore, this study aims to investigate the resistome of P. multocida isolates from different provinces in Indonesia to understand the AMR and genome properties using WGS. Understanding the AMR profiles is helpful in identifying resistance genes, improving treatment strategies, and guiding policy development for HS disease.

MATERIALS AND METHODS

Ethical Approval

The use of *P. multocida* as a candidate for HS vaccine development was approved by the National Study and Innovation Agency (Approval Number 059/KE.02/SK/03/2024).

Study Period and Location

This study was conducted at the Genomic Laboratory of the National Study and Innovation Agency Cibinong from June to December 2024.

Subculturing of P. multocida Isolates

The P. multocida isolates used in this study were obtained from the collection of the Indonesian Research Center for Veterinary Science (IRCVS), consisting of two isolates originating from 2 distinct geographical regions in Indonesia. One of the *P. multocida* isolates was obtained from East Nusa Tenggara, while the other originated from Lampung, Sumatra. Isolates were cultured and subcultured in Brain Heart Infusion broth (Oxoid) and 5% Sheep Blood Agar medium (Oxoid) at 37°C for 24 hours. Samples identified by applying microbiological, biochemical methods using API® 20NE kit (BioMérieux, France) and then confirmed by PCR (OIE, 2021).

Species Gene Detection

DNA Extraction: DNA was extracted using the Qiagen QIAamp DNA Mini Kits, following the manufacturer's protocol. Subsequently, overnight cultures were centrifuged to collect bacterial pellets, which were then lysed using a buffer containing proteinase K. After lysis, DNA was purified through a spin-column method and eluted in nuclease-free water.

DNA Quantification and Purity Assessment: The concentration and purity of extracted DNA were measured using a NanoDrop 2000 Thermo Scientific. Furthermore, DNA purity was evaluated by measuring absorbance at 260 nm and 280 nm, and the A260/A280 ratio was used as an indicator of purity. A ratio between 1.8 and 2.0 was considered acceptable for downstream molecular applications. Accurate quantification with Qubit dsDNA HS Assay Kits (Thermo Scientific) and TapeStation 4150 Agilent were used in checking the quality of DNA integrity.

Polymerase Chain Reaction (PCR): PCR detected the specific gene of *P. multocida*, namely the *kmt* gene. A pair of standard primers KMT1T7: 5'-ATC-CGC-TAT-TTA-CCC-AGT-GG 3' and KMT1SP6: 5'-GCT-GTA-AAC-GAA-CTC GCC-AC-3' was used to identify the *kmt* gene (OIE, 2021). Subsequently, reactions were prepared in 25 μL volumes containing 12.5 μL of KAPA PCR master mix, 0.75 μL of each primer (forward and reverse), 0.75 μL of template

DNA, and nuclease-free water to reach the final volume. Thermal cycling conditions included initial denaturation at 95°C for 4 minutes, 30 cycles of denaturation at 98°C for 20 seconds, annealing at 68°C for 15 seconds, and extension at 72°C for 15 seconds. The final extension at 72°C for 3 minutes completed PCR amplification.

Gel Electrophoresis: PCR products were separated by agarose gel electrophoresis using a 1.5% agarose gel in 1× TBE buffer stained with RedSafeTM (iNtRON). A total of 80 mL TBE 1X, 1.35 grams agarose (Vivantis), and 4 μL RedSafeTM were boiled in the microwave for 2 minutes at medium-low heat. DNA products were loaded into gel wells alongside a 100 bp DNA ladder. Electrophoresis was conducted at 100 Volt, 115 mA for 45 minutes, and bands were visualized under UV transillumination.

Antibiotic Disk Diffusion Testing

This testing was conducted using the Kirby-Bauer Disc Diffusion Method. The test antibiotics used were Penicillin, Kanamycin, Gentamicin, Chloramphenicol, Tetracyclin, and Enrofloxacin, which were performed on a Mueller-Hinton agar plate (Oxoid).

Library Preparation and WGS

Genomic DNA samples were sent to Genetika Science, Jakarta, Indonesia for wholegenome sequencing and initial bioinformatics analysis. These samples were used as the input for library preparation by applying the Library Preparation Kit from Oxford Nanopore Technologies (ONT).

Bioinformatics Data Analysis

In this study, filtering was performed using Fitlong, while the quality of reads were evaluated with Nanoplot (De Coster *et al.*, 2018). Reads correction and assembly were performed using Canu and Flye, respectively (Koren, 2017). Assembled genomes were annotated using Prokka (Seemann, 2014). The resistome was analyzed using the Comprehensive Antibiotic Resistance Database Resistance Gene Identifier (CARD RGI) (Alcock *et al.*, 2020).

Data Analysis

The results of this study are presented descriptively in the form of tables and figures.

RESULTS AND DISCUSSION

The P. multocida isolates were part of the IRCVS collection, which originated from 2 geographically distinct Indonesian provinces, namely East Nusa Tenggara (NTT) and Lampung. P. multocida colonies in blood agar media were small, round, and moist with a smooth surface appearing mucoid or slightly shiny and grayish-white, showing non-hemolytic or slight beta-hemolysis on blood agar (Figure 1). Morphological characteristics matched previous studies, showing small, round, moist, and mucoid colonies (Desem et al., 2023). Furthermore, the observation of non-hemolytic or slight betahemolysis on blood agar further supported the typical traits of P. multocida (Wilson and Ho, 2013).

Biochemical identification was performed using the API 20NE system (bioMérieux, France) according to the manufacturer's instructions. In this study, both isolates were identified by the API® 20NE kit as *P. multocida* with a numerical profile of 3000004 (% ID = 96%). This numerical profile was consistent with the results of previous studies (Desem *et al.*, 2023). The kit allowed for the identification of non-enteric Gram-negative bacteria through 20 different fermentation and enzymatic activity tests. The biochemical test results were consistent with previous reports that emphasized the reliability of the API 20NE system for *P. multocida* identification (Prihandani *et al.*, 2022).

Species confirmation was achieved through PCR detection of the *kmt*1 gene. Figure 2 showed the electrophoresis of PCR amplification products using a UV transilluminator. The *kmt*1 gene was observed in both samples at 460 bp through PCR, which was a widely recognized method for confirming the presence of *P. multocida*. The *kmt*1 gene encoded a conserved outer membrane protein unique to *P. multocida*, making it a reliable species-specific marker. Amplification of a 460 bp fragment using primers KMT1SP6 and

KMT1T7 has been consistently reported in prior study (Simão *et al.*, 2015).

The disk diffusion method was used to analyze antibiotic susceptibility, based on the measurement of inhibition zones on Mueller–Hinton agar, where clear areas showed suppressed bacterial growth. In this study, *P. multocida* NTT showed resistance to Penicillin (Figure 3) but was sensitive to Gentamicin, Kanamycin, Chloramphenicol, and Tetracycline. Meanwhile, isolate Lampung 2952 was susceptible to all 6 antibiotics as shown in Table 1.

The emergence of antibiotic resistance was influenced by multiple factors, one of which was the duration of antibiotic administration (Sabsabi *et al.*, 2021). Furthermore, the observed resistance of the NTT isolates to Penicillin could be attributed to the production of β -lactamase enzymes, a common resistance mechanism among *P. multocida* strains that hydrolyzed the β -

lactam ring (Rosenau *et al.*, 1991), rendering the antibiotic ineffective (Jian *et al.*, 2021). β -lactamase was an enzyme produced by various bacteria as a defense mechanism against β -lactam antibiotics, such as Penicillins, Cephalosporins, Carbapenems, and Monobactams (Abraham and Chain, 1988; Livermore, 2008; Jian *et al.*, 2021).

Isolate NTT and isolate Lampung 2952 respectively showed genome size: 2.29 Mbp, 2.34 Mbp (Moustafa et al., 2015); N50: 17,225 bp, 12,662 bp; GC content 40.25% and 40.1% (Figure identified a natural 4). Recent studies discontinuity in average nucleotide identity (ANI) values within bacterial species, typically between 99.2% and 99.8%, with a midpoint of approximately 99.5% (Table 2). The genome features of P. multocida NTT Kpg_1 and Lampung 2952, compared to P. multocida strain Razi_Pm0001 serotype B (CP017961.1) and serotype A:3 (NZ CP132898) from GenBank, was presented in Table 3.

Table 1. Results of antibiotic susceptibility testing

Bacteria	Antibiotic Inhibition Zone (cm)					
	P	TE	С	CN	K	ENR
NTT	0	2.2	4.09	2	2.3	3.4
Lampung 2952	2.8	2.95	3.75	1.25	1.2	3

(P) Penicillin, (K) Kanamycin, (TE) Tetracycline, (C) Chloramphenicol, (CN) Gentamicin, (ENR) Enrofloxacin.

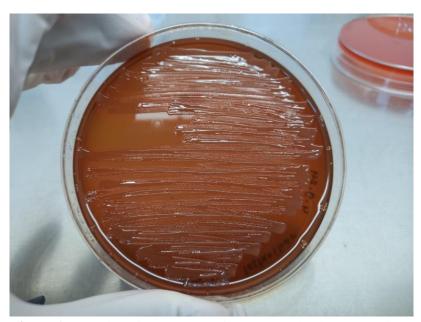
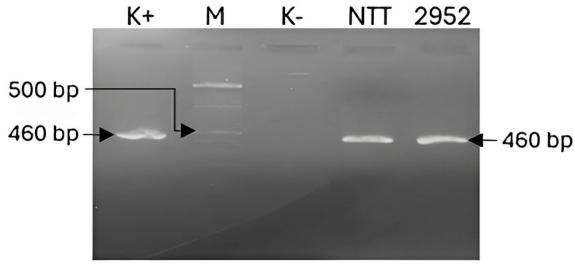
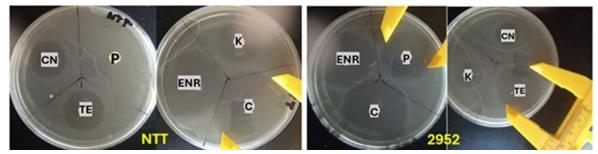




Figure 1. P. multocida colony growing on 5% Blood Agar Medium.

Figure 2. PCR results were visualized using agarose gel electrophoresis, showing a band at approximately 460 bp, which corresponds to the target *kmt* gene, specific for *P. multocida*.

Figure 3. Antibiotic sensitivity testing. (P) Penicillin, (K) Kanamycin, (TE) Tetracycline, (C) Chloramphenicol, (CN) Gentamicin, (ENR) Enrofloxacin.

Table 2. Overview of the recent bovine *P. multocida* genome assembly statistic

Assembly Statistic	P. multocida NTT	P. multocida Lampung 2952
Number of contigs	1	1
Total length (Mbp)	2.29	2.35
Number of reads	139,998	261,742
N50/L50	115853/8Kb	118284/7Kb
Total %GC	40.25	40.1
N50 length (bp)	17,225.0	12,662.0
BUSCO score (%)	99.8	99.2
Mean read length	10,183.36 kb	10,776.78 kb

CARD RGI analysis tools in Proksee were used to detect antibiotic resistance genes in both *P. multocida* WGS results. The number of antibiotic resistance genes detected in *P. multocida* NTT and 2952 was remarkably high. Some of these genes were presented sequentially in Tables 4 and 5. The result showed a circular map as Figure 5 and Figure 6 for *P. multocida* NTT and Lampung 2952 respectively. Specifically, the focus on β-lactamase genes

showed the presence of the Ambler class A β -lactamase encoding PC1 beta-lactamase (blaZ) and the others (blaR1, blaB, and blaC). The detection of blaZ was particularly significant, as it was known to confer resistance to β -lactam antibiotics, including Penicillins. This result correlated with the observed Penicillin resistance in disc diffusion testing, suggesting that the blaZ gene played an essential role in resistance mechanism of P. multocida NTT. The detection

Table 3. Genome features of P. multocida NTT Kpg_1 and Lampung 2952 genome compared to P. multocida strain Razi_Pm0001 serotype B (CP017961.1)

					Average Nucleotide Identi	otide Identity
Species	Accession Number	Mbp	%29	No. genes	A:3 NZ_CP132898	B CP017961.1
P. multocida NTT	NA	2.29	40.25	1,755	98.44	99.95
P. multocida Lampung 2952	NA	2.34	40.10	1,816	98.41	98.41
P. multocida Razi	CP017961	2.36	40.40	1,879	98.32	100
P. multocida A:3	NZ_CP132898	2.62	40.50	2,646	100	98.32

of blaZ and blaB-32 β -lactamase genes suggests that this strain has acquired mechanisms to hydrolyze β -lactam antibiotics, a phenomenon that had been previously described in multidrugresistant P. multocida isolates (Michael et al., 2012).

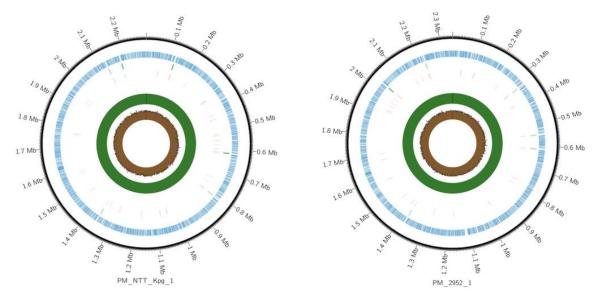
The presence of the blaZ gene in P. multocida NTT showed potential acquisition through HGT or intrinsic resistance mechanisms, possibly facilitated by mobile genetic elements such as plasmids, transposons, or integrative conjugative elements (ICEs). This could contribute to the dissemination of β-lactam resistance. The gene responsible for β-lactam resistance in P. multocida in Spain is blaROB-1 (Millan et al., 2009; Jahnen et al., 2025). P. multocida utilizes the coexistence and horizontal spread of small plasmids as a strategy to develop multidrug resistance. The detection of β lactamase-producing Р. multocida strains emphasized the need for targeted antibiotic management strategies. This study result was consistent with previous reports by Rahimzadeh et al. (2024) where blaZ-mediated resistance was various identified in bacterial species, contributing to the global AMR crisis. The absence of resistance to Gentamicin, Kanamycin, Chloramphenicol, Enrofloxacin, and Tetracycline suggested that resistance mechanisms in P. multocida NTT may be selective rather than broad-spectrum. Further investigation is needed to determine whether P. multocida NTT acquired through plasmids or chromosomal integration. Phenotypic testing showed that P. multocida NTT was resistant to Penicillin using disc antibiotics, while CARD RGI analysis showed a wider range of resistance genes.

The difference in resistance genes was influenced by local antibiotic usage patterns in Lampung 2952 and NTT. Variations in antibiotic exposure could drive the selection of different resistance genes. Farming practices, veterinary treatment policies, and livestock management also contributed to variations in AMR profiles.

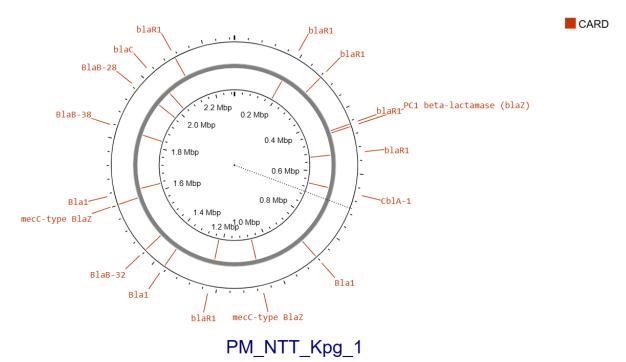
This identification of β -lactamase genes, including blaZ, emphasized the importance of implementing targeted antimicrobial stewardship efforts.

Table 4. List of identified resistance genes in P. multocida NTT

Resistance Gene	Drug Class	Resistance Mechanism	AMR Gene Family
blaZ	Penam	Antibiotic	BlaZ beta-lactamase
		inactivation	
blaB-32	Carbapenem; Penam	Antibiotic	BlaB beta-lactamase
	1	inactivation	
Vgae	Lincosamide antibiotic;	antibiotic target	vga-type ABC-F protein
, gue	Streptogramin antibiotic;	protection	vga type 1120 i protein
	Streptogramin A antibiotic;	protection	
	Pleuromutilin antibiotic		
CRP-1	Carbapenem	Antibiotic	CRP beta-lactamase
CM -1	Caroapenem	inactivation	CKI beta-factamase
leuO	Nucleoside entibiotics	antibiotic efflux	Major facilitator
ieuO	Nucleoside antibiotic;	antibiotic efflux	Major facilitator
	disinfecting agents and		superfamily (MFS)
T ((0)	antiseptics		antibiotic efflux pump
Tet(Q)	Tetracycline antibiotic	antibiotic target	Tetracycline-resistant
.		protection	ribosomal protection protein
vgaB	Streptogramin antibiotic;	antibiotic target	vga-type ABC-F protein
	Streptogramin A antibiotic;	protection	
	Pleuromutilin antibiotic		
<i>Tet</i> (35)	Tetracycline antibiotic	antibiotic efflux	ATP-binding cassette
			(ABC) antibiotic efflux
			pump
tlrC	Macrolide antibiotic;	antibiotic target	Miscellaneous ABC-F
	Lincosamide antibiotic	protection	subfamily ATP-binding
			cassette ribosomal
			protection proteins
ErmD	Macrolide antibiotic;	antibiotic target	Erm 23S ribosomal RNA
	Lincosamide antibiotic;	<i>al</i> teration	methyltransferase
	Streptogramin antibiotic;		
	Streptogramin A antibiotic;		
	Streptogramin B antibiotic		
adeC	Glycylcycline; Tetracycline	antibiotic efflux	Resistance-nodulation-cell
	antibiotic		division (RND) antibiotic
			efflux pump
chrB	Macrolide antibiotic;	antibiotic target	Antibiotic target alteration
	Lincosamide antibiotic	<i>al</i> teration	Č
тасВ	Macrolide antibiotic	Antibiotic efflux	ATP-binding cassette
			(ABC) antibiotic efflux
			pump
DHA-28	Cephalosporin cephamycin	Antibiotic	DHA beta-lactamase
21111 20	copiumosporiii copiumii join	inactivation	211110000100000000000000000000000000000
ANT(4')	Aminoglycoside antibiotic	Antibiotic	ANT(4')
11111 (T <i>)</i>	1 mmogry coside difficient	inactivation	7111(1)
BcIII	Canhalosporine Ponom	Antibiotic	Class A Bacillus cereus Bc
DUIII	Cephalosporin; Penem	inactivation	beta-lactamase
		macuvauon	ocia-iacialliase



LpeB	Macrolide antibiotic	Antibiotic efflux	Resistance-nodulation-cell division (RND) antibiotic efflux pump
TEM-7	Monobactam; Cephalosporin; Penam; Penem	Antibiotic inactivation	TEM beta-lactamase
qacA	Fluoroquinolone antibiotic	Antibiotic efflux	Major facilitator superfamily (MFS) antibiotic efflux pump
OXA-905	Carbapenem; Cephalosporin; Penam	Antibiotic inactivation	OXA beta-lactamase
NmcR	Carbapenem; Cephalosporin; Cephamycin; Penam	Antibiotic inactivation	NmcA beta-lactamase
Tet(X6)	Tetracycline antibiotic	Antibiotic inactivation	Tetracycline inactivation enzyme


Table 5. List of identified resistance genes in *P. multocida* 2952

Resistance	Drug Class	Resistance	AMR Gene Family
Gene	Drug Class	Mechanism	AWIN Gene Family
PFM-4	Carbapenem	Antibiotic	PFM beta-lactamase
		inactivation	
TaeA	Pleuromutilin antibiotic	Antibiotic efflux	ATP-binding cassette (ABC)
			antibiotic efflux pump
vanY gene in	Glycopeptide antibiotic	antibiotic target	vanY; glycopeptide resistance
vanG cluster		<i>al</i> teration	gene cluster
<i>Erm</i> (46)	Macrolide antibiotic;	antibiotic target	Erm 23S ribosomal RNA
	Lincosamide antibiotic;	<i>al</i> teration	methyltransferase
	Streptogramin antibiotic		
ECV-1	Carbapenem	Antibiotic	ECV beta-lactamase
		inactivation	
<i>IMP-94</i>	Carbapenem; Cephalosporin;	Antibiotic	IMP beta-lactamase
	Cephamycin; Penam; Penem	inactivation	
efpA	Rifamycin antibiotic;	Antibiotic efflux	Major facilitator superfamily
	Isoniazid-like antibiotic		(MFS) antibiotic efflux pump
IsaA	Lincosamide antibiotic;	Antibiotic target	lsa-type ABC-F protein
	Streptogramin antibiotic;	protection	
	Streptogramin A antibiotic;		
	Streptogramin B antibiotic;		
	Pleuromutilin antibiotic		
LEN-26	Penam; Penem	Antibiotic	LEN beta-lactamase
		inactivation	
ICR-Mc	Peptide antibiotic	Antibiotic target	Intrinsic colistin resistant
		<i>al</i> teration	phosphoethanolamine
			transferase
PEDO-3	Carbapenem	Antibiotic	Subclass B1 PEDO beta-
		inactivation	lactamase
arnA	Peptide antibiotic	Antibiotic target	pmr phosphoethanolamine
		<i>al</i> teration	transferase

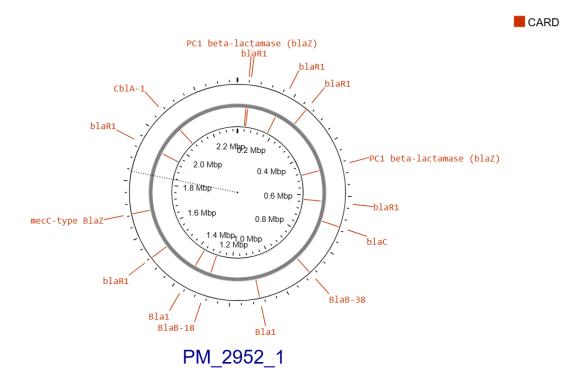

cmIA8	Phenicol antibiotic	Antibiotic efflux	Major facilitator superfamily (MFS) antibiotic efflux pump
mdsA	Monobactam; Carbapenem; Cephalosporin; Cephamycin; Penam; Phenicol antibiotic; Penem	Antibiotic efflux	Resistance-nodulation-cell division (RND) antibiotic efflux pump
SCO-1	Cephalosporin; Penam; Penem	Antibiotic inactivation	SCO beta-lactamase
ADC-100	Cephalosporin	Antibiotic inactivation	ADC beta-lactamases classification pending for carbapenemase activity
tet(41)	Tetracycline antibiotic	Antibiotic efflux	Major facilitator superfamily (MFS) antibiotic efflux pump
EBR-5	Carbapenem; Cephalosporin; Penam	Antibiotic inactivation	EBR beta-lactamase
AAC(6')-lak	Aminoglycoside antibiotic	Antibiotic inactivation	AAC(6')
bcrA	Peptide antibiotic	Antibiotic efflux	ATP-binding cassette (ABC) antibiotic efflux pump
tet(E)	Tetracycline antibiotic	Antibiotic efflux	Major facilitator superfamily (MFS) antibiotic efflux pump
CPS-1	Carbapenem	Antibiotic inactivation	CPS beta-lactamase

Figure 4. Visualization ONT sequencing result of *P. multocida* NTT and Lampung 2952. Figure Legend (from outer): contig (blue), genes (grey), pseudogenes (blue), CDS (black), rRNA (green), tRNA (purple), depth (depth > 50 = green; depth < 50 = red), GC content (GC content > 50% = purple; GC content < 50% = brown).

Figure 5. CARD RGI Analysis Map of β-lactamase genes detected in *P. multocida* NTT.

Figure 6. CARD RGI Analysis Map of β-lactamase genes detected in *P. multocida* Lampung 2952.

The emergence of β -lactamase-producing P. multocida strains called for stronger surveillance and responsible antibiotic use. Ongoing monitoring of resistance genes in both veterinary and clinical contexts was essential to curb the spread of multidrug-resistant isolates. Furthermore, rational antibiotic use in livestock

management must be emphasized to reduce the selective pressure that caused resistance.

Whole-genome analysis showed insertions, deletions, or mutations in ARG-related regions (Gomes *et al.*, 2021). Differences in chromosomal versus plasmid-borne genes affected the detection of resistance genes by

CARD IRG. Some resistance genes could be present but not expressed due to regulatory mechanisms or gene silencing.

The differences in phenotypic (disk diffusion test) and genotypic resistance (CARD IRG prediction) emphasized the complexity of AMR in P. multocida. While CARD IRG detected the presence of ARGs, actual phenotypic resistance could be influenced by factors such as gene regulation, mutations expression affecting functional protein production, efflux pump activity, or enzymatic degradation of antibiotics (Jian et al., 2021; Korotetskiy et al., 2023; Gauba and Rahman, 2023). WGS and transcriptomic further clarified whether detected resistance genes were actively expressed in these isolates (He et al., 2021; Fikri et al., 2022).

P. multocida Lampung 2952 showed resistance to a broader range of antibiotics, with CARD IRG identifying genes linked to resistance Monobactams, Carbapenem, against Cephalosporin, Cephamycin, Rifamycin, Lincosamide, and Tetracycline resistance genes. The presence of Rifamycin resistance genes in Lampung 2952 but not in NTT suggested that this isolate had acquired additional resistance determinants, potentially through HGT, including plasmid acquisition or transposon integration. Furthermore, the absence of streptogramin and macrolide resistance genes in Lampung 2952, which were detected in NTT, emphasized genetic diversity between these isolates and suggested strain-specific resistance mechanisms.

CARD IRG analysis detected differences in gene resistance of *P. multocida*, which exhibited genetic diversity across different geographic regions. Variations in antimicrobial resistance genes (ARGs) could arise due to differences in genetic background, HGT, or evolutionary adaptation (Jian *et al.*, 2021). Comparative genomics studies showed that different strains of the same species could carry distinct resistance determinants due to differences in mobile genetic elements, such as plasmids or transposons. The difference in resistance genes was influenced by local antibiotic usage patterns in Lampung and NTT. Variations in antibiotic exposure could drive the selection of different resistance genes.

Furthermore, farming practices, veterinary treatment policies, and livestock management also contributed to variations in AMR profiles. ARGs could spread through HGT mechanisms, including conjugation, transformation, transduction (Jian et al., 2021; Michael et al., 2012). The presence or absence of certain resistance genes could be due to differences in the acquisition of plasmids, integrons, or prophages. Some P. multocida strains were reported by Kutzer et al. (2021) to acquire resistance genes from other bacterial species in mixed microbial particularly communities, in livestock environments. Whole-genome analysis showed insertions, deletions, or mutations in ARG-related regions (Zhu et al., 2019). Differences in chromosomal plasmid-borne versus affected the detection of resistance genes by CARD IRG. Some resistance genes could be present but not expressed due to regulatory mechanisms or gene silencing.

The variation in ARGs between P. multocida NTT and Lampung 2952 showed the role of genetic background, antibiotic selection pressure, and HGT in shaping resistance profiles. These results emphasized the need for both phenotypic and genotypic resistance testing to accurately assess antibiotic resistance in veterinary and clinical settings, particularly for guiding effective antimicrobial treatment strategies. emergence of multidrug-resistant strains showed the need for judicious antibiotic use in veterinary and agricultural settings to prevent the spread of resistant pathogens (Matheou et al., 2025). Future studies must focus on elucidating the mechanisms underlying resistance gene acquisition and the potential impact of these genes on the virulence and pathogenicity of P. multocida.

CONCLUSION

This study provided the first comprehensive genomic and resistome analysis of Indonesian *P. multocida* isolates from 2 different geographical regions in Indonesia focusing on beta-lactam antibiotics. These results emphasized the need for both phenotypic and genotypic resistance testing to accurately assess antibiotic resistance to

minimize the potential risk to livestock and humans.

ACKNOWLEDGEMENTS

The authors would like to express their gratitude to the Genomics Laboratory and the National Research and Innovation Agency for their assistance in conducting this research.

AUTHORS' CONTRIBUTIONS

SSP conceived, designed, and coordinated the study. IWTW, SS, and SMN developed the data collection tools and supervised field sampling and data acquisition. SS contributed to validation, supervision, and formal analysis. ARRP performed data analysis, developed analytical tools, and assisted in validation. ARK and **HHSP** carried out data analysis, interpretation, and contributed to manuscript preparation. HHSP and FE provided reagents and materials. All authors read, reviewed, and approved the final manuscript.

COMPETING INTERESTS

The authors declare that they have no competing interests.

REFERENCES

- Abraham, E. P., & Chain, E. (1988). An enzyme from bacteria able to destroy penicillin. 1940. *Reviews of Infectious Diseases*, 10(4), 677–678.
- Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A. V., Cheng, A. A., Liu, S., Min, S. Y., Miroshnichenko, A., Tran, H. K., Werfalli, R. E., Nasir, J. A., Oloni, M., Speicher, D. J., Florescu, A., Singh, В., Faltyn, M., Hernandez-Koutoucheva, A., Sharma, A. N., Bordeleau, E., Pawlowski, A. C., Zubyk, H. L., Dooley, D., Griffiths, E., Maguire, F., Winsor, G. L., Beiko, R. G., Brinkman, F. S. L., Hsiao, W. W. L., Domselaar, G. V., & McArthur, A. G.

- (2020). CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. *Nucleic Acids Research*, 48(D1), D517–D525.
- Berek, H. S. D., Nugroho, W. S., & Wahyuni, A.
 E. T. H. (2015). Protectivity Against Septicemia Epizootica of Cows in Kupang District. *Jurnal Veteriner*, 16(2), 167–173.
- Cimmino, T., & Rolain, J. M. (2016). Whole genome sequencing for deciphering the resistome of Chryseobacterium indologenes, an emerging multidrug-resistant bacterium isolated from a cystic fibrosis patient in Marseille, France. *New Microbes and New Infections*, 12(1), 35–42.
- De Coster, W., D'Hert, S., Schultz, D. T., Cruts, M., & Van Broeckhoven, C. (2018). NanoPack: Visualizing and processing longread sequencing data. *Bioinformatics*, 34(15), 2666–2669.
- Desem, M. I., Handharyani, E., Setiyono, A., Safika, S., Subekti, D. T., & Ekawasti, F. (2023). Morphology, Biochemical, and Molecular Characterization of *Pasteurella multocida* Causing Hemorrhagic Septicemia in Indonesia. *Veterinary Medicine International*, 2023(1), 7778707.
- Fikri, F., Wardhana, D. K., Purnomo, A., Khairani, S., Chhetri, S., & Purnama, M. T. E. (2022). Aerolysin gene characterization and antimicrobial resistance profile of *Aeromonas hydrophila* isolated from milkfish (*Chanos chanos*) in Gresik, Indonesia. *Veterinary World*, 15(7), 1759–1764.
- Gauba, A., & Rahman, K. M. (2023). Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. *Antibiotics* (*Basel*), 12(11), 1590.
- Gomes, L. C., Campino, S., Marinho, C. R. F., Clark, T. G., & Phelan, J. E. (2021). Whole genome sequencing reveals large deletions and other loss of function mutations in Mycobacterium tuberculosis drug resistance genes. *Microbial Genomics*, 7(12), 000724.
- He, F., Zhao, Z., Wu, X., Duan, L., Li, N., Fang, R., Li, P., & Peng, Y. (2021). Transcriptomic Analysis of High- and Low-Virulence

- Bovine *Pasteurella multocida* in vitro and in vivo. *Frontiers in Veterinary Science*, 8(1), 616774.
- Horadagoda, N. U., Hodgson, J. C., Moon, G. M., Wijewardana, T. G., & Eckersall, P. D. (2001). Role of endotoxin in the pathogenesis of haemorrhagic septicaemia in the buffalo. *Microbial Pathogenesis*, 30(3), 171–178.
- Jahnen, J., Hanke, D., Kadlec, K., Schwarz, S., & Krüger-Haker, H. (2025). Antimicrobial Resistance in *Pasteurella multocida* Isolates from Bovine Mastitis Can Be Associated with Multidrug-Resistance-Mediating Integrative and Conjugative Elements (ICEs). *Antibiotics*, 14(2), 153.
- Jian, Z., Zeng, L., Xu, T., Sun, S., Yan, S., Yang,
 L., Huang, Y., Jia, J., & Dou, T. (2021).
 Antibiotic resistance genes in bacteria:
 Occurrence, spread, and control. *Journal of Basic Microbiology*, 61(12), 1049–1070.
- Kawasaki, M., Young, J. R., Suon, S., Bush, R.
 D., & Windsor, P. A. (2015). The Socioeconomic Impacts of Clinically Diagnosed Haemorrhagic Septicaemia on Smallholder Large Ruminant Farmers in Cambodia. *Transboundary and Emerging Diseases*, 62(5), 535–548.
- Koren, S., Walenz, B. P., Berlin, K., Miller, J. R., Bergman, N. H., & Phillippy, A. M. (2017). Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. *Genome Research*, 27(5), 722–736.
- Korotetskiy, I. S., Shilov, S. V., Kuznetsova, T., Kerimzhanova, B., Korotetskaya, N., Ivanova, L., Zubenko, N., Parenova, R., & Reva, O. N. (2023). Analysis of Whole-Genome Sequences of Pathogenic Gram-Positive and Gram-Negative Isolates from the Same Hospital Environment to Investigate Common Evolutionary Trends Associated with Horizontal Gene Exchange, Mutations and DNA Methylation Patterning. *Microorganisms*, 11(2), 323.
- Kutzer, P., Szentiks, C. A., Bock, S., Fritsch, G., Magyar, T., Schulze, C., Semmler, T., & Ewers, C. (2021). Re-Emergence and Spread

- of Haemorrhagic Septicaemia in Germany: The Wolf as a Vector? *Microorganisms*, 9(9), 1999.
- Lestari, T. D., Khairullah, A. R., Damayanti, R., Mulyati, S., Rimayanti, R., Hernawati, T., Utama, S., Wardhani, B. W. K., Wibowo, S., Kurniasih, D. A. A., Ma'ruf, I. F., Moses, I. B., Lisnanti, E. F., Ahmad, R. Z., Fauziah, I., Amalia, N., Fauzia, K. A., & Kusala, M. K. J. (2025). Hemorrhagic septicemia: A major threat to livestock health. *Open Veterinary Journal*, 15(2), 519–532.
- Livermore, D. M. (2008). Defining an extended-spectrum beta-lactamase. *Clinical Microbiology and Infection*, 14(Suppl 1), 3–10.
- Matheou, A., Abousetta, A., Pascoe, A. P.,
 Papakostopoulos, D., Charalambous, L.,
 Panagi, S., Panagiotou, S., Yiallouris, A.,
 Filippou, C., & Johnson, E. O. (2025).
 Antibiotic Use in Livestock Farming: A
 Driver of Multidrug Resistance?
 Microorganisms, 13(4), 779.
- Michael, G. B., Kadlec, K., Sweeney, M. T., Brzuszkiewicz, E., Liesegang, H., Daniel, R., Murray, R. W., Watts, J. L., & Schwarz, S. (2012). ICEPmu1, an integrative conjugative element (ICE) of *Pasteurella multocida*: Analysis of the regions that comprise 12 antimicrobial resistance genes. *Journal of Antimicrobial Chemotherapy*, 67(1), 84–90.
- Millan, A. S., Escudero, J. A., Gutierrez, B., Hidalgo, L., Garcia, N., Llagostera, M., Dominguez, L., & Gonzalez-Zorn, B. (2009). Multiresistance in *Pasteurella* multocida is mediated by coexistence of small plasmids. Antimicrobial Agents and Chemotherapy, 53(8), 3399–3404.
- Moustafa, A. M., Seemann, T., Gladman, S., Adler, B., Harper, M., Boyce, J. D., & Bennett, M. D. (2015). Comparative Genomic Analysis of Asian Haemorrhagic Septicaemia-Associated Strains of *Pasteurella multocida* Identifies More than 90 Haemorrhagic Septicaemia-Specific Genes. *PLoS One*, 10(7), e0130296.

- Nurliana, Karmil, T., Ferasyi, T., Darmawi, Razali, Sugito, Rastina, & Ismail. (2019). Identification of Risk Factors and Seroprevalence For Septicemia Epizootica (SE) Endemic Case Of Buffaloes in Aceh Barat, Aceh. Proceedings of the Conference of the International Society for Economics and Social Sciences of Animal Health South East Asia 2019 (ISESSAH-SEA 2019). 19(1), 106–110.
- OIE. (2021). Haemorrhagic septicaemia (*Pasteurella multocida*) serotypes 6:B and 6:E. Mannual, 1–17.
- Prihandani, S. S., Noor, S. M., Wibawan, I. W. T., Safika, Purba, H. H. S., Sumirah, & Kusumawati, A. (2022). Polymerase chain reaction to confirm biochemically characterization method of *Pasteurella multocida* isolate from fatal cases of Septicaemia epizootica in Nusa Tenggara Timur. *IOP Conference Series: Earth and Environmental Science*, 976(1), 012046.
- Rahimzadeh, G., Ghezljai, N., Rezai, S., Rezai, R., Navaiefar, M. R., Rezai, M. S., Moradi, M., & Shakeri, M. (2024). Updating the Antimicrobial Resistance Pattern among Critical Priority Pathogens in the Intensive Care Unit in Northern Iran Post COVID-19 Pandemic. *Advanced Biomedical Research*, 13(1), 123.
- Rosenau, A., Labigne, A., Escande, F., Courcoux, P., & Philippon, A. (1991). Plasmid-

- mediated ROB-1 beta-lactamase in *Pasteurella multocida* from a human specimen. *Antimicrobial Agents and Chemotherapy*, 35(11), 2419–2422.
- Sabsabi, M. A., Zakaria, Z., Abu, J., & Faiz, N. M. (2021). Molecular characterisation and antibiotic sensitivity profile of *Pasteurella multocida* isolated from poultry farms in Malaysia. *Austral Journal of Veterinary Sciences*, 53(2), 121–126.
- Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. *Bioinformatics*, 30(14), 2068–2069.
- Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V., & Zdobnov, E. M. (2015). BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. *Bioinformatics*, 31(19), 3210–3212.
- Wilson, B. A., & Ho, M. (2013). *Pasteurella multocida*: From Zoonosis to cellular microbiology. *Clinical Microbiology Reviews*, 26(3), 631–655.
- Zhu, D., He, J., Yang, Z., Wang, M., Jia, R., Chen, S., Liu, M., Zhao, X., Yang, Q., Wu, Y., Zhang, S., Liu, Y., Zhang, L., Yu, Y., You, Y., Chen, X., & Cheng, A. (2019). Comparative analysis reveals the Genomic Islands in *Pasteurella multocida* population genetics: on Symbiosis and adaptability. *BMC Genomics*, 20(1), 63.
